JPH0368757B2 - - Google Patents

Info

Publication number
JPH0368757B2
JPH0368757B2 JP7370384A JP7370384A JPH0368757B2 JP H0368757 B2 JPH0368757 B2 JP H0368757B2 JP 7370384 A JP7370384 A JP 7370384A JP 7370384 A JP7370384 A JP 7370384A JP H0368757 B2 JPH0368757 B2 JP H0368757B2
Authority
JP
Japan
Prior art keywords
ion exchange
ions
water
boron
exchange layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7370384A
Other languages
Japanese (ja)
Other versions
JPS60216882A (en
Inventor
Masaaki Ichinose
Takao Mineo
Hiroji Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Construction and Engineering Co Ltd filed Critical Ataka Construction and Engineering Co Ltd
Priority to JP7370384A priority Critical patent/JPS60216882A/en
Publication of JPS60216882A publication Critical patent/JPS60216882A/en
Publication of JPH0368757B2 publication Critical patent/JPH0368757B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はホウ素含有廃水の処理方法にかかり、
被処理水のホウ素をあらかじめ沈殿性化合物とし
て除去したのち、イオン交換樹脂を用いて残存す
るホウ素を除去する構成に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for treating boron-containing wastewater,
The present invention relates to a configuration in which boron in water to be treated is previously removed as a precipitable compound, and then remaining boron is removed using an ion exchange resin.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ホウ素は石灰焚ボイラーの排脱廃水、ゴミ生焼
却炉洗煙廃水中に含まれホウ酸イオン(BO3 3-)、
またはフツ素と鎖体を形成してテトラフルオロホ
ウ酸イオン(BF4 -)の形で存在する。このよう
なホウ素は植物にとつては必須元素ではあるが、
その必要量は極くわずかであり、過剰摂取はその
生育に悪影響を及ぼすため、排水中のホウ素濃度
は1mg/以下、2mg/以下等と条例によつて
厳しく規制されている。
Boron is contained in wastewater discharged from lime-fired boilers and smoke washing wastewater from garbage incinerators, and contains boric acid ions (BO 3 3- ).
Alternatively, it forms a chain with fluorine and exists in the form of tetrafluoroborate ion (BF 4 - ). Although boron is an essential element for plants,
The required amount is extremely small, and excessive intake has a negative effect on its growth, so the concentration of boron in wastewater is strictly regulated by local ordinances, such as 1 mg/or less, 2 mg/or less, etc.

従来のホウ素を含む廃水の処理方法としては、
イオン交換樹脂により吸着させるものと、硫酸ア
ルミニウムにより不溶性沈殿物として固液分離す
るものとがあるが、何れも効果的な除去方法では
ない。
Conventional methods for treating wastewater containing boron include:
There are two methods: adsorption using an ion exchange resin and solid-liquid separation using aluminum sulfate as an insoluble precipitate, but neither method is effective for removal.

イオン交換樹脂でホウ素を吸着する場合は、被
処理水中のホウ素の形態によりホウ素の吸着能力
が異なることが多い。例えばホウ酸イオンとテト
ラフルオロホウ酸イオンの両イオンが存在する被
処理水の場合、ホウ酸イオンを選択的に吸着する
イオン交換樹脂を用いてテトラフルオロホウ酸イ
オンを吸着させて処理水中のホウ素濃度を1mg/
以下にすることはむずかしい。同様にテトラフ
ルオロホウ酸イオンのようなフツ素鎖体を形成し
ているイオンを選択的に吸着するイオン交換樹脂
を用いてホウ酸イオンを吸着させ、処理水中のホ
ウ素濃度を1mg/以下にすることはむずかし
い。
When adsorbing boron with an ion exchange resin, the adsorption capacity for boron often differs depending on the form of boron in the water to be treated. For example, in the case of water to be treated that contains both borate ions and tetrafluoroborate ions, an ion exchange resin that selectively adsorbs borate ions is used to adsorb the tetrafluoroborate ions to eliminate boron in the treated water. Concentration 1mg/
It is difficult to do the following. Similarly, borate ions are adsorbed using an ion exchange resin that selectively adsorbs ions forming fluorine chains such as tetrafluoroborate ions, and the boron concentration in the treated water is reduced to 1 mg/or less. That's difficult.

このように、単一のイオン交換樹脂を用いてホ
ウ酸イオンやテトラフルオロホウ酸イオンの両イ
オンが存在する液を処理して処理水のホウ素濃度
を1mg/以下にすることはむずかしい。
As described above, it is difficult to reduce the boron concentration of the treated water to 1 mg/min or less by treating a liquid containing both borate ions and tetrafluoroborate ions using a single ion exchange resin.

また、一般にホウ素を吸着するイオン交換樹脂
は吸着能力が小さく、このため再生頻度が多く多
量の再生剤を必要とする欠点があつた。
In addition, ion exchange resins that adsorb boron generally have a low adsorption capacity, and therefore have the drawback of requiring a large amount of regenerating agent.

一方、硫酸アルミニウムにより不溶性沈殿物と
して固液分離する方法は、多量の硫酸アルミニウ
ムを添加し、かつPHの中和のために硫酸アルミニ
ウムと同量かあるいはそれ以上の消石灰を必要と
し、多量の汚泥が発生するという欠点があつた。
On the other hand, the method of solid-liquid separation as an insoluble precipitate using aluminum sulfate requires the addition of a large amount of aluminum sulfate and the same amount of slaked lime as the aluminum sulfate or more to neutralize the pH, resulting in a large amount of sludge. There was a drawback that this occurred.

特に、高濃度のホウ素を数10〜100mg/まで
低減させる場合と異なり、処理水のホウ素濃度を
1mg/以下にしようとする場合には、更に多量
の硫酸アルミニウムまたは消石灰を必要とし経済
的な処理方法とはいえない。
In particular, unlike the case of reducing high concentrations of boron to several tens to 100 mg/d, when attempting to reduce the boron concentration of treated water to 1 mg/d or less, a larger amount of aluminum sulfate or slaked lime is required, making the treatment economical. It cannot be called a method.

また、被処理水中のホウ素の形態によつて、固
液分離しやすい場合と、固液分離しにくい場合と
がある。ホウ素の形態にかかわらず安定して処理
水のホウ素濃度を1mg/以下にすることはむず
かしい。
Further, depending on the form of boron in the water to be treated, there are cases where solid-liquid separation is easy and cases where solid-liquid separation is difficult. Regardless of the form of boron, it is difficult to stably reduce the boron concentration in treated water to 1 mg/or less.

〔発明の目的〕[Purpose of the invention]

本発明は上述の問題に鑑み、被処理水をOH型
塩基性アニオン交換樹脂と、OH型弱塩基性アニ
オン交換樹脂とに通水してテトラフルオロホウ酸
イオンと、ホウ酸イオンを可及的に除去するとと
もにイオン交換樹脂の再生に際して苛性ソーダを
通液した第1のイオン交換層の廃液を予め流酸を
通液した第2のイオン交換層に通液することによ
り再生剤の使用量を少なくしようとするものであ
る。
In view of the above-mentioned problems, the present invention passes the water to be treated through an OH type basic anion exchange resin and an OH type weakly basic anion exchange resin to remove tetrafluoroborate ions and borate ions as much as possible. At the same time, when regenerating the ion exchange resin, the waste liquid from the first ion exchange layer through which caustic soda was passed is passed through the second ion exchange layer through which flowing acid has been passed in advance, thereby reducing the amount of regenerating agent used. This is what I am trying to do.

〔発明の概要〕[Summary of the invention]

本発明は、テトラフルオロホウ酸イオン
(BF4 -)とホウ酸イオン(BO3 3-)を含む被処理
水のホウ素を沈殿性化合物として分離し上澄水を
OH型塩基性アニオン交換樹脂を充填した第1の
イオン交換層に通水して残存するテトラフルオロ
ホウ酸イオンを除去し流出水を続いてOH型弱塩
基性アニオン交換樹脂を充填した第2のイオン交
換層に通水して残存するホウ酸イオンを除去する
工程と、前記第1のイオン交換層が吸着したテト
ラフルオロホウ酸イオンを苛性ソーダの通液によ
り離脱させこの廃液を硫酸の通液により吸着した
ホウ酸イオンを離脱した後の第2のイオン交換層
に通液させ夫々前記イオン交換樹脂を再生する工
程とよりなり、ホウ素を含む被処理水より大部分
のホウ素を沈殿性化合物として除去し、夫々2種
のイオン交換樹脂を用いて残存するテトラフルオ
ロホウ酸イオンとホウ酸イオンてを除去し、これ
らのイオンを除去した第1、第2のイオン交換層
を再生するとともに再生廃液を再利用するもので
ある。
The present invention separates boron from treated water containing tetrafluoroborate ions (BF 4 - ) and borate ions (BO 3 3- ) as a precipitating compound, and extracts supernatant water.
Water is passed through a first ion exchange layer filled with an OH type basic anion exchange resin to remove remaining tetrafluoroborate ions, and the effluent water is passed through a second ion exchange layer filled with an OH type weakly basic anion exchange resin. A step of removing remaining borate ions by passing water through the ion exchange layer, and removing the tetrafluoroborate ions adsorbed by the first ion exchange layer by passing caustic soda through the layer, and removing this waste liquid by passing sulfuric acid through the ion exchange layer. After removing the adsorbed borate ions, the liquid is passed through the second ion exchange layer to regenerate the ion exchange resin, and most of the boron is removed from the boron-containing water to be treated as a precipitable compound. Then, the remaining tetrafluoroborate ions and borate ions are removed using two types of ion exchange resins, and the first and second ion exchange layers from which these ions have been removed are regenerated, and the recycled waste liquid is recycled. It is meant to be reused.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を添附図面について説明す
る。
Next, embodiments of the present invention will be described with reference to the accompanying drawings.

排脱廃水、ゴミ焼却炉洗煙廃水等よりなる被処
理水aを酸性反応槽1に導入する。次にこの反応
槽1に硫酸アルミニウムbを注入し、酸性下で撹
拌機2で撹拌処理を行なう。反応槽1の滞留時間
は3時間以上にするのが好ましく、また被処理水
a中に多量のテトラフルオロホウ酸イオンを含む
場合は、反応槽1内に硫酸cの注入によつてPHを
4以下にする。硫酸アルミニウムbの存在下にPH
を4以下に調整することにより、テトラフルオロ
ホウ酸イオン(BF4 -)は次の反応式によつてフ
ツ化物とホウ酸とに分解され次工程以下のテトラ
フルオロホウ酸イオンの負荷を減少することがで
きる。
Water to be treated a consisting of discharged wastewater, garbage incinerator smoke washing wastewater, etc. is introduced into the acidic reaction tank 1. Next, aluminum sulfate b is injected into this reaction tank 1, and stirred with a stirrer 2 under acidic conditions. The residence time in the reaction tank 1 is preferably 3 hours or more, and if the water to be treated a contains a large amount of tetrafluoroborate ions, the pH is reduced to 4 by injecting sulfuric acid c into the reaction tank 1. Do the following. PH in the presence of aluminum sulfate b
By adjusting the ion to 4 or less, tetrafluoroborate ion (BF 4 - ) is decomposed into fluoride and boric acid according to the following reaction formula, reducing the load of tetrafluoroborate ion in the next process and below. be able to.

2Al(SO43+3HBF4+9H2O→ 4AlF3+6H2SO4+3H3BO3 酸性反応槽1から流出した流出水dはアルカリ
性反応槽3に導入されこの反応槽3に消石灰eが
注入されアルカリ性下で撹拌機4で撹拌される。
アルカリ性反応槽3内の滞留時間は0.5時間以上
が好ましい。さらにアルカリ性反応槽3内のPHは
10以上、望ましくは12以上にするのがよい。この
アルカリ性反応槽3内で生成される水酸化物の形
態は明らかでないが、不溶性で沈降性もよく、次
工程の固液分離槽5における固液分離を容易にす
る。
2Al(SO 4 ) 3 +3HBF 4 +9H 2 O→ 4AlF 3 +6H 2 SO 4 +3H 3 BO 3The effluent water d flowing out from the acidic reaction tank 1 is introduced into the alkaline reaction tank 3, and slaked lime e is injected into this reaction tank 3. The mixture is stirred with a stirrer 4 under alkaline conditions.
The residence time in the alkaline reaction tank 3 is preferably 0.5 hours or more. Furthermore, the pH in alkaline reaction tank 3 is
The number should be 10 or more, preferably 12 or more. Although the form of the hydroxide produced in the alkaline reaction tank 3 is not clear, it is insoluble and has good sedimentation properties, facilitating solid-liquid separation in the solid-liquid separation tank 5 in the next step.

アルカリ性反応槽流出水fは固液分離槽5に導
入され上澄水gと凝集沈殿物hとに分離される。
The alkaline reaction tank effluent water f is introduced into the solid-liquid separation tank 5 and separated into supernatant water g and coagulated precipitate h.

以上の工程によつて、被処理水aは、遊離のフ
ツ素イオンが除去される他、テトラフルオロホウ
酸イオンの一部を不溶性沈殿物としホウ酸イオン
の一部も不溶性沈殿物とし上澄水g中のホウ素濃
度は低下される。
Through the above steps, in the treated water a, free fluorine ions are removed, some of the tetrafluoroborate ions are converted into insoluble precipitates, some of the boric acid ions are also converted into insoluble precipitates, and the supernatant water The boron concentration in g is reduced.

得られた上澄水gはOH型アニオン交換樹脂を
充填した第1のイオン交換層6を有する1段イオ
ン交換樹脂塔7に導入される。1段イオン交換樹
脂塔7で用いられるイオン交換樹脂は、OH型塩
基性アニオン交換樹脂であり、弱塩基性または強
塩基性の何れの形でも使用できるが、特にテトラ
フルオロホウ酸イオンを選択的に吸着する樹脂で
あることが望ましい。
The obtained supernatant water g is introduced into a one-stage ion exchange resin column 7 having a first ion exchange layer 6 filled with an OH type anion exchange resin. The ion exchange resin used in the first-stage ion exchange resin column 7 is an OH type basic anion exchange resin, and can be used in either weakly basic or strongly basic form, but it is particularly selective for tetrafluoroborate ions. It is desirable that the resin be adsorbed to.

上澄水gと第1のイオン交換層6との接触滞留
時間は、5分以上で、通常SV=6〔1/h〕で通
液するのが望ましい。
It is desirable that the contact residence time between the supernatant water g and the first ion exchange layer 6 is 5 minutes or more, and that the liquid is passed normally at SV=6 [1/h].

1段イオン交換樹脂塔7から流出した流出水i
はOH型弱塩基性アニオン交換樹脂よりなる第2
のイオン交換層8を有する2段イオン交換樹脂塔
9に導入される。2段イオン交換樹脂塔9で用い
られるイオン交換樹脂は、OH型弱塩基性アニオ
ン交換樹脂のうち、特にホウ酸イオンを選択的に
吸着する樹脂が望ましい。1段イオン交換樹脂塔
7からの流出水iと第2のイオン交換層8との接
触滞留時間は5分以上で、通常SV=6〔1/h〕
で通液するのが望ましい。
Outflow water i flowing out from the first stage ion exchange resin tower 7
is a second compound made of an OH type weakly basic anion exchange resin.
is introduced into a two-stage ion-exchange resin column 9 having an ion-exchange layer 8 . The ion exchange resin used in the two-stage ion exchange resin column 9 is desirably a resin that selectively adsorbs boric acid ions among OH type weakly basic anion exchange resins. The contact residence time between the outflow water i from the first stage ion exchange resin column 7 and the second ion exchange layer 8 is 5 minutes or more, and usually SV = 6 [1/h]
It is desirable to pass the liquid through.

以上の1段、2段のイオン交換処理によつて上
澄水gに含まれるテトラフルオロホウ酸イオン
(BF4 -)およびホウ酸イオン(BO3 3-)は夫々の
イオン交換層6,8に吸着され、ホウ素濃度とし
て1mg/以下の清澄な処理水jが得られる。
Through the above 1-stage and 2-stage ion exchange treatments, the tetrafluoroborate ions (BF 4 - ) and borate ions (BO 3 3- ) contained in the supernatant water g are transferred to the ion exchange layers 6 and 8, respectively. It is adsorbed and clear treated water j with a boron concentration of 1 mg/or less is obtained.

尚、上澄水gの通水の順序は第1のイオン交換
層6、第2のイオン交換層8の順に通水する必要
がある。何故ならば、第1のイオン交換層6に充
填されたイオン交換樹脂はテトラフルオロホウ酸
イオンを選択的に吸着し、ホウ酸イオンは殆ど吸
着しない。また第2のイオン交換層8のイオン交
換樹脂は、ホウ酸イオンを吸着するがテトラフル
オロホウ酸イオンも吸着する。このため第2のイ
オン交換層8に上澄水gを通液するとホウ酸イオ
ンとテトラフルオロホウ酸イオンが同時に吸着さ
れ吸着能を急速に低下するからである。また第
1、第2のイオン交換層6,8の順に通水すれば
第1のイオン交換層6で吸着されなかつた微量の
テトラフルオロホウ酸イオンを第2のイオン交換
層8で吸着させることができる。
Note that the supernatant water g must be passed through the first ion exchange layer 6 and the second ion exchange layer 8 in this order. This is because the ion exchange resin filled in the first ion exchange layer 6 selectively adsorbs tetrafluoroborate ions and hardly adsorbs borate ions. Further, the ion exchange resin of the second ion exchange layer 8 adsorbs borate ions, but also tetrafluoroborate ions. For this reason, when supernatant water g is passed through the second ion exchange layer 8, borate ions and tetrafluoroborate ions are simultaneously adsorbed, rapidly reducing the adsorption capacity. Furthermore, if water is passed through the first and second ion exchange layers 6 and 8 in this order, the trace amount of tetrafluoroborate ions that were not adsorbed by the first ion exchange layer 6 can be adsorbed by the second ion exchange layer 8. I can do it.

イオン交換によつてテトラフルオロホウ酸イオ
ンまたはホウ酸イオンを交換吸着した夫々のイオ
ン交換樹脂は、吸着濃度が低下次第その再生を行
なう。
The respective ion exchange resins that have exchanged and adsorbed tetrafluoroborate ions or borate ions through ion exchange are regenerated as soon as the adsorption concentration decreases.

テトラフルオロホウ酸イオンを吸着した第1の
イオン交換層6には苛性ソーダ水溶液kを、ホウ
酸イオンを吸着した第2のイオン交換層8には硫
酸水溶液lを通液し、夫々再生廃液m、nを得
る。次に、第2のイオン交換層8をSO4型から
OH型に戻すために、1段イオン交換樹脂塔7の
再生廃液mを第2のイオン交換層8に通液する。
A caustic soda aqueous solution K is passed through the first ion exchange layer 6 that has adsorbed tetrafluoroborate ions, and a sulfuric acid aqueous solution L is passed through the second ion exchange layer 8 that has adsorbed borate ions, and the regenerated waste liquid m, Get n. Next, the second ion exchange layer 8 is made from SO 4 type.
In order to return to the OH type, the recycled waste liquid m from the first stage ion exchange resin tower 7 is passed through the second ion exchange layer 8.

テトラフルオロホウ酸イオンを交換吸着した第
1のイオン交換層6の樹脂は、苛性ソーダで再生
を行うだけでも再生効率を低下させるこはない
が、ホウ酸イオンを交換吸着した第2のイオン交
換層8の樹脂は、苛性ソーダで再生を行うだけで
は単に樹脂をOH型に整えるだけで再生効率が悪
い。このため第2のイオン交換層8は苛性ソーダ
よりも再生効率の高い硫酸を用いて再生を行う。
しかしながら硫酸再生のみでは、被処理水の通水
再開時に処理水中へホウ素がリークするため、第
2のイオン交換層8をSO4型からOH型に戻す必
要がある。そこで第2のイオン交換層8の再生工
程では硫酸再生を行つたのち、苛性ソーダを多量
に含む1段イオン交換樹脂塔7からの再生廃液m
を第2のイオン交換層8に通液し、このイオン交
換層8の樹脂をSO4型からOH型に戻し再々生廃
液pを得る。この際、1段イオン交換樹脂塔7の
再生廃液mに含まれるテトラフルオロホウ酸イオ
ン(第1のイオン交換層6の再生の際脱着された
テトラフルオロホウ酸イオンが多量に存在する。)
は、第2のイオン交換層8に交換吸着されること
はない。
The resin of the first ion exchange layer 6 that has exchanged and adsorbed tetrafluoroborate ions will not reduce the regeneration efficiency even if it is simply regenerated with caustic soda, but the resin of the second ion exchange layer 6 that has exchanged and adsorbed borate ions will not reduce the regeneration efficiency. Regenerating the resin No. 8 with caustic soda simply converts the resin into an OH type, which results in poor regeneration efficiency. Therefore, the second ion exchange layer 8 is regenerated using sulfuric acid, which has higher regeneration efficiency than caustic soda.
However, if only sulfuric acid regeneration is performed, boron will leak into the treated water when the flow of the water to be treated is restarted, so it is necessary to change the second ion exchange layer 8 from the SO 4 type to the OH type. Therefore, in the regeneration step of the second ion exchange layer 8, after performing sulfuric acid regeneration, the regenerated waste liquid m from the first stage ion exchange resin tower 7 containing a large amount of caustic soda is
is passed through the second ion exchange layer 8, and the resin in the ion exchange layer 8 is returned from the SO 4 type to the OH type to obtain a recycled waste liquid p. At this time, tetrafluoroborate ions contained in the recycled waste liquid m of the first-stage ion exchange resin tower 7 (a large amount of tetrafluoroborate ions desorbed during the regeneration of the first ion exchange layer 6 are present).
is not exchanged and adsorbed by the second ion exchange layer 8.

再生工程において最終的に生ずる廃液は、硫酸
イオンとホウ酸イオンを高濃度に含む2段イオン
交換樹脂塔9の再生廃液nと、苛性ソーダとテト
ラフルオロホウ酸イオンを高濃度に含む再々生廃
液pとである。これらの両廃液n、pは混合して
酸性反応槽1に戻すか、混合せずに夫々を酸性反
応槽1またはアルカリ性反応槽3に戻す。その何
れかは、被処理水aの性状あるいは装置の運転状
況に応じて決定する。
The waste liquid finally generated in the regeneration process is a regenerated waste liquid n from the two-stage ion exchange resin column 9 containing high concentrations of sulfate ions and borate ions, and a regenerated waste liquid p containing high concentrations of caustic soda and tetrafluoroborate ions. That is. These two waste liquids n and p are either mixed and returned to the acidic reaction tank 1, or returned to the acidic reaction tank 1 or the alkaline reaction tank 3, respectively, without being mixed. Either one is determined depending on the properties of the water to be treated a or the operating conditions of the apparatus.

被処理水aのテトラフルオロホウ酸イオン濃度
が高く、あるいは、第1のイオン交換層6のテト
ラフルオロホウ酸イオン交換吸着能が小さい場合
には、再々生廃液pを酸性反応槽1に戻し、この
再々生廃液pに含まれるテトラフルオロホウ酸イ
オンをフツ化物とホウ酸イオンに分解するとよ
い。その結果テトラフルオロホウ酸イオン濃度が
減少し、第1イオン交換層6の樹脂の負荷が減少
される。この場合は、2段イオン交換樹脂塔9か
らの再生廃液nはアルカリ性反応槽3へ戻す。
When the tetrafluoroborate ion concentration of the water to be treated a is high, or when the tetrafluoroborate ion exchange adsorption capacity of the first ion exchange layer 6 is small, the recycled waste liquid p is returned to the acidic reaction tank 1, It is preferable to decompose the tetrafluoroborate ions contained in this recycled waste liquid p into fluoride and borate ions. As a result, the tetrafluoroborate ion concentration decreases, and the resin load on the first ion exchange layer 6 is reduced. In this case, the regenerated waste liquid n from the two-stage ion exchange resin tower 9 is returned to the alkaline reaction tank 3.

また、被処理水aのテトラフルオロホウ酸イオ
ン濃度およびホウ酸イオン濃度が低い場合で、か
つ、前処理における薬剤量を軽減する必要がある
ときは、硫酸イオンを多量に含む2段イオン交換
樹脂塔9の再生廃液nを、酸性反応槽1に戻し、
苛性ソーダを多量に含む再々生廃液pをアルカリ
性反応槽3に戻すことができる。この場合は、酸
性反応槽1またはアルカリ性反応槽3への硫酸c
や消石灰eの添加量が軽減されることになる。
In addition, when the tetrafluoroborate ion concentration and borate ion concentration of water to be treated a are low, and when it is necessary to reduce the amount of chemicals in pretreatment, a two-stage ion exchange resin containing a large amount of sulfate ions can be used. The recycled waste liquid n from the tower 9 is returned to the acidic reaction tank 1,
The recycled waste liquid p containing a large amount of caustic soda can be returned to the alkaline reaction tank 3. In this case, sulfuric acid c is added to acidic reaction tank 1 or alkaline reaction tank 3.
The amount of addition of slaked lime and slaked lime e will be reduced.

最終的に生じた凝集沈殿物hは、アルミニウム
を含む水産化物およびこれら水産化物に吸着され
たホウ素化合物等からなる汚泥で、固液分離槽5
の下端から引出され、必要に応じて脱水処理や固
化処理が施される。
The final coagulated precipitate h is sludge consisting of aluminum-containing aquatic products and boron compounds adsorbed to these aquatic products, and is collected in the solid-liquid separation tank 5.
It is pulled out from the bottom end and subjected to dehydration and solidification treatments as necessary.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、テトラフルオロホウ酸イオン
とホウ酸イオンを含む被処理水のホウ素を沈殿性
化合物として分離し上澄水をOH型塩基性アニオ
ン交換樹脂を充填した第1のイオン交換層に通水
して残存するテトラフルオロホウ酸イオンを吸着
させ、続いてOH型弱塩基性アニオン交換樹脂を
充填した第2のイオン交換層に通水して残存する
ホウ酸イオンを吸着させるため、被処理水中の大
部分のホウ素は沈殿性化合物として予め分離さ
れ、第1、第2のイオン交換樹脂層の通水される
上澄水には小量のテトラフルオロホウ酸イオンと
小量のホウ酸イオンが残存するのみであるから、
夫々のイオン交換樹脂の負荷を軽減し吸着性能を
高めるとともに長期間吸着性能を保持させること
ができる。また、第1、第2のイオン交換層に通
水しテトラフルオロホウ酸イオンとホウ酸イオン
を別個に夫々に適したイオン交換樹脂を用いて吸
着除去したから除去率が高く、処理水中のホウ素
濃度を1mg/以下にすることができる。さらに
テトラフルオロホウ酸イオンを吸着した第1のイ
オン交換層に苛性ソーダを通液し、ホウ酸イオン
を吸着した第2のイオン交換層に硫酸を通液し次
に苛性ソーダを通液した第1のイオン交換層の廃
液を第2のイオン交換層に通液するから、樹脂に
吸着したテトラフルオロホウ酸イオンまたはホウ
酸イオンが離脱してイオン交換性能を再生するこ
とができ、また硫酸を通液した第1のイオン交換
層には苛性ソーダを含む第1のイオン交換層の廃
液を更に通液してOH型にすることによりホウ酸
イオンの吸着性能を付与させるとともに再生用薬
剤を節約することができる。
According to the present invention, boron in the water to be treated containing tetrafluoroborate ions and borate ions is separated as a precipitable compound, and the supernatant water is passed through the first ion exchange layer filled with an OH type basic anion exchange resin. Water is applied to adsorb the remaining tetrafluoroborate ions, and then the water is passed through the second ion exchange layer filled with an OH type weakly basic anion exchange resin to adsorb the remaining borate ions. Most of the boron in the water is separated in advance as precipitable compounds, and the supernatant water that is passed through the first and second ion exchange resin layers contains a small amount of tetrafluoroborate ion and a small amount of borate ion. Since it only remains,
It is possible to reduce the load on each ion exchange resin, improve adsorption performance, and maintain adsorption performance for a long period of time. In addition, since water is passed through the first and second ion exchange layers and tetrafluoroborate ions and borate ions are adsorbed and removed separately using ion exchange resins suitable for each, the removal rate is high, and boron in the treated water is removed. The concentration can be lower than 1 mg/ml. Furthermore, caustic soda was passed through the first ion exchange layer that adsorbed tetrafluoroborate ions, sulfuric acid was passed through the second ion exchange layer that adsorbed borate ions, and then caustic soda was passed through the first ion exchange layer. Since the waste liquid from the ion exchange layer is passed through the second ion exchange layer, the tetrafluoroborate ions or borate ions adsorbed on the resin can be released and the ion exchange performance can be regenerated. The waste liquid of the first ion exchange layer containing caustic soda is further passed through the first ion exchange layer to convert it into an OH type, thereby imparting borate ion adsorption performance and saving regeneration chemicals. can.

〔発明の実施例〕[Embodiments of the invention]

前述の実施例の装置を用いて排脱排水処理の実
験を行つた。
An experiment on drainage and wastewater treatment was conducted using the apparatus of the above-mentioned example.

排脱排水(PH7.1〜7.3、ホウ素濃度330〜360mg
−B/、蒸発残留物1.2%)に硫酸アルミニウ
ムを4g/添加したのち、3時間撹拌を行い、
そのあと消石灰を6g/加え30分撹拌ののち約
1時間放置して固液分離を行つた。凝集沈殿上澄
水のホウ素濃度はホウ酸性ホウ素(BO3−B)
120mg/、テトラフルオロホウ酸ホウ素(BF4
−B)5mg/であつた。
Drainage wastewater (PH7.1-7.3, boron concentration 330-360mg
-B/, evaporation residue 1.2%) was added with 4 g of aluminum sulfate, and stirred for 3 hours.
Thereafter, 6 g/slaked lime was added, stirred for 30 minutes, and then left to stand for about 1 hour to perform solid-liquid separation. The boron concentration in the flocculation sedimentation supernatant water is boric acid boron (BO 3 -B)
120mg/Boron Tetrafluoroborate (BF 4
-B) It was 5 mg/.

この上澄水を1段イオン交換樹脂塔7に通水し
たところ、流出水のテトラフルオロホウ酸性ホウ
素濃度は200B、Vで平均0.5mg−B/以下であ
つた。なお、この時のホウ酸性ホウ素濃度は、
108mg−B/であつた。さらに、この1段イオ
ン交換樹脂塔7の流出水を2段イオン交換樹脂塔
9に通水したところ、処理水のホウ酸性ホウ素濃
度は20B、Vで平均0.5mg−B/以下であり、
全ホウ素濃度は1mg−B/以下となつた。
When this supernatant water was passed through the first-stage ion exchange resin column 7, the tetrafluoroboric acid boron concentration of the effluent was 200 B, V, and was less than 0.5 mg-B/ on average. In addition, the boric acid boron concentration at this time is
It was 108 mg-B/. Furthermore, when the effluent water from the first-stage ion-exchange resin tower 7 was passed through the second-stage ion-exchange resin tower 9, the boric acidic boron concentration of the treated water was 20B, V, and the average was less than 0.5 mg-B/,
The total boron concentration was less than 1 mg-B/.

次に処理水のホウ素濃度が1mg−B/を越え
た時点で、原水の供給をやめ再生を行つた。
Next, when the boron concentration of the treated water exceeded 1 mg-B/, the supply of raw water was stopped and regeneration was performed.

第1のイオン交換層6の再生は苛性ソーダを用
い、再生レベル65gNaOH/−樹脂、SV2
〔1/h〕で通液した。その結果このイオン交換
層6からテトラフルオロホウ酸イオン(BF4
B)の濃度が300mg/の液が得られ、ほぼホウ
素脱着率は100%であつた。
The first ion exchange layer 6 is regenerated using caustic soda, regeneration level 65g NaOH/-resin, SV2
The solution was passed at a rate of [1/h]. As a result, tetrafluoroborate ions (BF 4
A solution with a concentration of B) of 300 mg/W was obtained, and the boron desorption rate was almost 100%.

また、2段イオン交換樹脂塔9の再生は硫酸を
用い、再生レベル48gH2SO4/−樹脂、SV2
〔1/h〕で通液した。この結果、イオン交換層
8からホウ酸性ホウ素(BO3−B)の濃度717
mg/の液が得られ、ほぼホウ素脱着率100%で
あつた。
In addition, the second stage ion exchange resin column 9 is regenerated using sulfuric acid, and the regeneration level is 48 g H 2 SO 4 /-resin, SV2
The solution was passed at a rate of [1/h]. As a result, the concentration of boric acid boron (BO 3 −B) from the ion exchange layer 8 was 717
mg of liquid was obtained, and the boron desorption rate was almost 100%.

さらに、1段イオン交換樹脂塔7の再生廃液を
全量SV2〔1/h〕で第2のイオン交換層8に通
液した。その結果、この第2イオン交換層8から
テトラフルオロホウ酸ホウ素(BF4−B)の濃度
として300mg/の液が得られた。この結果より、
1段イオン交換樹脂塔7の再生廃液に含まれるテ
トラフルオロホウ酸ホウ素は第2イオン交換層8
には吸着されないことが分つた。
Further, the recycled waste liquid from the first stage ion exchange resin column 7 was passed through the second ion exchange layer 8 at a total rate of SV2 [1/h]. As a result, a liquid with a concentration of boron tetrafluoroborate (BF 4 -B) of 300 mg was obtained from the second ion exchange layer 8. From this result,
Boron tetrafluoroborate contained in the recycled waste liquid from the first stage ion exchange resin column 7 is transferred to the second ion exchange layer 8.
It was found that it was not adsorbed by

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の一実施例を示す処理方法の工程説
明図である。 6……第1のイオン交換層、8……第2のイオ
ン交換層。
The figure is a process explanatory diagram of a treatment method showing an embodiment of the present invention. 6...First ion exchange layer, 8...Second ion exchange layer.

Claims (1)

【特許請求の範囲】 1 テトラフルオロホウ酸イオン(BF4 -)とホ
ウ酸イオン(BO3 3-)を含む被処理水のホウ素を
沈殿性化合物として分離し上澄水をOH型塩基性
アニオン交換樹脂を充填した第1のイオン交換層
に通水して残存するテトラフルオロホウ酸イオン
を除去し流出水を続いてOH型弱塩基性アニオン
交換樹脂を充填した第2のイオン交換層に通水し
て残存するホウ酸イオンを除去する工程と、前記
第1のイオン交換層が吸着したテトラフルオロホ
ウ酸イオンを苛性ソーダの通液により離脱させこ
の廃液を硫酸の通液により吸着したホウ酸イオン
を離脱した後の第2のイオン交換層に通液させ
夫々前記イオン交換樹脂を再生する工程とよりな
ることを特徴とするホウ素含有廃水の処理方法。 2 被処理水に硫酸アルミニウムを加えて撹拌し
次に消石灰を加えて撹拌しホウ素を含む沈殿性化
合物を生成することを特徴とする特許請求の範囲
第1項に記載のホウ素含有廃水の処理方法。
[Claims] 1. Boron in the water to be treated containing tetrafluoroborate ions (BF 4 - ) and borate ions (BO 3 3- ) is separated as a precipitating compound, and the supernatant water is subjected to OH-type basic anion exchange. Water is passed through a first ion exchange layer filled with resin to remove remaining tetrafluoroborate ions, and the effluent is then passed through a second ion exchange layer filled with an OH type weakly basic anion exchange resin. the first ion exchange layer to remove the remaining borate ions; and the step of removing the tetrafluoroborate ions adsorbed by the first ion exchange layer by passing caustic soda through the waste solution, and removing the adsorbed borate ions by passing sulfuric acid through the waste liquid. A method for treating boron-containing wastewater, comprising the step of passing the liquid through a second ion-exchange layer after separation to regenerate the ion-exchange resin. 2. The method for treating boron-containing wastewater according to claim 1, which comprises adding aluminum sulfate to the water to be treated and stirring, and then adding slaked lime and stirring to generate a precipitable compound containing boron. .
JP7370384A 1984-04-12 1984-04-12 Treatment of waste water containing boron Granted JPS60216882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7370384A JPS60216882A (en) 1984-04-12 1984-04-12 Treatment of waste water containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7370384A JPS60216882A (en) 1984-04-12 1984-04-12 Treatment of waste water containing boron

Publications (2)

Publication Number Publication Date
JPS60216882A JPS60216882A (en) 1985-10-30
JPH0368757B2 true JPH0368757B2 (en) 1991-10-29

Family

ID=13525835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7370384A Granted JPS60216882A (en) 1984-04-12 1984-04-12 Treatment of waste water containing boron

Country Status (1)

Country Link
JP (1) JPS60216882A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4813106B2 (en) * 2004-08-10 2011-11-09 株式会社神鋼環境ソリューション Waste water treatment method and waste water treatment equipment
EP2735546B1 (en) * 2012-11-21 2018-02-07 Ovivo Inc. Treatment of water, particularly for obtaining ultrapure water

Also Published As

Publication number Publication date
JPS60216882A (en) 1985-10-30

Similar Documents

Publication Publication Date Title
CN101234827B (en) Treatment and resource reclaiming method for chromium-containing wastewater containing high concentration sodium sulfate
CN110282783B (en) Ammonium phosphate chemical wastewater treatment system and method
JPS62191800A (en) Method of processing waste water containing uranium and fluorine
CN102936070A (en) Method for treating mercury-containing wastewater during PVC (Polyvinyle Chloride) production through two-step process
US4624790A (en) Reduction of metal content of treated effluents
CN113666561A (en) High-salt sulfur-containing fluorine-containing wastewater treatment process
CN1948191A (en) Reuse technology of oil refining, chemical catalyst production waste water
JPH0592187A (en) Treatment of fluorine-containing water
JP4543481B2 (en) Method for treating water containing boron and fluorine
JP3319053B2 (en) Treatment method for fluoride-containing water
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JPS5815193B2 (en) How to treat boron-containing water
JPS5924876B2 (en) How to treat boron-containing water
JP4543478B2 (en) Method for treating boron-containing water
JPH0368757B2 (en)
JP3942235B2 (en) Method for treating boron-containing water
CN1259251C (en) Method for biochemical treatment of discharged water
JPS63236588A (en) Treatment of phosphor-containing waste water
JPH0437755B2 (en)
JP4665279B2 (en) Method for treating boron-containing water
JP4058801B2 (en) Method for treating water containing boron and phosphorus
JPS5855838B2 (en) Method for removing ammonia nitrogen from wastewater
JPS5939517B2 (en) Method for recovering and reusing selenium components from electrolytic coloring process wastewater
JPH0140676B2 (en)
JPH10314797A (en) Method for treating water containing fluoride ion and cod component

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees