JPH06218495A - Manufacture of supporting body for planographic printing plate - Google Patents

Manufacture of supporting body for planographic printing plate

Info

Publication number
JPH06218495A
JPH06218495A JP5237148A JP23714893A JPH06218495A JP H06218495 A JPH06218495 A JP H06218495A JP 5237148 A JP5237148 A JP 5237148A JP 23714893 A JP23714893 A JP 23714893A JP H06218495 A JPH06218495 A JP H06218495A
Authority
JP
Japan
Prior art keywords
aluminum
casting
cold rolling
plate
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5237148A
Other languages
Japanese (ja)
Inventor
Hirokazu Sawada
宏和 澤田
Tsutomu Kakei
勤 掛井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP5237148A priority Critical patent/JPH06218495A/en
Publication of JPH06218495A publication Critical patent/JPH06218495A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a manufacturing method for supporting body, in which the unevenness of material of the aluminum supporting body is reduced and the yield of the electrolytic roughening surface treatment is improved and a planographic printing plate having excellent surface quality can be manufactured. CONSTITUTION:The molten aluminum is supplied into a twin roll continuous caster 2 from a melting and holding furnace 1 to form a strip, and the strip is wound with a coiler 6 and successively, applied to a heat treatment device, cold rolling mill and straightening device. At the time of rolling to the prescribed thickness by passing the cast steel through the cold rolling mill 3, in order to arrange the size of crystal grain, the intermediate annealing, etc., is executed by a heat treatment furnace 4. Successively, the straightening is executed with the straightening device 5 to give a prescribed flatness and this surface is roughened. Factors which give the effect to the size of crystal grain on the surface are cooling velocity, casting velocity, variation of the strip thickness during casting, rolling reduction rate of the cold rolling and the temp. of annealing process. The size of the crystal grain is made to be 2-500mum after casting and 2-100mum in the finish condition in the vertical cross section to the casting and rolling direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は平版印刷版用支持体の製
造方法に関する、特に電解粗面化性の良いアルミニウム
支持体の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a lithographic printing plate support, and more particularly to a method for producing an aluminum support having a good electrolytic graining property.

【0002】[0002]

【従来の技術】印刷版用アルミニウム支持体、とくにオ
フセット印刷版用支持体としてはアルミニウム板(アル
ミニウム合金板を含む)が用いられている。一般にアル
ミニウム板をオフセット印刷版用支持体として使用する
ためには、感光材料との適度な接着性と保水性を有して
いることが必要である。このためにはアルミニウム板の
表面を均一かつ緻密な砂目を有するように粗面化しなけ
ればならない。この粗面化処理は製版後実際にオフセッ
ト印刷を行ったときに版材の印刷性能や耐刷力に著しい
影響をおよぼすので、その良否は版材製造上重要な要素
となっている。印刷版用アルミニウム支持体の粗面化法
としては交流電解エッチング法が一般的に採用されてお
り、電流としては、普通の正弦波交流電流、矩形波など
の特殊交番波形電流が用いられている。そして、黒鉛等
の適当な電極を対極として交流電流により、アルミニウ
ム板の粗面化処理を行うもので、通常一回の処理で行わ
れているが、そこで得られるピット深さは全体的に浅
く、耐刷性能に劣るものであった。このため、その直径
に比べて深さの深いピットが均一かつ緻密に存在する砂
目を有する印刷版用支持体として好適なアルミニウム板
が得られるように、数々の方法が提案されている。その
方法としては、特殊電解電源波形を使った粗面化方法
(特開昭53−67507号公報),交流を使った電解
粗面化時の陽極時と陰極時の電気量の比率(特開昭54
−65607号公報),電源波形(特開昭55−253
81号公報),単位面積あたりの通電量の組み合わせ
(特開昭56−29699号公報)などが知られてい
る。
2. Description of the Related Art Aluminum plates (including aluminum alloy plates) are used as aluminum supports for printing plates, especially as supports for offset printing plates. Generally, in order to use an aluminum plate as a support for an offset printing plate, it is necessary to have appropriate adhesiveness to a photosensitive material and water retention. For this purpose, the surface of the aluminum plate must be roughened so as to have uniform and fine grain. This roughening treatment has a significant influence on the printing performance and printing durability of the plate material when offset printing is actually carried out after plate making, and therefore its quality is an important factor in the plate material production. An alternating current electrolytic etching method is generally adopted as a roughening method for an aluminum support for a printing plate, and an ordinary sinusoidal alternating current or a special alternating waveform current such as a rectangular wave is used as a current. . Roughening treatment of the aluminum plate is performed by alternating current using an appropriate electrode such as graphite as a counter electrode, which is usually performed in a single treatment, but the pit depth obtained there is generally shallow. The printing durability was inferior. Therefore, various methods have been proposed in order to obtain an aluminum plate suitable as a printing plate support having a grain in which pits having a depth deeper than its diameter are present uniformly and densely. As a method thereof, a surface roughening method using a special electrolytic power source waveform (Japanese Patent Laid-Open No. 53-67507), a ratio of an electric quantity at the time of an anode and a cathode at the time of electrolytic surface roughening using an alternating current A54
-65607), power supply waveform (JP-A-55-253)
No. 81), a combination of energization amount per unit area (Japanese Patent Laid-Open No. 56-29699) and the like are known.

【0003】また、機械的な粗面化と組み合わせた方法
(特開昭55−142695号公報)なども知られてい
る。一方、アルミニウム支持体の製造方法としては、ア
ルミニウムのインゴットを溶解保持してスラブ(厚さ4
00〜600mm,幅1000〜2000mm,長さ2
000〜6000mm)を鋳造し、スラブ表面の不純物
組織部分を面削機にかけて3〜10mmづつ切削する面
削工程を経た後、スラブ内部の応力の除去と組織の均一
化の為、均熱炉において480〜540℃,6〜12時
間保持する均熱化処理工程を行い、しかる後に熱間圧延
を480〜540℃で行う。熱間圧延で5〜40mmの
厚みに圧延した後、室温で所定の厚みに冷間圧延を行
う。またその後組織の均一化と平坦度の良い板にするた
め焼鈍を行い圧延組織等を均室化した後、規定の厚みに
冷間圧延を行い、矯正する。この様にして作られたアル
ミニウム支持体を平版印刷版用支持体としていた。
Further, a method combined with mechanical surface roughening (Japanese Patent Laid-Open No. 55-142695) is also known. On the other hand, as a method of manufacturing an aluminum support, an aluminum ingot is melted and held to form a slab (thickness: 4 mm).
00-600mm, width 1000-2000mm, length 2
000 to 6000 mm) and subjected to a chamfering step of cutting the impurity textured portion of the slab surface with a chamfering machine in 3 to 10 mm increments, and then in a soaking furnace for removing stress inside the slab and homogenizing the texture. A soaking treatment step of holding at 480 to 540 ° C for 6 to 12 hours is performed, and then hot rolling is performed at 480 to 540 ° C. After hot rolling to a thickness of 5 to 40 mm, cold rolling is performed to a predetermined thickness at room temperature. Further, after that, in order to make the plate uniform and to have a good flatness, annealing is performed to make the rolled structure and the like uniform, and then cold rolling is performed to a prescribed thickness for straightening. The aluminum support thus prepared was used as a support for a lithographic printing plate.

【0004】これに対し、本出願人は先に、アルミニウ
ム支持体の材質のバラツキを少くし、電解粗面化処理の
得率を向上させることによって品質の優れた得率のよい
平版印刷版を作れる方法として、アルミニウム溶湯から
鋳造,熱間圧延を連続して行い、薄板の熱間圧延コイル
を形成させた後、冷間圧延,熱処理を行ない、さらに矯
正を行なったアルミニウム支持体を、粗面化することを
特徴とする平版印刷版用支持体の製造方法を提案してい
る。(特開平3−79798号公報)
On the other hand, the present applicant has previously made a planographic printing plate excellent in quality by reducing variations in the material of the aluminum support and improving the rate of electrolytic surface roughening treatment. As a method of making, an aluminum support which is cast from an aluminum melt and hot-rolled continuously to form a hot-rolled coil of a thin plate, then cold-rolled, heat-treated, and further straightened is used. It proposes a method for producing a support for a lithographic printing plate, which is characterized by: (JP-A-3-79798)

【0005】[0005]

【発明が解決しようとする課題】ところが、先に提案し
た本出願人の製造方式についても、最終的な冷間圧延又
は熱処理後のアルミニウム板表面のアルミニウム結晶粒
の大きさが粗面化後の面質に大きく影響していることが
わかった。さらに、微量合金成分の内、特にFeが一定
以上マトリックスに固溶していることが、均一な粗面化
を実施する上で非常に重要であることがわかった。
However, also in the manufacturing method of the present applicant previously proposed, the size of the aluminum crystal grains on the surface of the aluminum plate after final cold rolling or heat treatment is It was found that it had a great influence on the quality of the surface. Further, it has been found that, among the trace alloy components, it is particularly important for Fe to form a solid solution in a certain amount or more in order to carry out uniform roughening.

【0006】本発明の目的は、アルミニウム支持体の材
質のバラツキを少くし、電解粗面化処理の得率を向上さ
せると共に、粗面化後の面質の優れた、得率のよい平版
印刷版を作れる平版印刷版用支持体の製造方法を提供す
ることにある。
An object of the present invention is to reduce variations in the material of the aluminum support, improve the yield of the electrolytic surface roughening treatment, and to obtain a high-quality lithographic printing plate having excellent surface quality after roughening. An object of the present invention is to provide a method for producing a lithographic printing plate support capable of making a plate.

【0007】[0007]

【課題を解決するための手段及び作用】本発明者らは、
アルミニウム支持体と電解粗面化処理の関係を鋭意研究
して来た結果、本発明を見出したものである。即ち、本
発明の上記目的は、アルミニウム溶湯から双ロールで直
接板状に連続鋳造した後、冷間圧延、熱処理を各々1回
以上行い、さらに矯正を行なってアルミニウム支持体を
粗面化する平版印刷版用支持体の製造方法において、F
eの含有量が0.4%〜0.2%、Siの含有量が0.
20%〜0.05%、Cuの含有量が0.02%以下、
Al純度が99.5%以上、連続鋳造後のアルミ板の結
晶粒径が、鋳造進行方向に垂直な断面において2μmか
ら500μmであって、かつ最終的な冷間圧延または焼
鈍後のアルミ板の結晶粒径が、鋳造および圧延進行方向
に垂直な断面において2μmから100μmであること
を特徴とする平版印刷版用支持体の製造方法、さらに好
ましくは、Feの固溶量が10ppm以上である、上記
記載の平版印刷版用支持体の製造方法によって達成され
る。
Means and Actions for Solving the Problems The present inventors have
The present invention has been found as a result of intensive research on the relationship between the aluminum support and the electrolytic surface roughening treatment. That is, the above-mentioned object of the present invention is a lithographic plate which is obtained by directly casting a molten aluminum melt into a plate directly by twin rolls, and then performing cold rolling and heat treatment one or more times each, and further straightening the aluminum support for roughening. In the method for producing a printing plate support, F
e content of 0.4% to 0.2%, Si content of 0.
20% to 0.05%, Cu content of 0.02% or less,
Al purity is 99.5% or more, the crystal grain size of the aluminum plate after continuous casting is 2 μm to 500 μm in a cross section perpendicular to the casting progress direction, and the aluminum plate after the final cold rolling or annealing is A method for producing a lithographic printing plate support, wherein the crystal grain size is 2 μm to 100 μm in a cross section perpendicular to the casting and rolling direction, and more preferably, the solid solution amount of Fe is 10 ppm or more, This is achieved by the method for producing a lithographic printing plate support described above.

【0008】本発明のアルミニウム溶湯から双ロールを
用い連続的に鋳造したコイルを形成させる方法として
は、ハンター法,3C法などの薄板連鋳技術が実用化さ
れている。本発明はアルミニウム溶湯から双ロールで連
続鋳造する際、結晶粒径を一定範囲におさめることで、
結晶粒界に集まりやすい合金成分の分布を一定範囲にお
さめることができる。さらに連続鋳造後の圧延や焼鈍工
程において粒界を変形させ、合金成分を拡散させること
で、最終的なアルミ板中の合金成分の分布を均一にする
ことができるが、結晶粒界の影響を皆無にすることはで
きないため、最終的なアルミ板の結晶粒径を一定範囲に
おさめる。これらの方法により粗面化時にムラのない物
質な表面を持つ品質上すぐれた平版印刷版用支持体を低
コストでかつ得率よく製造することができる。第1図の
工程概念図を用いて本発明に用いるアルミニウム支持体
の製造方法の実施態様について更に具体的に説明する。
1は溶解保持炉でここでインゴットは溶解保持される。
ここから双ロール連続鋳造機2に送られる。つまりアル
ミニウム溶湯から直接薄板のコイルを形成する、コイラ
ー7によって巻取っても良いし、引続いて熱処理,冷間
圧延機,矯正装置にかけてもよい。
As a method of forming a coil continuously cast from the molten aluminum of the present invention by using twin rolls, a thin plate continuous casting technique such as Hunter method or 3C method has been put into practical use. The present invention, when continuously cast from the molten aluminum with twin rolls, by keeping the crystal grain size within a certain range,
It is possible to keep the distribution of alloy components that tend to collect at the grain boundaries within a certain range. Furthermore, by deforming the grain boundaries and diffusing the alloy components in the rolling and annealing processes after continuous casting, it is possible to make the distribution of alloy components in the final aluminum plate uniform, but Since it cannot be completely eliminated, the crystal grain size of the final aluminum plate is kept within a certain range. By these methods, it is possible to produce a lithographic printing plate support of excellent quality having a uniform surface during roughening at low cost and with good efficiency. The embodiment of the method for producing an aluminum support used in the present invention will be described more specifically with reference to the process conceptual diagram of FIG.
Reference numeral 1 is a melting and holding furnace in which the ingot is held by melting.
From here, it is sent to the twin roll continuous casting machine 2. That is, it may be wound by the coiler 7, which directly forms a thin plate coil from the molten aluminum, or may be subsequently subjected to heat treatment, a cold rolling mill, and a straightening device.

【0009】それらの製造条件について更に詳しく説明
すると、溶解保持炉1ではアルミニウムの融点以上の温
度に保持させる必要があり、その温度はアルミニウム合
金成分によって適時変化する。一般に800℃以上であ
る。また、アルミニウム溶湯の酸化物発生の抑制、品質
上有害となるアルカリ金属の除去策として、適宜不活性
ガスパージ、フラックス処理等が行なわれる。引き続き
双ロール連続鋳造機2によって鋳造される。鋳造方式に
はいろいろあるが、現在工業的に稼働しているのはハン
ター法,3−C法などが殆どである。鋳造温度は鋳型の
冷却条件で異なるが、700℃付近が最適である。連続
鋳造後の結晶粒径、冷却条件、鋳造速度、鋳造中の板厚
変化量が制御され、この様に連続鋳造によって得られた
板材に、冷間圧延機3によって、規定の厚みに圧延す
る。その際、結晶粒を所定の大きさにそろえるため、中
間焼鈍等の熱処理機4にかけ、更に冷間圧延機3をさし
挟んで行なってもよい。つぎに矯正装置5によって矯正
を行ない、所定の平面性を与え、アルミニウム支持体を
作り、これを粗面化する。また、矯正は最後の冷間圧延
に含めて行うこともある。この際アルミニウム結晶粒の
大きさは鋳造・圧延の進行方向に対し垂直な断面におい
て、連続鋳造後は2〜500μm,最終状態において2
〜100μmになるようにする。
The manufacturing conditions thereof will be described in more detail. In the melting and holding furnace 1, it is necessary to hold the temperature at the melting point of aluminum or higher, and the temperature changes timely depending on the aluminum alloy component. Generally, it is 800 ° C or higher. Further, as measures for suppressing the generation of oxides in the molten aluminum and removing the alkali metal which is harmful to the quality, an inert gas purge, a flux treatment, etc. are appropriately performed. Subsequently, it is cast by the twin roll continuous casting machine 2. Although there are various casting methods, most of them currently operating industrially include the Hunter method and the 3-C method. The casting temperature varies depending on the cooling conditions of the mold, but the optimum temperature is around 700 ° C. The crystal grain size after continuous casting, the cooling conditions, the casting speed, and the amount of change in plate thickness during casting are controlled, and the plate material thus obtained by continuous casting is rolled to a specified thickness by the cold rolling mill 3. . At that time, in order to align the crystal grains to a predetermined size, the grain may be subjected to a heat treatment machine 4 such as an intermediate annealing, and then a cold rolling machine 3 may be inserted and sandwiched. Next, straightening is performed by the straightening device 5 to give a predetermined flatness, and an aluminum support is prepared and roughened. Further, straightening may be included in the final cold rolling. At this time, the size of the aluminum crystal grains is 2 to 500 μm after continuous casting in a cross section perpendicular to the direction of casting and rolling, and 2 in the final state.
˜100 μm.

【0010】本発明における平版印刷版用支持体の粗面
化の方法は機械的粗面化,化学的粗面化,電気化学的粗
面化及びそれらの組合わせ等各種用いられる。機械的な
砂目立て法としては、例えばボールグレイン,ワイヤー
グレイン,ブラッシグレイン,液体ホーニング法などが
ある。また電気化学的砂目立て方法としては、交流電解
エッチング法が一般的に採用されており、電流として
は、普通の正弦波交流電流あるいは矩形波など、特殊交
番電流が用いられている。またこの電気化学的砂目立て
の前処理として、苛性ソーダなどでエッチング処理をし
ても良い。また電気化学的粗面化を行う場合、塩酸また
は硝酸主体の水溶液で交番電流によって粗面化されるの
が良い。以下詳細な説明する。先ず、アルミニウム支持
体は、まずアルカリエッチングされる。好ましいアルカ
リ剤は、苛性ソーダ,苛性カリ,メタ珪酸ソーダ,炭酸
ソーダ,アルミン酸ソーダ,グルコン酸ソーダ等であ
る。濃度0.01〜20%,温度は20〜90℃,時間
は5sec〜5min間の範囲から選択されるのが適当
であり、好ましいエッチング量としては0.1〜5g/
2 である。特に不純物の大い支持体の場合、0.01
〜1g/m2 が適当である(本出願人昭和62年11月
25日出願)。引き続き、アルカリエッチングしたアル
ミニウム板の表面にアルカリに不溶な物質(スマット)
が残存するので、必要に応じてデスマット処理を行って
も良い。
Various methods such as mechanical surface roughening, chemical surface roughening, electrochemical surface roughening, and combinations thereof may be used as the method of surface roughening the lithographic printing plate support of the present invention. Mechanical graining methods include, for example, ball grain, wire grain, brush grain, and liquid honing method. An alternating current electrolytic etching method is generally adopted as the electrochemical graining method, and a special alternating current such as an ordinary sinusoidal alternating current or a rectangular wave is used as the current. Further, as a pretreatment for this electrochemical graining, etching treatment with caustic soda may be performed. Further, in the case of performing electrochemical surface roughening, it is preferable that the surface is roughened by an alternating current with an aqueous solution mainly containing hydrochloric acid or nitric acid. A detailed description will be given below. First, the aluminum support is first alkali etched. Preferred alkaline agents are caustic soda, caustic potash, sodium metasilicate, sodium carbonate, sodium aluminate, sodium gluconate and the like. It is suitable that the concentration is 0.01 to 20%, the temperature is 20 to 90 ° C., and the time is 5 sec to 5 min. The preferable etching amount is 0.1 to 5 g /
m 2 . Especially in the case of a support with a large amount of impurities, 0.01
Appropriately 1 g / m 2 (applicant filed on November 25, 1987 by the present applicant). Subsequently, a substance insoluble in alkali (smut) is applied to the surface of the aluminum plate that has been alkali-etched.
Remains, so desmutting treatment may be performed if necessary.

【0011】前処理は上記の通りであるが、引き続き、
塩酸,または硝酸を主体とする電解液中で交流電解エッ
チングされる。交流電解電流の周波数としては、0.1
〜100Hz,より好ましくは0.1〜1.0又は10
〜60Hzである。液濃度としては、3〜150g/
l,より好ましくは5〜50g/l,浴内のアルミニウ
ムの溶解量としては50g/l以下が適当であり、より
好ましくは2〜20g/lである。必要によって添加物
を入れても良いが、大量生産をする場合は、液濃度制御
などが難しくなる。また、電流密度は、5〜100A/
dm2 が適当であるが、10〜80A/dm2 がより好
ましい。また、電源波形としては、求める品質,使用さ
れるアルミニウム支持体の成分によって適時選択される
が、特公昭56−19280号,特公昭55−1919
1号各公報に記載の特殊交番波形を用いるのがより好ま
しい。この様な波形,液条件は、電気量と共に求める品
質,使用されるアルミニウム支持体の成分などによって
適時選択される。電解粗面化されたアルミニウムは、次
にスマット処理の一部としてアルカリ溶液に浸漬しスマ
ットを溶解する。アルカリ剤としては、苛性ソーダなど
各種あるが、PH10以上,温度25〜60℃浸漬時間
1〜10secの極めて短時間で行うことが好ましい。
次に硫酸主体の液に浸漬する。硫酸の液条件としては、
従来より一段と低い濃度50〜400g/l,温度25
〜65℃が好ましい。硫酸の濃度を400g/l以上,
又は温度を65℃以上にすると処理層などの腐食が大き
くなり、しかも、マンガンが0.3%以上あるアルミニ
ウム合金では、電気化学的に粗面化された砂目が崩れて
しまう。また、アルミニウム素地の溶解量が0.2g/
2 以上エッチングされると、耐刷力が低下して来るの
で、0.2g/m2 以下にすることが好ましい。陽極酸
化被膜は、0.1〜10g/m2 、より好ましくは0.
3〜5g/m2 を表面に形成するのが良い。陽極酸化の
処理条件は、使用される電解液によって種々変化するの
で一概には決定されてないが、一般的には電解液の濃度
が1〜80重量%、液温5〜70℃、電流密度0.5〜
60A/cm2 、電圧1〜100V、電解時間1秒〜5
分の範囲が適当である。
The pretreatment is as described above, but
AC electrolytic etching is performed in an electrolytic solution containing mainly hydrochloric acid or nitric acid. The frequency of the alternating electrolysis current is 0.1
-100 Hz, more preferably 0.1-1.0 or 10
-60 Hz. The liquid concentration is 3 to 150 g /
1, more preferably 5 to 50 g / l, and the amount of aluminum dissolved in the bath is preferably 50 g / l or less, and more preferably 2 to 20 g / l. If necessary, additives may be added, but in the case of mass production, it becomes difficult to control the liquid concentration. The current density is 5 to 100 A /
dm 2 is suitable, but 10 to 80 A / dm 2 is more preferable. The power source waveform is properly selected according to the desired quality and the components of the aluminum support used, but the Japanese Patent Publication Nos. 56-19280 and 55-1919.
It is more preferable to use the special alternating waveform described in each publication of No. 1. Such waveforms and liquid conditions are appropriately selected depending on the quality required along with the quantity of electricity, the components of the aluminum support used, and the like. The electrolytically grained aluminum is then immersed in an alkaline solution as part of the smut treatment to dissolve the smut. As the alkaline agent, there are various kinds such as caustic soda, but it is preferable that the pH is 10 or more and the temperature is 25 to 60 ° C. and the immersion time is 1 to 10 seconds, which is an extremely short time.
Next, it is dipped in a liquid containing mainly sulfuric acid. As the liquid condition of sulfuric acid,
50-400g / l, temperature 25
~ 65 ° C is preferred. Sulfuric acid concentration of 400g / l or more,
Alternatively, when the temperature is set to 65 ° C. or higher, corrosion of the treated layer and the like becomes large, and in an aluminum alloy containing 0.3% or more of manganese, electrochemically roughened grain is broken. In addition, the dissolution amount of aluminum base is 0.2 g /
If it is etched by m 2 or more, the printing durability will decrease, so it is preferably 0.2 g / m 2 or less. The anodized film has a thickness of 0.1 to 10 g / m 2 , and more preferably a density of 0.1.
It is preferable to form 3 to 5 g / m 2 on the surface. The treatment conditions for anodic oxidation are not generally determined because they vary depending on the electrolytic solution used, but generally the concentration of the electrolytic solution is 1 to 80% by weight, the liquid temperature is 5 to 70 ° C., and the current density is 0.5 ~
60 A / cm 2 , voltage 1 to 100 V, electrolysis time 1 second to 5
A range of minutes is suitable.

【0012】この様にして得られた陽極酸化皮膜を持つ
砂目のアルミニウム板はそれ自身安定で親水性に優れた
ものであるから、直ちに感光性塗膜を上に設ける事も出
来るが、必要により更に表面処理を施す事が出来る。た
とえば、先に記載したアルカリ金属珪酸円によるシリケ
ート層あるいは、親水性高分子化合物よりなる下塗層を
設けることができる。下塗層の塗布量は5〜150mg
/m2 が好ましい。次に、このように処理したアルミニ
ウム支持体上に感光性塗膜を設け、画像露光、現像して
製版した後に、印刷機にセットし、印刷を開始する。
The thus-obtained grained aluminum plate having an anodized film is itself stable and excellent in hydrophilicity, so that a photosensitive coating film can be immediately provided on it, but it is necessary. Can be further surface treated. For example, a silicate layer formed by the alkali metal silicate circle described above or an undercoat layer made of a hydrophilic polymer compound can be provided. The coating amount of the undercoat layer is 5 to 150 mg
/ M 2 is preferred. Next, a photosensitive coating film is provided on the thus treated aluminum support, imagewise exposed and developed to form a plate, which is then set in a printing machine to start printing.

【0013】[0013]

【実施例】第1図に示したような連続鋳造薄板装置にて
6mmの板厚のアルミニウム板材を形成させ、更に3m
mの板厚まで冷間圧延し、400℃での焼鈍工程後更に
0.3mm迄冷間圧延(矯正を含む)してJIS105
0材を形成した。この際、表1に示す組成のアルミニウ
ム材及び鋳造条件、圧延,焼鈍条件を適宜変更し、連続
鋳造後及び最終状態における粒子径の組合せについて、
本発明の実施例及び比較例として作成した。この板材の
鋳造、圧延方向に垂直な断面(図2参照)を、バフにて
鏡面に加工し、フッ酸10%液中でエッチングを施し、
偏光顕微鏡を用いて表面の結晶粒径の観察測定を行なっ
た。また、最終状態におけるアルミニウム板材から、金
属間化合物として存在するFeを抽出することで、固溶
しているFe量の測定を行った。
EXAMPLE An aluminum plate material having a thickness of 6 mm was formed by a continuous casting thin plate apparatus as shown in FIG.
According to JIS105, cold rolling is performed to a sheet thickness of m, annealing is performed at 400 ° C., and then cold rolling (including straightening) is performed to 0.3 mm.
0 material was formed. At this time, the aluminum material having the composition shown in Table 1, casting conditions, rolling and annealing conditions were appropriately changed, and the combination of particle diameters after continuous casting and in the final state was
It was created as an example and a comparative example of the present invention. A cross-section (see FIG. 2) perpendicular to the casting and rolling direction of this plate material is processed into a mirror surface with a buff and etched in a 10% hydrofluoric acid solution,
Observation and measurement of the crystal grain size of the surface were performed using a polarization microscope. Further, the amount of Fe in solid solution was measured by extracting Fe existing as an intermetallic compound from the aluminum plate material in the final state.

【0014】[0014]

【表1】 [Table 1]

【0015】このようにして出来たアルミニウム板を平
版印刷版用支持体として用い、次に5%苛性ソーダ水溶
液で温度60℃でエッチング量が5g/m2 になる様に
エッチングし、水洗後、150g/l,50℃の硫酸液
中に20sec浸漬してデスマットし、水洗した。更に
支持体を16g/lの硝酸水溶液中で、特公昭55−1
9191号公報に記載の交番波形電流を用いて、電気化
学的に粗面化した。電解条件としては、アノード電圧V
A =14V,カソード電圧VC =12Vとして、陽極時
電気量が、350クーロン/dm2 となる様にした。以
上の如くして作成した基板に、感光液を塗布することで
感光性平版印刷版となるが、ここでは、感光液塗布前の
基板の表面面質の評価を行なった。感光性平版印刷版
に、ネガフィルム又はポジフィルムを通して露光を行な
った後、現像すると、(一部感光層が取れ、)基板の表
面自体が平版印刷版の非画像部又は画像部となるため、
基板表面の面質自体が印刷性、印刷版の視認性に大きな
影響を与えるからである。表1に示す試料の感光層塗布
前の評価結果は表2の通りとなった。
The thus-prepared aluminum plate was used as a support for a lithographic printing plate, and then etched with a 5% aqueous solution of caustic soda at a temperature of 60 ° C. to an etching amount of 5 g / m 2 , washed with water and then washed with 150 g. It was immersed in a sulfuric acid solution of 1 / l, 50 ° C. for 20 seconds to desmut, and washed with water. Furthermore, the support was placed in a 16 g / l nitric acid aqueous solution,
Electrochemical roughening was performed using the alternating waveform current described in Japanese Patent No. 9191. As the electrolysis condition, the anode voltage V
A = 14V and cathode voltage V C = 12V were set, and the amount of electricity at the anode was set to 350 coulomb / dm 2 . A photosensitive lithographic printing plate is obtained by applying a photosensitive solution to the substrate prepared as described above. Here, the surface quality of the substrate before applying the photosensitive solution was evaluated. The photosensitive lithographic printing plate is exposed through a negative film or a positive film and then developed, so that the surface itself of the substrate (a part of the photosensitive layer is removed) becomes a non-image part or an image part of the lithographic printing plate.
This is because the surface quality of the substrate surface itself greatly affects the printability and the visibility of the printing plate. The evaluation results of the samples shown in Table 1 before coating the photosensitive layer are shown in Table 2.

【0016】[0016]

【表2】 [Table 2]

【0017】上記の表の通り、本発明によらない試料N
o.5〜11ではスジ状のムラが発生し、品質上不良で
あった。同じく、Feの固溶量の少ないNo.12、N
o.13は砂目形状が不均一であった。また、このスジ
状のムラは、結晶粒径が不均一なため、粒界に折出し易
い合金成分が圧延、焼鈍の工程で充分均質化しきれない
ために発生したものである。また。砂目形状が不均一に
なるのは、マトリックスに固溶しているFe量が少ない
ためである。これに対して本発明の試料No.1〜4は
スジ状のムラの発生もなく、砂目形状も均一な優れたも
のであった。
As shown in the above table, sample N not according to the invention
o. In Nos. 5 to 11, streak-like unevenness was generated and the quality was poor. Similarly, No. 2 with a small solid solution amount of Fe. 12, N
o. No. 13 had a non-uniform grain shape. Further, the stripe-shaped unevenness is caused because the crystal grain size is non-uniform, and the alloy components that are easily broken out at the grain boundaries cannot be sufficiently homogenized in the steps of rolling and annealing. Also. The uneven grain shape is due to the small amount of Fe dissolved in the matrix. On the other hand, the sample No. Nos. 1 to 4 were excellent in that no streak-like unevenness was generated and the grain shape was uniform.

【0018】[0018]

【発明の効果】上記のように、本発明の平版印刷版用支
持体の製造方法によって製造された平版印刷版は、従来
のものに比べ、アルミニウム支持体の材質のバラツキを
少くし、電解粗面化処理の得率を向上させると共に粗面
化後の面質を著しく向上させ版面のムラもなく、砂目も
均一な優れたものとなる。更にアルミニウム支持体の製
造工程が合理化されたことによる原材料コストの低減の
効果も大きく、特に平版印刷版用支持体の品質向上及び
コスト低減に大きく貢献する。
INDUSTRIAL APPLICABILITY As described above, the lithographic printing plate produced by the method for producing a lithographic printing plate support according to the present invention has less variation in the material of the aluminum support than the conventional lithographic printing plate, and electrolytic roughening. In addition to improving the yield of the surface-roughening treatment, the surface quality after roughening is remarkably improved, and there is no unevenness of the plate surface and the grain is uniform and excellent. Further, the ratio of the manufacturing process of the aluminum support is rationalized, and the effect of reducing the raw material cost is great, and in particular, it greatly contributes to the quality improvement and the cost reduction of the lithographic printing plate support.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に用いるアルミニウム支持体の製造方法
の一部の工程一実施例の概念図である。
FIG. 1 is a conceptual diagram of an example of a part of the steps of the method for producing an aluminum support used in the present invention.

【図2】連続鋳造後の断面から結晶粒径を観察する概念
図 1 溶解保持炉 2 双ロール連続鋳造機 3 冷間圧延機 4 熱処理機 5 矯正装置 6 コイラー 8 連続鋳造して得たアルミニウム板 8a 鋳造方向に垂直な断面 9 結晶粒 9a 結晶粒界 9b 粒内 D 結晶粒径
[Fig. 2] Conceptual diagram for observing crystal grain size from cross section after continuous casting 1 Melt-holding furnace 2 Twin roll continuous casting machine 3 Cold rolling machine 4 Heat treatment machine 5 Straightening device 6 Coiler 8 Aluminum plate obtained by continuous casting 8a Cross section perpendicular to casting direction 9 Crystal grain 9a Crystal grain boundary 9b Intragrain D Crystal grain size

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニウム溶湯から双ロールで直接板
状に連続鋳造した後冷間圧延,熱処理を各々1回以上行
い、さらに矯正を行なってアルミニウム支持体を粗面化
する平版印刷版用支持体の製造方法において、Feの含
有量が0.4%〜0.2%,Siの含有量が0.20%
〜0.05%、Cuの含有量が0.02%以下、Al純
度が99.5%以上、連続鋳造後のアルミ板の結晶粒径
が鋳造進行方向に垂直な断面において2μmから500
μmであって、かつ最終的な冷間圧延または焼鈍後のア
ルミ板の結晶粒径が、鋳造および圧延進行方向に垂直な
断面において2μmから100μmであることを特徴と
する平板印刷版用支持体の製造方法。
1. A support for a lithographic printing plate, which comprises continuously casting a molten aluminum directly into a plate shape with twin rolls, and then performing cold rolling and heat treatment one or more times each and further straightening to roughen the aluminum support. In the manufacturing method of, the Fe content is 0.4% to 0.2%, and the Si content is 0.20%.
˜0.05%, Cu content 0.02% or less, Al purity 99.5% or more, and the crystal grain size of the aluminum plate after continuous casting is 2 μm to 500 in a cross section perpendicular to the casting progress direction.
and a final grain size of the aluminum plate after cold rolling or annealing is 2 μm to 100 μm in a cross section perpendicular to the casting and rolling direction. Manufacturing method.
【請求項2】 アルミニウム溶湯から双ロールで直接板
状に連続鋳造した後冷間圧延,熱処理を各々1回以上行
い、さらに矯正を行なってアルミニウム支持体を粗面化
する平版印刷版用支持体の製造方法において、Feの含
有量が0.4%〜0.2%、Siの含有量が0.20%
〜0.05%、Cuの含有量が0.02%以下、Al純
度が99.5%以上、Fe の固溶量が10ppm以上、
連続鋳造後のアルミ板の結晶粒径が鋳造進行方向に垂直
な断面において2μmから500μmであって、かつ最
終的な冷間圧延または焼鈍後のアルミ板の結晶粒径が、
鋳造および圧延進行方向に垂直な断面において2μmか
ら100μmであることを特徴とする平板印刷版用支持
体の製造方法。
2. A support for a lithographic printing plate, which is obtained by continuously casting a molten aluminum directly into a plate shape with twin rolls, and then performing cold rolling and heat treatment one or more times each and further straightening the surface to roughen the aluminum support. In the manufacturing method of, the Fe content is 0.4% to 0.2%, and the Si content is 0.20%.
.About.0.05%, Cu content 0.02% or less, Al purity 99.5% or more, Fe solid solution amount 10 ppm or more,
The grain size of the aluminum plate after continuous casting is 2 μm to 500 μm in the cross section perpendicular to the casting progress direction, and the grain size of the aluminum plate after the final cold rolling or annealing is
A method for producing a support for a lithographic printing plate, wherein the cross section perpendicular to the casting and rolling direction is 2 μm to 100 μm.
JP5237148A 1992-09-03 1993-08-31 Manufacture of supporting body for planographic printing plate Pending JPH06218495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5237148A JPH06218495A (en) 1992-09-03 1993-08-31 Manufacture of supporting body for planographic printing plate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25888892 1992-09-03
JP4-258888 1992-09-03
JP5237148A JPH06218495A (en) 1992-09-03 1993-08-31 Manufacture of supporting body for planographic printing plate

Publications (1)

Publication Number Publication Date
JPH06218495A true JPH06218495A (en) 1994-08-09

Family

ID=26533074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5237148A Pending JPH06218495A (en) 1992-09-03 1993-08-31 Manufacture of supporting body for planographic printing plate

Country Status (1)

Country Link
JP (1) JPH06218495A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387198B1 (en) 1998-03-09 2002-05-14 Nippon Light Metal Co., Ltd. Process for producing aluminum alloy substrate for lithographic printing plate
JP2003500543A (en) * 1999-05-27 2003-01-07 アルキャン・インターナショナル・リミテッド Aluminum alloy plate used as support for lithographic printing plate
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
JP2009255434A (en) * 2008-04-18 2009-11-05 Fujifilm Corp Aluminum alloy plate for planographic printing plate, support body for planographic printing, original plate for planographic printing plate, and manufacturing process of aluminum alloy plate for planographic printing plate
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
EP2263811A1 (en) * 2008-03-28 2010-12-22 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387198B1 (en) 1998-03-09 2002-05-14 Nippon Light Metal Co., Ltd. Process for producing aluminum alloy substrate for lithographic printing plate
JP2003500543A (en) * 1999-05-27 2003-01-07 アルキャン・インターナショナル・リミテッド Aluminum alloy plate used as support for lithographic printing plate
EP1625944A1 (en) 2004-08-13 2006-02-15 Fuji Photo Film Co., Ltd. Method of manufacturing lithographic printing plate support
EP1712368A1 (en) 2005-04-13 2006-10-18 Fuji Photo Film Co., Ltd. Method of manufacturing a support for a lithographic printing plate
EP2263811A1 (en) * 2008-03-28 2010-12-22 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same
EP2263811A4 (en) * 2008-03-28 2011-05-04 Kobe Steel Ltd Aluminum alloy plate and process for producing the same
JP2009255434A (en) * 2008-04-18 2009-11-05 Fujifilm Corp Aluminum alloy plate for planographic printing plate, support body for planographic printing, original plate for planographic printing plate, and manufacturing process of aluminum alloy plate for planographic printing plate
WO2010038812A1 (en) 2008-09-30 2010-04-08 富士フイルム株式会社 Electrolytic treatment method and electrolytic treatment device
WO2010150810A1 (en) 2009-06-26 2010-12-29 富士フイルム株式会社 Light reflecting substrate and process for manufacture thereof
WO2011078010A1 (en) 2009-12-25 2011-06-30 富士フイルム株式会社 Insulated substrate, process for production of insulated substrate, process for formation of wiring line, wiring substrate, and light-emitting element

Similar Documents

Publication Publication Date Title
JPH0379798A (en) Production of substrate for lisographic plate
JP3219898B2 (en) Method for producing a lithographic printing plate support
JPH07305133A (en) Supporting body for planographic printing plate and its production
JP3177071B2 (en) Lithographic printing plate support
JP3290274B2 (en) Method for producing lithographic printing plate support
JPH06218495A (en) Manufacture of supporting body for planographic printing plate
JP3414521B2 (en) Method for producing a lithographic printing plate support
JPH0740017A (en) Production of supporting body for planographic printing plate
JP2791729B2 (en) Method for producing a lithographic printing plate support
JP3177079B2 (en) Method for producing a lithographic printing plate support
JP3250687B2 (en) Method for producing a lithographic printing plate support
EP0603476B1 (en) Support for a planographic printing plate and method for producing same
JPH05156414A (en) Production of base for planographic printing plate
JPH0754111A (en) Production of substrate for planographic printing plate
JP3184636B2 (en) Method for producing a lithographic printing plate support
JP3148057B2 (en) Method for producing a lithographic printing plate support
JP3580469B2 (en) Method for producing a lithographic printing plate support
JP2982093B2 (en) Method for producing a lithographic printing plate support
JPH08108659A (en) Production of lithographic printing substrate
JPH05301478A (en) Support of planograpahic printing plate and production thereof
JPH0873974A (en) Aluminum alloy substrate for lithographic plate
JPH0849034A (en) Aluminum alloy supporting body for planographic printing plate
JPH06210406A (en) Manufacture of supporting body for planographic printing plate
JPH07132689A (en) Aluminum alloy substrate for lithographic plate
JP3233468B2 (en) Lithographic printing plate support and method for producing the same