JPH08108659A - Production of lithographic printing substrate - Google Patents

Production of lithographic printing substrate

Info

Publication number
JPH08108659A
JPH08108659A JP6244427A JP24442794A JPH08108659A JP H08108659 A JPH08108659 A JP H08108659A JP 6244427 A JP6244427 A JP 6244427A JP 24442794 A JP24442794 A JP 24442794A JP H08108659 A JPH08108659 A JP H08108659A
Authority
JP
Japan
Prior art keywords
plate
aluminum
lithographic printing
support
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6244427A
Other languages
Japanese (ja)
Inventor
Hirokazu Sawada
宏和 澤田
Masaya Matsuki
昌也 松木
Hirokazu Sakaki
博和 榊
Tsutomu Kakei
勤 掛井
Akio Uesugi
彰男 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP6244427A priority Critical patent/JPH08108659A/en
Priority to DE69507398T priority patent/DE69507398T2/en
Priority to EP95111464A priority patent/EP0695647B1/en
Priority to US08/504,676 priority patent/US5779824A/en
Publication of JPH08108659A publication Critical patent/JPH08108659A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To stably produce a low-cost lithographic printing substrate having little occurrence of stepped unevenness and a superior face quality after being roughened by a method wherein an aluminum casting material contains Fe, Si, and Al respectively by a specific ratio, and in a continuously casted and rolled plate a ratio of a concentration distribution difference of alloy components in a rolling direction to that in a plate width direction is specified. CONSTITUTION: In the production of a lithographic printing substrate, an aluminum casting material contains 0-0.20wt.% Fe, 0-0.10wt.% Si, 99.7wt.% or more Al, and the casting material is rolled so that in a continuously casted and rolled plate a ratio of a concentration distribution difference of alloy components in a rolling direction 10a to that in a plate width direction 10b is 0.2-5. Additionally, the aluminum casting material also contains 0-0.05wt.% Cu and 0-0.05wt.% Ti. For imparting superior characteristics as a lithographic printing aluminum alloy substrate, the alloy components of the aluminum casting material are specified as mentioned above. For eliminating stepped unevenness 8 occurring on a continuously casted and rolled plate, in the rolled plate a ratio of a concentration distribution difference of alloy components in a rolling direction to that in a plate width direction is specified.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平版印刷版用支持体の製
造方法に関する、特に電解粗面化性の良いアルミニウム
支持体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithographic printing plate support, and more particularly to a method for producing an aluminum support having a good electrolytic graining property.

【0002】[0002]

【従来の技術】印刷版用アルミニウム支持体、特にオフ
セット印刷版用支持体としてはアルミニウム板(アルミ
ニウム合金板を合む)が用いられている。一般にアルミ
ニウム板をオフセット印刷版用支持体として使用するた
めには、感光材料との適度な接着性と保水性を有してい
ることが必要である。
2. Description of the Related Art Aluminum plates (including aluminum alloy plates) are used as aluminum supports for printing plates, especially as supports for offset printing plates. Generally, in order to use an aluminum plate as a support for an offset printing plate, it is necessary to have appropriate adhesiveness to a photosensitive material and water retention.

【0003】このためにはアルミニウム板の表面を均一
かつ緻密な砂目を有するように粗面化しなければならな
い。この粗面化処理は製版後実際にオフセット印刷を行
ったときに版材の印刷性能や耐刷力に著しい影響をおよ
ぼすので、その良否は版材製造上重要な要素となってい
る。印刷版用アルミニウム支持体の粗面化方法として
は、交流電解エッチング法が一般的に採用されており、
電流としては、普通の正弦波交流電流、矩形波などの特
殊交番波形電流が用いられている。そして、黒鉛等の適
当な電極を対極として交流電流によりアルミニウム板の
粗面化処理を行うもので、通常一回の処理で行われてい
るが、そこで得られるピット深さは全体的に浅く、耐刷
性能に劣るものであった。このため、その直径に比べて
深さの深いピットが均一かつ緻密に存在する砂目を有す
る印刷版用支持体として好適なアルミニウム板が得られ
るように、数々の方法が提案されている。その方法とし
ては、特殊電解電源波形を使った粗面化方法(特開昭5
3−67507号公報)、交流を使った電解粗面化時の
陽極時と陰極時の電気量の比率(特開昭54−6560
7号公報)、電源波形(特開昭55−25381号公
報)、単位面積あたりの通電量の組合わせ(特開昭56
−29699号公報)などが知られている。
For this purpose, the surface of the aluminum plate must be roughened so as to have a uniform and fine grain. This roughening treatment has a significant influence on the printing performance and printing durability of the plate material when offset printing is actually carried out after plate making, and therefore its quality is an important factor in the plate material production. As a roughening method of the aluminum support for printing plates, AC electrolytic etching method is generally adopted,
As the current, a normal sine wave alternating current or a special alternating waveform current such as a rectangular wave is used. Then, the surface of the aluminum plate is roughened by an alternating current using an appropriate electrode such as graphite as a counter electrode, which is usually performed in a single treatment, but the pit depth obtained there is generally shallow. The printing durability was inferior. Therefore, various methods have been proposed in order to obtain an aluminum plate suitable as a printing plate support having a grain in which pits having a depth deeper than its diameter are present uniformly and densely. As a method thereof, a surface roughening method using a special electrolysis power source waveform (Japanese Patent Laid-Open No. Sho 5)
3-67507), the ratio of the amount of electricity at the time of the anode and the cathode at the time of electrolytic surface roughening using an alternating current (Japanese Patent Laid-Open No. 54-6560).
No. 7), a power supply waveform (JP-A-55-25381), and an energization amount per unit area (JP-A-56).
No. 29699) is known.

【0004】また、機械的な粗面化と組み合わせた方法
(特開昭55−142695号公報)なども知られてい
る。一方、アルミニウム支持体の製造方法としては、ア
ルミニウムのインゴットを溶解保持してスラブ(厚さ4
00〜600mm、幅1000〜2000mm、長さ2
000〜6000mm)を鋳造し、スラブ表面の不純物
組織部分を面削機にかけて3〜10mmづつ切削する面
削工程を経た後、スラブ内部の応力の除去と組織の均一
化の為、均熱炉において480〜540℃、6〜12時
間保持する均熱化処理工程を行い、しかる後に熱間圧延
を480〜540℃で行う。熱間圧延で5〜40mmの
厚みに圧延した後、室温で所定の厚みに冷間圧延を行
う。またその後組織の均一化のため焼鈍を行い圧延組織
等を均質化した後、規定の厚みに冷間圧延を行い、平坦
度の良い板にするため矯正する。この様にして作られた
アルミニウム支持体を平版印刷版用支持体としていた。
Further, a method combined with mechanical surface roughening (Japanese Patent Application Laid-Open No. 55-142695) is also known. On the other hand, as a method of manufacturing an aluminum support, an aluminum ingot is melted and held to form a slab (thickness: 4 mm).
00-600mm, width 1000-2000mm, length 2
000 to 6000 mm) and subjected to a chamfering step of cutting the impurity textured portion of the slab surface with a chamfering machine in 3 to 10 mm increments, and then in a soaking furnace for removing stress inside the slab and homogenizing the texture. A soaking treatment step of holding at 480 to 540 ° C for 6 to 12 hours is performed, and then hot rolling is performed at 480 to 540 ° C. After hot rolling to a thickness of 5 to 40 mm, cold rolling is performed to a predetermined thickness at room temperature. Further, after that, annealing is performed to homogenize the structure to homogenize the rolled structure and the like, and then cold rolling is performed to a prescribed thickness to correct the plate so as to have a good flatness. The aluminum support thus prepared was used as a support for a lithographic printing plate.

【0005】しかしながら、電解粗面化処理の場合は特
に対象となるアルミニウム支持体の影響を受けやすく、
アルミニウム支持体を溶解保持→鋳造→面削→均熱とい
う工程を通して製造する場合、加熱、冷却をくり返し、
面削という表面層を削り取る工程があったとしても、表
面層に金属合金成分などのばらつきを生じて平版印刷版
としては得率低下の原因となっていた。
However, in the case of electrolytic surface-roughening treatment, it is particularly susceptible to the influence of the aluminum support as a target,
When manufacturing the aluminum support through the process of melting and holding → casting → chamfering → soaking, heating and cooling are repeated,
Even if there is a step of scraping off the surface layer called surface grinding, variations in metal alloy components and the like occur in the surface layer, which causes a reduction in the yield as a lithographic printing plate.

【0006】これに対して、本出願人は先にアルミニウ
ム支持体の材質のばらつきを少くし、電解粗面化処理の
得率を向上させることによって品質の優れた得率のよい
平版印刷版を作れる方法として、アルミニウム溶湯から
鋳造、熱間圧延を連続して行い、薄板の熱間圧延コイル
を形成させた後、冷間圧延、熱処理、矯正を行ったアル
ミニウム支持体を粗面化処理することを特徴とする平版
印刷版用支持体の製造方法を提案した(特開平3−79
798号公報)。
On the other hand, the applicant of the present invention first reduced the variation in the material of the aluminum support and improved the yield of the electrolytic surface roughening treatment to obtain a lithographic printing plate of excellent quality and good yield. As a method that can be made, after casting from an aluminum melt and hot rolling continuously to form a thin plate hot rolling coil, cold rolling, heat treatment, straightening the aluminum support to roughen it A method for producing a support for a lithographic printing plate characterized by the following is proposed (JP-A-3-79).
798 publication).

【0007】それに加えて、特開平6−48058号公
報では良好な電解粗面化適性を得るため、Fe:0.4
〜0.2重量%、Si:0.2〜0.05重量%、C
u:0.02重量%以下、アルミニウム99.5重量%
以上のアルミニウム溶湯から連続鋳造を行ない、Feの
含有量の内2.0〜90%が結晶粒界に存在しているこ
とを提案している。
In addition to this, in JP-A-6-48058, in order to obtain a good suitability for electrolytic surface roughening, Fe: 0.4
~ 0.2 wt%, Si: 0.2-0.05 wt%, C
u: 0.02% by weight or less, aluminum 99.5% by weight
It is proposed that continuous casting is performed from the above molten aluminum and that 2.0 to 90% of the Fe content is present in the crystal grain boundaries.

【0008】また、支持体の合金成分を規定した発明と
しては、特開昭62−146694号、特開昭60−2
30951号、特開昭60−215725号、特開昭6
1−26746号、特公昭58−6635号各公報が開
示されている。また、本出願人は、支持体の合金成分を
規定するとともに、Fe合金成分の濃度分布が平均濃度
±0.05%以内であることを提案している(特開平5
−301478号公報)。
Further, examples of inventions defining the alloy components of the support are disclosed in JP-A-62-146694 and JP-A-60-2.
30951, JP 60-215725 A, JP 6 A
Nos. 1-26746 and 58-8635 are disclosed. Further, the present applicant defines the alloy component of the support and proposes that the concentration distribution of the Fe alloy component is within an average concentration of ± 0.05% (Japanese Patent Laid-Open No. Hei 5).
-301478 gazette).

【0009】[0009]

【発明が解決しようとする課題】ところが、先に本出願
人が出願した特開平6−48058号公報や特開平5−
301478号公報に記載された製造方法についても、
図2に示されるように、アルミニウム溶湯から双ロール
を用いて連続鋳造圧延した場合、アルミニウム板7の表
面において圧延方向に垂直な方向、即ちアルミニウム板
7の幅方向に延びる段状のムラ8が生じる不具合があっ
た。尚、同図において、隣接するムラ8の間は合金組成
や組織が均一な部分(正常部11)である。このムラ8
は、その後冷間圧延や中間焼鈍を行っても消えず、粗面
化処理をした平版印刷版の表面に段状ムラとなって残る
不具合が生じた。
However, Japanese Patent Application Laid-Open No. 6-48058 and Japanese Patent Application Laid-Open No.
Regarding the manufacturing method described in Japanese Patent No. 301478,
As shown in FIG. 2, when the aluminum melt is continuously cast and rolled using twin rolls, a step-like unevenness 8 extending in the direction perpendicular to the rolling direction, that is, in the width direction of the aluminum plate 7, is formed on the surface of the aluminum plate 7. There was a problem that occurred. In the figure, between the adjacent irregularities 8 is a portion (normal portion 11) having a uniform alloy composition and structure. This unevenness 8
However, there was a problem that it did not disappear even after cold rolling or intermediate annealing, and remained as stepwise unevenness on the surface of the roughened lithographic printing plate.

【0010】本発明の目的は、双ロール連続鋳造圧延時
に生じる段状のムラの発生を少なくし、粗面化後の面質
の優れた平版印刷版用支持体を双ロール連続鋳造圧延法
を用いて低コストで、安定して作れる平版印刷版用支持
体の製造方法を提供することにある。
An object of the present invention is to reduce the occurrence of stepwise unevenness that occurs during twin roll continuous casting and rolling, and obtain a support for a lithographic printing plate that has excellent surface quality after roughening by a twin roll continuous casting and rolling method. An object of the present invention is to provide a method for producing a lithographic printing plate support which can be stably produced at low cost.

【0011】[0011]

【問題を解決するための手段及び作用】本発明者らは、
連続鋳造圧延時に生じる段状ムラについて鋭意研究した
結果、段状ムラに見える箇所は2通りのパターンに分類
でき、一つはFeやSi等の合金成分が金属間化合物の
形で密に集合して段状の分布をしているもので、もう一
つはFeやSi等の合金成分がそこだけ濃度が希薄にな
っているものであることをつきとめた。さらに、連続鋳
造圧延時のこれら合金成分分布の不均一と最終板におけ
る粗面化特性との関係を調べ、良好な平版印刷版用支持
体を提供可能な、本発明を見出したのである。
[Means and Actions for Solving the Problems]
As a result of diligent research on the stepped unevenness that occurs during continuous casting and rolling, the part that looks like stepped unevenness can be classified into two patterns. One is that alloy components such as Fe and Si are densely aggregated in the form of intermetallic compounds. It was found that the alloy has a stepwise distribution, and the other is that the alloy components such as Fe and Si have a dilute concentration. Furthermore, the inventors have found the present invention capable of providing a good lithographic printing plate support by examining the relationship between the nonuniform distribution of these alloy components during continuous casting and rolling and the roughening property of the final plate.

【0012】即ち本発明の上記目的は、 アルミニウム溶湯から双ロールで直接板状に連続鋳造
圧延した後、冷間圧延、焼鈍の何れか一方または両方を
行い、さらに矯正を行った後アルミニウム支持体を粗面
化する一連の工程からなる平版印刷版用支持体の製造方
法において、アルミニウム溶湯の成分が0<Fe≦0.
20重量%、0≦Si≦0.10重量%、Al≧99.
7重量%であり、かつ連続鋳造圧延後の板の圧延方向の
合金成分の濃度分布差と板幅方向の合金成分の濃度分布
差との比が0.2〜5になるように連続鋳造圧延を行う
ことを特徴とする平版印刷版用支持体の製造方法、 前記アルミニウム溶湯の成分が0≦Cu≦0.05重
量%、0<Ti≦0.05重量%を含むことを特徴とす
る前項に記載の平版印刷版用支持体の製造方法よって
達成される。
That is, the above object of the present invention is to continuously cast and roll a molten aluminum directly into a plate shape with twin rolls, and then perform either one or both of cold rolling and annealing and further straightening the aluminum support. In the method for producing a lithographic printing plate support, which comprises a series of steps for roughening the surface of aluminum, the component of the molten aluminum is 0 <Fe ≦ 0.
20% by weight, 0 ≦ Si ≦ 0.10% by weight, Al ≧ 99.
7% by weight, and continuous casting and rolling such that the ratio between the difference in concentration distribution of alloy components in the rolling direction of the plate after continuous casting and rolling and the difference in concentration distribution of alloy components in the plate width direction is 0.2 to 5. The method for producing a support for a lithographic printing plate, comprising: 0. <Cu <0.05% by weight and 0 <Ti <0.05% by weight. It is achieved by the method for producing a lithographic printing plate support described in.

【0013】本発明において、アルミニウム溶湯から双
ロールを用いて連続的に鋳造したコイルを形成する方法
としては、ハンター法、3C法等の薄板連続鋳造技術が
実用化されている。これらの方法は、アルミニウム溶湯
を凝固させると同時に圧延することが可能で、通常厚さ
2〜10mmの連続鋳造圧延板を製造することができ
る。
In the present invention, as a method for forming a coil continuously cast from molten aluminum by using twin rolls, a thin plate continuous casting technique such as Hunter method or 3C method has been put into practical use. According to these methods, the molten aluminum can be solidified and rolled at the same time, and a continuous cast and rolled plate having a normal thickness of 2 to 10 mm can be manufactured.

【0014】本発明は平版印刷版用アルミニウム合金支
持体として優れた特性を得るため、アルミニウム溶湯の
合金成分を規定し、かつ連続鋳造圧延後の板の圧延方向
の合金成分の濃度分布差と板幅方向の合金成分の濃度分
布差との比を規定することで連続鋳造圧延板に生じる段
状ムラを解消しようとするものである。本発明におい
て、Fe成分としては、0<Fe≦0.20重量%であ
り、好ましくは0.05≦Fe≦0.18重量%であ
り、特に好ましくは0.08≦Fe≦0.15重量%で
ある。
In order to obtain excellent properties as an aluminum alloy support for a lithographic printing plate, the present invention defines the alloy composition of the molten aluminum and determines the difference in the concentration distribution of the alloy composition in the rolling direction of the plate after continuous casting and rolling and the plate. By defining the ratio with the difference in concentration distribution of alloy components in the width direction, it is intended to eliminate the stepwise unevenness that occurs in the continuously cast and rolled plate. In the present invention, the Fe component is 0 <Fe ≦ 0.20% by weight, preferably 0.05 ≦ Fe ≦ 0.18% by weight, and particularly preferably 0.08 ≦ Fe ≦ 0.15% by weight. %.

【0015】本発明において、Si成分として0≦Si
≦0.10重量%であり、好ましくは0.02≦Si≦
0.08重量%であり、特に好ましくは0.025≦S
i≦0.06重量%である。Al≧99.7重量%につ
いて、Al≧99.7重量%とすることで、一般市場に
安価で流通しているAl≧99.7重量%インゴット材
を使用することが出来、原材料のコスト低減に効果があ
る。
In the present invention, as the Si component, 0 ≦ Si
≦ 0.10% by weight, preferably 0.02 ≦ Si ≦
0.08% by weight, particularly preferably 0.025 ≦ S
i ≦ 0.06% by weight. By setting Al ≧ 99.7% by weight with respect to Al ≧ 99.7% by weight, it is possible to use an Al ≧ 99.7% by weight ingot material that is inexpensively distributed in the general market, and reduce the cost of raw materials. Has an effect on.

【0016】また砂目形状がくずれることを防止するた
め、上限はのぞましくは99.99重量%未満であるの
が良い。Cu成分としては、0≦Cu≦0.05重量
%、好ましくは0.001≦Cu<0.008重量%が
よい。Ti成分としては、0<Ti≦0.05重量%、
好ましくは0≦Ti<0.03重量%である。
In order to prevent the grain shape from becoming distorted, the upper limit is preferably less than 99.99% by weight. As the Cu component, 0 ≦ Cu ≦ 0.05% by weight, preferably 0.001 ≦ Cu <0.008% by weight. As the Ti component, 0 <Ti ≦ 0.05% by weight,
Preferably 0 ≦ Ti <0.03% by weight.

【0017】なお、一般に、Tiは結晶粒微細化剤とし
て添加するものであり、またCuは砂目ピット形状をコ
ントロールするために添加するものである。その他、不
可避不純物(例えば、Mg、Mn、Cr、Zr、V、Z
n、Be等)は含有量が少ないので、連続鋳造圧延板の
段状ムラ、最終板の表面処理性、汚れ性、バーニング性
に特に悪影響を及ぼさない。
In general, Ti is added as a grain refiner and Cu is added to control the grain pit shape. Other unavoidable impurities (eg, Mg, Mn, Cr, Zr, V, Z
(n, Be, etc.) have a small content, so that they do not particularly affect the stepwise unevenness of the continuously cast and rolled plate, the surface treatment property of the final plate, the stain property, and the burning property.

【0018】Fe成分の原料としては市販のFe含有量
50%のAl−Fe母合金を用いることができ、Si成
分の原料としては市販のSi含有量25%のAl−Si
母合金を用いることができ、Cu成分の原料としては市
販のCu含有量50%のAl−Cu母合金を用いること
ができ、またTi成分の原料としては市販のTi含有量
5%のAl−Ti母合金または線状になったAl−Ti
−B母合金を用いることができる。
A commercially available Al-Fe mother alloy having a Fe content of 50% can be used as the raw material of the Fe component, and a commercially available Al-Si alloy having a Si content of 25% can be used as the raw material of the Si component.
A mother alloy can be used, a commercially available Al-Cu mother alloy with a Cu content of 50% can be used as a Cu component raw material, and a commercially available Ti content of 5% Al-with a Ti component raw material. Ti master alloy or linear Al-Ti
-B master alloys can be used.

【0019】Fe、Si、Cu、Tiの各成分は、Al
≧99.7重量%インゴット材の融解時に上記各原料を
目的とする重量範囲となるように添加して使用される。
尚、Fe及びSiについては99.7%Alインゴット
材に微量含まれる場合があり、この量を考慮してFeと
Si成分の原料は添加される。また、Cu及びTiにつ
いては99.7%Alインゴット材にごく微量含まれる
場合と含まれない場合とがあり、Cu及びTiにおいて
もこの量を考慮して各原料は添加される。
Each component of Fe, Si, Cu and Ti is Al
≧ 99.7% by weight When the ingot material is melted, each of the above raw materials is added to be used in the intended weight range.
Incidentally, Fe and Si may be contained in a small amount in the 99.7% Al ingot material, and the raw materials of the Fe and Si components are added in consideration of these amounts. Further, Cu and Ti may or may not be contained in a very small amount in the 99.7% Al ingot material, and in Cu and Ti, the respective raw materials are added in consideration of these amounts.

【0020】次に、図1(A)〜(D)の工程概略図を
用いて、本発明に用いる平版印刷版用支持体の製造方法
の実施態様ついて更に具体的に説明する。1は溶解保持
炉で、ここでインゴットは溶解保持される。ここから双
ロール連続鋳造機2に送られる。つまり、アルミニウム
溶湯から直接薄板のコイルを形成する、コイラー6によ
って巻取っても良いし、引き続いて熱処理、冷間圧延
機、矯正装置にかけても良い。
Next, the embodiment of the method for producing the lithographic printing plate support used in the present invention will be described more specifically with reference to the schematic process diagrams of FIGS. 1 (A) to 1 (D). Reference numeral 1 is a melting and holding furnace, in which the ingot is held by melting. From here, it is sent to the twin roll continuous casting machine 2. That is, the coil of the thin plate may be directly formed from the molten aluminum and wound by the coiler 6, or may be subsequently subjected to the heat treatment, the cold rolling mill, and the straightening device.

【0021】これらの製造条件について更に詳しく説明
すると、溶解保持炉1ではアルミニウムの融点以上の温
度に保持させる必要があり、その温度はアルミニウム合
金成分によって適宜変化する。一般に800℃以上であ
る。また、アルミニウム溶湯の酸化物発生の抑制や、溶
解保持炉1の炉壁から溶出するNa、Li、Ca等品質
上有害となるアルカリ金属の除去策として、適宜不活性
ガスパージ、フラックス処理等が行われる。
The manufacturing conditions will be described in more detail. In the melting and holding furnace 1, it is necessary to hold the temperature at the melting point of aluminum or higher, and the temperature changes depending on the aluminum alloy component. Generally, it is 800 ° C or higher. In addition, as a measure for suppressing the generation of oxides in the molten aluminum and for removing alkali metals such as Na, Li, and Ca that are harmful to the quality and are eluted from the furnace wall of the melting and holding furnace 1, an inert gas purge, a flux treatment, etc. are appropriately performed. Be seen.

【0022】引き続き双ロール連続鋳造機2によって鋳
造される。鋳造方法にはいろいろあるが、現在工業的に
稼働しているのはハンター法、3C法等が殆どである。
鋳造温度は鋳型の冷却条件で異なるが、700℃付近が
最適である。連続鋳造後の結晶粒径、冷却条件、鋳造速
度、鋳造中の板厚変化量が制御され、この様に連続鋳造
によって得られた板材に、冷間圧延機3によって、規定
の厚みに圧延する。その際、結晶粒を所定の大きさに揃
えるため、中間焼鈍等の熱処理機4にかけ、更に冷間圧
延機3をさし挟んで行っても良い。つぎに矯正装置5に
よって矯正を行い、所定の平面性を与え、アルミニウム
支持体を作り、これを粗面化する。また、矯正は最後の
冷間圧延に含めて行うこともある。
Subsequently, it is cast by the twin roll continuous casting machine 2. There are various casting methods, but most of them currently in industrial use are the Hunter method, the 3C method, and the like.
The casting temperature varies depending on the cooling conditions of the mold, but the optimum temperature is around 700 ° C. The crystal grain size after continuous casting, the cooling conditions, the casting speed, and the amount of change in plate thickness during casting are controlled, and the plate material thus obtained by continuous casting is rolled to a specified thickness by the cold rolling mill 3. . At that time, in order to make the crystal grains have a predetermined size, the crystal grains may be subjected to a heat treatment machine 4 such as an intermediate annealing, and then a cold rolling machine 3 may be inserted and sandwiched. Next, straightening is performed by the straightening device 5 to give a predetermined flatness, and an aluminum support is prepared and roughened. Further, straightening may be included in the final cold rolling.

【0023】アルミニウム溶湯の合金成分としては、F
e:0<Fe≦0.20重量%、Si:0≦Si≦0.
10重量%、またCu、Tiについては、Cu:0≦C
u≦0.05重量%、Ti:0<Ti≦0.05重量
%、Al純度は99.7重量%以上とする。本発明にお
ける平版印刷版用支持体の粗面化の方法は機械的粗面
化、化学的粗面化、電気化学的粗面化及びそれらの組合
わせ等各種用いられる。
The alloying component of the molten aluminum is F
e: 0 <Fe ≦ 0.20% by weight, Si: 0 ≦ Si ≦ 0.
10% by weight, and for Cu and Ti, Cu: 0 ≦ C
u ≦ 0.05 wt%, Ti: 0 <Ti ≦ 0.05 wt%, and Al purity is 99.7 wt% or more. Various methods such as mechanical surface roughening, chemical surface roughening, electrochemical surface roughening, and combinations thereof may be used as the method of surface roughening the lithographic printing plate support of the invention.

【0024】機械的な砂目立て法としては、例えばボー
ルグレイン、ワイヤーグレイン、ブラッシグレイン、液
体ホーニング法などがある。また電気化学的砂目立て方
法としては、交流電解エッチング法が一般的に採用され
ており、電流としては、普通の正弦波交流電流あるいは
矩形波など、特殊交番電流が用いられている。またこの
電気化学的砂目立ての前処理として、苛性ソーダなどで
エッチング処理をしても良い。
Mechanical graining methods include, for example, ball grain, wire grain, brush grain, and liquid honing method. As an electrochemical graining method, an AC electrolytic etching method is generally adopted, and a special alternating current such as a normal sine wave AC current or a rectangular wave is used as a current. In addition, as a pretreatment for the electrochemical graining, an etching treatment with caustic soda may be performed.

【0025】また電気化学的粗面化を行う場合、塩酸ま
たは硝酸主体の水溶液で交番波形電流によって粗面化さ
れるのが良い。以下詳細に説明する。先ず、アルミニウ
ム支持体は、まずアルカリエッチングされる。好ましい
アルカリ剤は、苛性ソーダ、苛性カリ、メタ珪酸ソー
ダ、炭酸ソーダ、アルミン酸ソーダ、グルコン酸ソーダ
等である。濃度0.01〜20%、温度は20〜90
℃、時間は5sec〜5min間の範囲から選択される
のが適当であり、好ましいエッチング量としては0.1
〜5g/m2である。
In the case of performing electrochemical surface roughening, it is preferable that the surface is roughened by an alternating waveform current with an aqueous solution mainly containing hydrochloric acid or nitric acid. This will be described in detail below. First, the aluminum support is first alkali etched. Preferred alkaline agents are caustic soda, caustic potash, sodium metasilicate, sodium carbonate, sodium aluminate, sodium gluconate and the like. Concentration 0.01-20%, temperature 20-90
It is suitable to select the temperature and the time from the range of 5 sec to 5 min, and the preferable etching amount is 0.1.
~ 5 g / m 2 .

【0026】特に不純物の多い支持体の場合、0.01
〜1g/m2が適当である(特開平1−237197号
公報)。引き続き、アルカリエッチングしたアルミニウ
ム支持体の表面にアルカリ剤に不溶な物質(スマット)
が残存するので、必要に応じてデスマット処理を行って
も良い。前処理は上記の通りであるが、引き続き、塩酸
または硝酸を主体とする電解液中で交流電解エッチング
される。交流電解電流の周波数としては、0.1〜10
0Hz、より好ましくは0.1〜1.0又は10〜60
Hzである。
In the case of a support containing a large amount of impurities, 0.01
-1 g / m 2 is suitable (JP-A-1-237197). Subsequent to the alkali-etched aluminum support surface, a substance insoluble in alkali agents (smut)
Remains, so desmutting treatment may be performed if necessary. The pretreatment is as described above, but is subsequently subjected to AC electrolytic etching in an electrolytic solution containing hydrochloric acid or nitric acid as a main component. The frequency of the alternating electrolysis current is 0.1 to 10
0 Hz, more preferably 0.1 to 1.0 or 10 to 60
Hz.

【0027】液濃度としては、3〜150g/l、より
好ましくは5〜50g/l、浴内のアルミニウムの溶解
量としては50g/l以下が適当であり、より好ましく
は2〜20g/lである。必要によって添加物を入れて
も良いが、大量生産をする場合は、液濃度制御などが難
しくなる。また、電流密度は、5〜100A/dm2
適当であるが、10〜80A/dm2がより好ましい。
また、電源波形としては、求める品質、使用されるアル
ミニウム支持体の成分によって適宜選択されるが、特公
昭56−19280号、特公昭55−19191号各公
報に記載の特殊交番波形を用いるのがより好ましい。こ
の様な波形、液条件は、電気量とともに求める品質、使
用されるアルミニウム支持体の成分などによって適宜選
択される。
The liquid concentration is 3 to 150 g / l, more preferably 5 to 50 g / l, and the amount of aluminum dissolved in the bath is preferably 50 g / l or less, more preferably 2 to 20 g / l. is there. If necessary, additives may be added, but in the case of mass production, it becomes difficult to control the liquid concentration. A current density of 5 to 100 A / dm 2 is suitable, but 10 to 80 A / dm 2 is more preferable.
The power waveform is appropriately selected depending on the desired quality and the components of the aluminum support used, but the special alternating waveform described in JP-B-56-19280 and JP-B-55-19191 is used. More preferable. Such waveforms and liquid conditions are appropriately selected depending on the quality required along with the quantity of electricity, the components of the aluminum support used, and the like.

【0028】電解粗面化されたアルミニウム支持体は、
次にスマット処理の一部としてアルカリ溶液に浸漬しス
マットを溶解する。アルカリ剤としては、苛性ソーダな
ど各種あるが、PH10以上、温度25〜60℃、浸漬
時間1〜10secの極めて短時間で行うことが好まし
い。次に硫酸主体の液に浸漬する。硫酸の液条件として
は、従来より一段と低い濃度50〜400g/l、温度
25〜65℃が好ましい。硫酸の濃度を400g/l以
上、又は温度を65℃以上にすると処理槽などの腐食が
大きくなり、しかもマンガン含有量が多い(例えば、
0.3重量%の)アルミニウム合金では、電気化学的に
粗面化された砂目が崩れてしまう。また、アルミニウム
合金素地の溶解量が0.2g/m2以上エッチングされ
ると、耐刷力が低下して来るので、0.2g/m2以下
にすることが好ましい。
The electrolytically roughened aluminum support is
Next, as a part of the smut treatment, the smut is dissolved by immersing it in an alkaline solution. There are various kinds of alkali agents such as caustic soda, but it is preferable to perform the treatment in an extremely short time of pH 10 or more, temperature 25 to 60 ° C., and immersion time 1 to 10 sec. Next, it is dipped in a liquid containing mainly sulfuric acid. As a liquid condition of sulfuric acid, it is preferable that the concentration is 50 to 400 g / l and the temperature is 25 to 65 ° C., which is much lower than the conventional one. When the concentration of sulfuric acid is 400 g / l or more or the temperature is 65 ° C. or more, the corrosion of the treatment tank becomes large, and the manganese content is high (for example,
Aluminum alloys (0.3% by weight) break the electrochemically grained grain. Further, when the dissolution amount of the aluminum alloy base material is etched by 0.2 g / m 2 or more, the printing durability is deteriorated, so that it is preferably 0.2 g / m 2 or less.

【0029】陽極酸化皮膜は、0.1〜10g/m2
より好ましくは0.3〜5g/m2を表面に形成するの
が良い。陽極酸化の処理条件は、使用される電解液によ
って種々変化するので一概には決定されないが、一般的
には電解液の濃度が1〜80重量%、液温5〜70℃、
電流密度0.5〜60A/cm2、電圧1〜100V、
電解時間1秒〜5分の範囲が適当である。
The anodic oxide film has a thickness of 0.1 to 10 g / m 2 ,
More preferably, 0.3 to 5 g / m 2 is formed on the surface. The treatment conditions for anodization are not generally determined because they vary depending on the electrolytic solution used, but generally the concentration of the electrolytic solution is 1 to 80% by weight, the liquid temperature is 5 to 70 ° C,
Current density 0.5 to 60 A / cm 2 , voltage 1 to 100 V,
A range of electrolysis time of 1 second to 5 minutes is suitable.

【0030】この様にして得られた陽極酸化皮膜を持つ
砂目のアルミニウム支持体はそれ自身安定で親水性に優
れたものであるから、直ちに感光性塗膜を上に設ける事
も出来るが、必要により更に表面処理を施す事が出来
る。たとえば、アルカリ金属珪酸塩によるシリケート層
あるいは、親水性高分子化合物よりなる下塗層を設ける
ことができる。下塗層の塗布量は5〜150mg/m2
が好ましい。
The thus-obtained aluminum support having an anodized film is itself stable and excellent in hydrophilicity, so that a photosensitive coating film can be immediately provided on it. If necessary, further surface treatment can be performed. For example, a silicate layer made of an alkali metal silicate or an undercoat layer made of a hydrophilic polymer compound can be provided. The coating amount of the undercoat layer is 5 to 150 mg / m 2.
Is preferred.

【0031】次に、このように処理したアルミニウム支
持体上に感光性塗膜を設け、画像露光、現像して製版し
た後に、印刷機にセットし、印刷を開始する。
Next, a photosensitive coating film is provided on the thus treated aluminum support, imagewise exposed and developed to form a plate, which is then set in a printing machine to start printing.

【0032】[0032]

【実施例】【Example】

(実施例−1〜5、比較例−1〜5)図1(A)に示し
たような双ロール連続鋳造圧延装置にて7.0mmの板
厚のアルミニウム板材を、鋳造速度1.5m/分にて鋳
造し、コイラー6で巻き取った。その後図1(B)に示
す冷間圧延機3を用いて最終板厚0.24mmに仕上
げ、図1(D)に示す矯正装置5によって矯正してアル
ミニウム支持体とした。この際、アルミニウム溶湯の成
分を変えて本発明の実施例、比較例のサンプルを作成し
た。各サンプルの連続鋳造圧延後の板を採取し、圧延方
向の合金成分濃度分布差及び板幅方向の合金成分濃度分
布差の測定を行い、それらの比として(圧延方向の合金
成分濃度分布差(重量%)/板幅方向の合金成分濃度分
布差(重量%))の値を算出した。各方向の濃度分布差
は、電子プローブマイクロアナライザ(略称EPMA、
日本電子(株)製JXA−8800M)を用い、加速電
圧20kV、測定電流1.0×10-6Aで、板表面のF
e、Si、Cu、Tiをマッピングによって面分析(測
定範囲10mm×10mm、測定箇所5ケ所/1サンプ
ル)し、得られたデータにつき圧延方向及び板幅方向に
ついて線分析を行い、濃度の最大値−最小値(重量%)
の平均値を、それぞれ濃度分布差とした。図2は、合金
成分濃度分布差を測定する概念図である。
(Examples 1 to 5 and Comparative Examples 1 to 5) An aluminum plate material having a plate thickness of 7.0 mm was cast at a casting speed of 1.5 m / in a twin roll continuous casting and rolling apparatus as shown in FIG. 1 (A). It was cast in minutes and wound up with a coiler 6. After that, the cold rolling mill 3 shown in FIG. 1 (B) was used to finish to a final plate thickness of 0.24 mm, and the aluminum plate was straightened by the straightening device 5 shown in FIG. 1 (D). At this time, samples of Examples and Comparative Examples of the present invention were prepared by changing the components of the molten aluminum. The plate after continuous casting and rolling of each sample is sampled, and the difference in alloy component concentration distribution in the rolling direction and the difference in alloy component concentration distribution in the plate width direction are measured. The value of (% by weight) / alloy component concentration distribution difference (% by weight) in the plate width direction was calculated. The difference in the concentration distribution in each direction is calculated by the electron probe microanalyzer (abbreviated as EPMA,
Using JXA-8800M manufactured by JEOL Ltd., acceleration voltage of 20 kV, measurement current of 1.0 × 10 −6 A, and plate surface F
Surface analysis of e, Si, Cu, Ti by mapping (measurement range 10 mm x 10 mm, 5 measurement points / 1 sample), line analysis in the rolling direction and strip width direction of the obtained data, and the maximum concentration value -Minimum value (% by weight)
The average value of was used as the concentration distribution difference. FIG. 2 is a conceptual diagram for measuring the difference in alloy component concentration distribution.

【0033】各サンプルの内訳及び濃度分布差の比の測
定結果を表1に示す。
Table 1 shows the breakdown of each sample and the measurement results of the ratio of the concentration distribution differences.

【0034】[0034]

【表1】 [Table 1]

【0035】このようにして出来たアルミニウム支持体
を平版印刷版用支持体として用い、次に5%苛性ソーダ
水溶液で温度60℃でエッチング量が5g/m2になる
様にエッチングし、水洗後150g/l、50℃の硫酸
液中に20sec浸漬してデスマットし、水洗した。更
に支持体を16g/lの硝酸水溶液中で、特公昭55−
19191号公報に記載の交番波形電流を用いて、電気
化学的に粗面化した。電解条件としては、アノード電圧
A=14V、カソード電圧VC=12Vとして、陽極時
電気量が、350クーロン/dm2となる様にした。
The aluminum support thus obtained was used as a support for a lithographic printing plate and then etched with a 5% aqueous solution of caustic soda at a temperature of 60 ° C. to an etching amount of 5 g / m 2 , and washed with water to give 150 g. It was immersed in a sulfuric acid solution of 1 / l, 50 ° C. for 20 seconds to desmut, and washed with water. Furthermore, the support is placed in a 16 g / l nitric acid aqueous solution,
Electrochemical roughening was performed using the alternating waveform current described in 19191. As electrolysis conditions, the anode voltage V A = 14 V and the cathode voltage V C = 12 V were set so that the amount of electricity at the anode was 350 coulomb / dm 2 .

【0036】引き続き、60℃、300g/lの硫酸液
中に20秒間浸漬してデスマット処理を行った。更に、
硫酸150g/l、アルミニウムイオン濃度2.5g/
lの水溶液中で極間距離150mmにおいて電圧22V
の直流によって60秒間陽極酸化処理を行った。
Subsequently, desmut treatment was carried out by immersing in a 300 g / l sulfuric acid solution at 60 ° C. for 20 seconds. Furthermore,
Sulfuric acid 150g / l, aluminum ion concentration 2.5g /
Voltage of 22V in 1mm aqueous solution at distance between electrodes of 150mm
Anodizing treatment was carried out for 60 seconds with the direct current.

【0037】以上の如くして作成した支持体に、感光液
を塗布することで感光性平版印刷版となるが、ここで
は、感光液塗布前の支持体の表面面質の評価を行った。
感光性平版印刷版に、ネガフィルム又はポジフィルムを
通して露光を行った後現像すると、(一部感光層が取
れ、)支持体の表面自体が平版印刷版の非画像部または
画像部となるため、最終板表面の面質自体が印刷性、印
刷版の視認性に大きな影響を与えるからである。
A photosensitive lithographic printing plate is obtained by applying a photosensitive solution to the support prepared as described above. Here, the surface quality of the support before the application of the photosensitive solution was evaluated.
When the photosensitive lithographic printing plate is exposed through a negative film or a positive film and then developed, the surface of the support itself becomes a non-image part or an image part of the lithographic printing plate. This is because the surface quality of the final plate surface itself greatly affects the printability and the visibility of the printing plate.

【0038】表1に示すサンプルについて、連続鋳造圧
延板における段状ムラの外観評価と上記最終板の外観評
価の結果を表2に示す。
With respect to the samples shown in Table 1, Table 2 shows the results of the appearance evaluation of stepwise unevenness in the continuously cast and rolled plate and the appearance evaluation of the final plate.

【0039】[0039]

【表2】 [Table 2]

【0040】上記の表の通り、本発明によるサンプルN
o1〜5(実施例−1〜5)は連続鋳造圧延時に段状ム
ラが発生しにくく、最終板においても粗面化後の外観が
良好となった。一方、本発明によらないサンプルの内、
No6、7、8(比較例−1、2、3)については、連
続鋳造圧延方向の濃度分布差が板巾方向の濃度分布差よ
りかなり大きく、その比は5.5〜8.5となったた
め、段状ムラが連続鋳造圧延時に発生し、最終板におい
ても段状ムラが発生した。また、本発明によらないサン
プルの内、No9、10(比較例−4、5)について
は、Fe、Si含有量が本発明の範囲を満たし、連続鋳
造圧延板における段状ムラは発生しなかったが、Cu、
Tiの含有量が本発明の範囲を外れ、その結果、圧延方
向の濃度分布差より板幅方向の濃度分布差の方がかなり
大きくなり、その比は0.1〜0.15となったため、
最終板において圧延方向に延びるスジ状ムラが発生し
た。
As shown in the table above, sample N according to the invention
Nos. 1 to 5 (Examples 1 to 5) were less likely to cause stepwise unevenness during continuous casting and rolling, and the final plate also had a good appearance after roughening. On the other hand, of the samples not according to the present invention,
Regarding Nos. 6, 7, and 8 (Comparative Examples-1, 2, and 3), the difference in concentration distribution in the continuous casting and rolling direction was considerably larger than the difference in concentration distribution in the sheet width direction, and the ratio was 5.5 to 8.5. Therefore, step unevenness was generated during continuous casting and rolling, and step unevenness was also generated in the final plate. In addition, among the samples not according to the present invention, in Nos. 9 and 10 (Comparative Examples -4 and 5), the Fe and Si contents satisfy the range of the present invention, and step-like unevenness does not occur in the continuously cast rolled plate. But, Cu,
The content of Ti is out of the range of the present invention, and as a result, the difference in concentration distribution in the strip width direction is considerably larger than the difference in concentration distribution in the rolling direction, and the ratio is 0.1 to 0.15.
Streaky unevenness extending in the rolling direction occurred on the final plate.

【0041】以上の実施例では、双ロール連続鋳造後、
図1(C)に示すような熱処理機4による焼鈍を行わな
いサンプルについて示したが、本発明はこれに限定され
ず、例えば機械的強度を調整したり、結晶組織を制御す
るために熱処理機による焼鈍を行っても良い。また、熱
処理機としては、図1(C)に示すような連続式のもの
以外にバッチ式の加熱炉(図無し)を用いても良い。
In the above examples, after twin roll continuous casting,
Although the sample which is not annealed by the heat treatment machine 4 as shown in FIG. 1 (C) is shown, the present invention is not limited to this, and for example, the heat treatment machine is used to adjust the mechanical strength or control the crystal structure. May be annealed. Further, as the heat treatment machine, a batch type heating furnace (not shown) may be used other than the continuous type as shown in FIG. 1 (C).

【0042】[0042]

【発明の効果】以上のように、本発明の平版印刷版用支
持体の製造方法によって製造された平版印刷版は、従来
のものに比べ、粗面化後の面質が著しく向上する。更
に、双ロール連続鋳造法を採用できることで、製造工程
が大幅に合理化されて、製造コストの低減の効果が大き
くなる。
INDUSTRIAL APPLICABILITY As described above, the lithographic printing plate produced by the method for producing a lithographic printing plate support of the present invention has significantly improved surface quality after roughening as compared with the conventional one. Further, since the twin roll continuous casting method can be adopted, the manufacturing process is greatly streamlined, and the effect of reducing the manufacturing cost becomes large.

【0043】更に、本発明の範囲の合金成分を採用する
ことで、高価な母合金を用いて合金成分を添加する量が
大幅に削減される、又は、合金成分の添加が不要となる
ため、原材料コストの低減の効果も大きい。
Further, by adopting the alloy components within the range of the present invention, the amount of the alloy components added by using an expensive mother alloy is significantly reduced, or the addition of the alloy components becomes unnecessary. The effect of reducing raw material costs is also great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の平版印刷版用支持体の製造方法の一部
工程である。 (A)双ロール連続鋳造工程の一実施態様の側面図。 (B)冷間圧延工程の一実施態様の側面図。 (C)熱処理工程の一実施態様の側面図。 (D)矯正工程の一実施態様の側面図。
FIG. 1 is a partial step of a method for producing a lithographic printing plate support of the present invention. (A) A side view of one embodiment of a twin roll continuous casting process. (B) The side view of one embodiment of the cold rolling process. (C) A side view of one embodiment of the heat treatment step. (D) The side view of one embodiment of the correction process.

【図2】連続鋳造圧延板の合金成分濃度分布差を測定す
る概念図。
FIG. 2 is a conceptual diagram for measuring a difference in alloy component concentration distribution of a continuously cast and rolled plate.

【符号の説明】[Explanation of symbols]

1 溶解保持炉 2 双ロール連続鋳造機 3 冷間圧延機 4 熱処理機 5 矯正装置 6 コイラ 7 連続鋳造したアルミニウム板 8 段状のムラ部 9 合金成分分布測定範囲 10a 濃度分布測定方向(圧延方向) 10b 濃度分布測定方向(板幅方向) 11 正常部 1 Melt-holding furnace 2 Twin roll continuous casting machine 3 Cold rolling machine 4 Heat treatment machine 5 Straightening device 6 Coirer 7 Continuously cast aluminum plate 8 Stepped uneven part 9 Alloy component distribution measurement range 10a Concentration distribution measurement direction (rolling direction) 10b Concentration distribution measurement direction (plate width direction) 11 Normal part

───────────────────────────────────────────────────── フロントページの続き (72)発明者 掛井 勤 静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内 (72)発明者 上杉 彰男 静岡県榛原郡吉田町川尻4000番地 富士写 真フイルム株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tsutomu Kakei, 4000 Kawajiri, Yoshida-cho, Hara-gun, Shizuoka Prefecture Fujisha Shin Film Co., Ltd. (72) Akio Uesugi, 4000, Kawajiri, Yoshida-cho, Haibara-gun, Shizuoka Prefecture Fujisha Makoto Within Film Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム溶湯から双ロールで直接板
状に連続鋳造圧延した後、冷間圧延、焼鈍の何れか一方
または両方を行い、さらに矯正を行った後アルミニウム
支持体を粗面化する一連の工程からなる平版印刷版用支
持体の製造方法において、アルミニウム溶湯の成分が0
<Fe≦0.20重量%、0≦Si≦0.10重量%、
Al≧99.7重量%であり、かつ連続鋳造圧延後の板
の圧延方向の合金成分の濃度分布差と板幅方向の合金成
分の濃度分布差との比が0.2〜5になるように連続鋳
造圧延を行うことを特徴とする平版印刷版用支持体の製
造方法。
1. A series of continuous casting and rolling from a molten aluminum to a plate shape directly by twin rolls, either or both of cold rolling and annealing, and further straightening and roughening the aluminum support. In the method for producing a lithographic printing plate support, which comprises the steps of
<Fe ≦ 0.20% by weight, 0 ≦ Si ≦ 0.10% by weight,
Al ≧ 99.7 wt%, and the ratio between the difference in the distribution of alloy components in the rolling direction of the plate after continuous casting and rolling and the difference in the distribution of alloy components in the plate width direction should be 0.2 to 5. A method for producing a support for a lithographic printing plate, which comprises continuously performing continuous casting and rolling.
【請求項2】 前記アルミニウム溶湯の成分が0≦Cu
≦0.05重量%、0<Ti≦0.05重量%を含むこ
とを特徴とする請求項1記載の平版印刷版用支持体の製
造方法。
2. The composition of the molten aluminum is 0 ≦ Cu
The method for producing a support for a lithographic printing plate according to claim 1, wherein ≤0.05% by weight and 0 <Ti≤0.05% by weight are contained.
JP6244427A 1994-08-05 1994-10-07 Production of lithographic printing substrate Pending JPH08108659A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6244427A JPH08108659A (en) 1994-10-07 1994-10-07 Production of lithographic printing substrate
DE69507398T DE69507398T2 (en) 1994-08-05 1995-07-20 Aluminum alloy carrier for a high pressure plate and method of manufacturing the same
EP95111464A EP0695647B1 (en) 1994-08-05 1995-07-20 Aluminum alloy support for planographic printing plate and method for producing the same
US08/504,676 US5779824A (en) 1994-08-05 1995-07-20 Aluminum alloy support for planographic printing plate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6244427A JPH08108659A (en) 1994-10-07 1994-10-07 Production of lithographic printing substrate

Publications (1)

Publication Number Publication Date
JPH08108659A true JPH08108659A (en) 1996-04-30

Family

ID=17118502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6244427A Pending JPH08108659A (en) 1994-08-05 1994-10-07 Production of lithographic printing substrate

Country Status (1)

Country Link
JP (1) JPH08108659A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
JP2009057595A (en) * 2007-08-31 2009-03-19 Furukawa Sky Kk Aluminum alloy plate for lithographic printing plate and manufacturing method of the same
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
JP2016084501A (en) * 2014-10-24 2016-05-19 日産自動車株式会社 Aluminum alloy sheet excellent in formability

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
JP2009057595A (en) * 2007-08-31 2009-03-19 Furukawa Sky Kk Aluminum alloy plate for lithographic printing plate and manufacturing method of the same
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element
JP2016084501A (en) * 2014-10-24 2016-05-19 日産自動車株式会社 Aluminum alloy sheet excellent in formability

Similar Documents

Publication Publication Date Title
JP3219898B2 (en) Method for producing a lithographic printing plate support
JPH07305133A (en) Supporting body for planographic printing plate and its production
JP3177071B2 (en) Lithographic printing plate support
JPH0740017A (en) Production of supporting body for planographic printing plate
JP3414521B2 (en) Method for producing a lithographic printing plate support
JP3290274B2 (en) Method for producing lithographic printing plate support
JPH08108659A (en) Production of lithographic printing substrate
JP3250687B2 (en) Method for producing a lithographic printing plate support
JPH06218495A (en) Manufacture of supporting body for planographic printing plate
JPH0754111A (en) Production of substrate for planographic printing plate
JP3177079B2 (en) Method for producing a lithographic printing plate support
JP2791729B2 (en) Method for producing a lithographic printing plate support
JP3184636B2 (en) Method for producing a lithographic printing plate support
US5456772A (en) Support for a planographic printing plate and method for producing same
JP3148057B2 (en) Method for producing a lithographic printing plate support
JP3580469B2 (en) Method for producing a lithographic printing plate support
JP2982093B2 (en) Method for producing a lithographic printing plate support
JPH0873974A (en) Aluminum alloy substrate for lithographic plate
JPH0849034A (en) Aluminum alloy supporting body for planographic printing plate
JPH05301478A (en) Support of planograpahic printing plate and production thereof
JP3506265B2 (en) Method for producing aluminum alloy support for lithographic printing plate
JPH0892679A (en) Aluminum alloy substrate for planographic printing plate
JPH07132689A (en) Aluminum alloy substrate for lithographic plate
JP3781211B2 (en) Lithographic printing plate support and method for producing the same
JP3233468B2 (en) Lithographic printing plate support and method for producing the same