JPS60216882A - Treatment of waste water containing boron - Google Patents

Treatment of waste water containing boron

Info

Publication number
JPS60216882A
JPS60216882A JP7370384A JP7370384A JPS60216882A JP S60216882 A JPS60216882 A JP S60216882A JP 7370384 A JP7370384 A JP 7370384A JP 7370384 A JP7370384 A JP 7370384A JP S60216882 A JPS60216882 A JP S60216882A
Authority
JP
Japan
Prior art keywords
ion exchange
ions
water
exchange layer
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7370384A
Other languages
Japanese (ja)
Other versions
JPH0368757B2 (en
Inventor
Masaaki Ichinose
正秋 一瀬
Takao Mineo
嶺尾 孝雄
Hiroji Seki
廣二 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Original Assignee
Ataka Kogyo KK
Ataka Construction and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ataka Kogyo KK, Ataka Construction and Engineering Co Ltd filed Critical Ataka Kogyo KK
Priority to JP7370384A priority Critical patent/JPS60216882A/en
Publication of JPS60216882A publication Critical patent/JPS60216882A/en
Publication of JPH0368757B2 publication Critical patent/JPH0368757B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the consumption of a regenerative agent by passing the waste liquid from the first ion-exchange bed through the second ion-exchange bed through which sulfuric acid is previously passed in regenerating an ion- exchange resin used for removing boron. CONSTITUTION:The water to be treated is passed through an OH-type basic anion-exchange resin 6 and an OH-type weakly basic anion-exchange resin 8, and tetrafluoroboric acid and boric ions are removed. When both ion-exchange resins 6 and 8 are regenerated, the waste liquid, generated in passing caustic soda through the first ion-exchange bed 6, is passed through the second ion-exchange bed 8 through which sulfuric acid is previously passed. The consumption of a regenerative agent is reduced in this way.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はホウ素含有廃水の処理方法にかかり、被処理水
のホウ素をあらかじめ沈殿性化合物として除去したのち
、イオン交換樹脂を用いて残存するホウ素を除去する構
成に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for treating boron-containing wastewater, in which the boron in the water to be treated is removed in advance as a precipitable compound, and then the remaining boron is removed using an ion exchange resin. Concerning the configuration to be removed.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ホウ素は石炭焚ボイラーの排脱廃水、ゴミ焼却炉洗煙廃
水中に含まれホウ酸イオン(B(h”−)、またはフッ
素と錯体を形成してテトラフルオロホウ酸イオン(BF
+−)の形で存在する。このようなホウ素は植物にとっ
ては必須元素ではあるが、その必要量は極くわずかであ
り、過剰摂取はその生育に悪影響を及ぼすため、排水中
のホウ素s皮は1 ay/ 1 以下、21111/I
I以下等と条例によって厳しく規制されている。
Boron is contained in wastewater from coal-fired boilers and smoke washing wastewater from garbage incinerators, and forms complexes with borate ions (B(h”-)) or fluorine, resulting in tetrafluoroborate ions (BF
It exists in the form of +-). Such boron is an essential element for plants, but the amount required is extremely small, and excessive intake has a negative effect on their growth. I
It is strictly regulated by ordinances such as I and below.

従来のホウ素を含む廃水の処理方法としては、イオン交
換樹脂により吸着させるものと、硫酸アルミニウムによ
り不溶性沈殿物として固液分離するものとがあるが、何
れも効果的な除去方法ではない。
Conventional methods for treating wastewater containing boron include adsorption using an ion exchange resin and solid-liquid separation as an insoluble precipitate using aluminum sulfate, but neither method is an effective removal method.

イオン交換樹脂でホウ素を吸着する場合は、被処理水、
中のホウ素の形態によりホウ素の吸着能力が異なること
が多い。例えばホウ酸イオンとテトラフルオロホウ酸イ
オンの両イオンが存在する被処理水の場合、ホウ酸イオ
ンを選択的に吸着するイオン交換樹脂を用いてテトラフ
ルオロホウ酸イオンを吸着させて処理水中のホウ素濃度
を1 F111/1以下にすることはむずかしい。同様
にテトラフルオロホウ酸イオンのようなフッ素鉗体を形
成しているイオンを選択的に吸着するイオン交換樹脂を
用いてホウ酸イオンを吸着させ、処理水中のホウ素8M
麿を1■/1以下にすることはむずかしい。
When adsorbing boron with ion exchange resin, treated water,
Boron adsorption capacity often differs depending on the form of boron inside. For example, in the case of water to be treated that contains both borate ions and tetrafluoroborate ions, an ion exchange resin that selectively adsorbs borate ions is used to adsorb the tetrafluoroborate ions to eliminate boron in the treated water. It is difficult to reduce the concentration to 1 F111/1 or less. Similarly, boric acid ions are adsorbed using an ion exchange resin that selectively adsorbs ions forming fluorine particles such as tetrafluoroboric acid ions, and boron 8M in the treated water is
It is difficult to reduce Maro to 1/1 or less.

このように、単一のイオン交換樹脂を用いてホウ酸イオ
ンやテトラフルオロホウ酸イオンの両イオンが存在する
液を処理して処理水のホウ素濃度を1η/l以下にする
μとはむずかしい。
As described above, it is difficult to reduce the boron concentration of the treated water to 1η/l or less by treating a liquid containing both borate ions and tetrafluoroborate ions using a single ion exchange resin.

また、一般にホウ素を吸着するIオン交換樹脂は吸着能
力が小さく、このため再生頻度が多く多量の再生剤を必
要とする欠点があった。
In addition, I-ion exchange resins that adsorb boron generally have a low adsorption capacity, and therefore have the drawback of requiring a large amount of regenerating agent, which requires frequent regeneration.

一方、硫酸アルミニウムにより不溶性沈殿物として固液
分離する方法は、多量の硫酸アルミニウムを添加し、か
つPHの中和のために硫酸アルミニウムと同量かあるい
はそれ以上の消石灰を必要とし、多量の汚泥が発生する
という欠点があった。
On the other hand, the method of solid-liquid separation as an insoluble precipitate using aluminum sulfate requires adding a large amount of aluminum sulfate and slaked lime in an amount equal to or more than the aluminum sulfate to neutralize the pH, resulting in a large amount of sludge. There was a drawback that this occurred.

特に、高濃度のホウ素を数10〜100.try/ 1
まで低減させ葛湯台と異なり、処理水のホウ素濃度を1
η/l以下にしようとする場合には、更に多口の硫酸ア
ルミニウムまたは消石灰を必要とし経済的な処理方法と
はいえない。
In particular, a high concentration of boron of several 10 to 100. try/ 1
Unlike Kuzuyudai, the boron concentration in the treated water was reduced to 1.
In order to reduce the amount to η/l or less, more aluminum sulfate or slaked lime is required, which is not an economical treatment method.

また、被処理水中のホウ素の形態によって、固液分離し
やすい場合と、固液分離しにくい場合とがある。ホウ素
の形態にかかわらず安定して処理水のホウ素濃度を1■
/j!以下にすることはむずかしい。
Furthermore, depending on the form of boron in the water to be treated, there are cases where solid-liquid separation is easy and cases where solid-liquid separation is difficult. Stable boron concentration in treated water of 1■ regardless of the form of boron
/j! It is difficult to do the following.

〔゛発明の目的〕[゛Object of the invention]

本発明は上述の問題に鑑み、被処理水をOH型塩基性ア
ニオン交換樹脂と、OH型弱塩基性アニオン交換樹脂と
に通水してテトラフルオロホウ酸イオンと、ホウ酸イオ
ンを可及的に除去するとともにイオン交換樹脂の再生に
際して苛性ソーダを通液した第1のイオン交換層の廃液
を予め硫酸を通液した第2のイオン交換層に通液するこ
とにより再生剤の使用量を少なくしようとするものであ
る。
In view of the above problems, the present invention aims to remove tetrafluoroborate ions and borate ions as much as possible by passing the water to be treated through an OH type basic anion exchange resin and an OH type weakly basic anion exchange resin. At the same time, when regenerating the ion exchange resin, the waste liquid from the first ion exchange layer through which caustic soda was passed is passed through the second ion exchange layer through which sulfuric acid has been passed in advance, thereby reducing the amount of regenerating agent used. That is.

〔発明の概要〕[Summary of the invention]

本発明は、テトラフルオロホウ酸イオン(BF4−)と
ホウ酸イオン(B(h’−)を含む被処理水のホウ素を
沈殿性化合物として分離し上澄水をOH型塩基性アニオ
ン交換樹脂を充填した第1のイオン交換層に通水して残
存するテトラフルオロホウ酸イオンを除去し流出水を続
いてOH型弱塩基性アニオン交換樹脂を充填した第2の
イオン交換層に通水して残存するホウ酸イオンを除去す
る工程と、前記第1のイオン交換層が吸着したテトラフ
ルオロホウ酸イオンを苛性ソーダの通液により1IIB
2させこの廃液を硫酸の通液により吸着したホウ酸イオ
ンを離脱した後の第2のイオン交換層に通液させ夫々前
記イオン交換樹脂を再生する工程とよりなり、ホウ素を
含む被処理水より大部分のホウ素を沈殿性化合物として
除去し、夫々2一種のイオン交換樹脂を用いて残存する
テトラフルオロホウ酸イオンとホウ酸イオンてを除去し
、これらのイオンを吸着した第1、第2のイオン交換層
を再生するとともに再生廃液を再利用するものである。
The present invention separates boron from the water to be treated containing tetrafluoroborate ion (BF4-) and borate ion (B(h'-) as a precipitating compound, and fills the supernatant water with an OH type basic anion exchange resin. Water was passed through the first ion exchange layer to remove remaining tetrafluoroborate ions, and the effluent was then passed through a second ion exchange layer filled with an OH type weakly basic anion exchange resin to remove any remaining tetrafluoroborate ions. a step of removing borate ions adsorbed by the first ion exchange layer; and a step of removing the tetrafluoroborate ions adsorbed by the first ion exchange layer by passing caustic soda into
2. This waste liquid is passed through a second ion exchange layer after removing the adsorbed boric acid ions by passing sulfuric acid through it to regenerate the ion exchange resin. Most of the boron was removed as a precipitable compound, and the remaining tetrafluoroborate ions and borate ions were removed using two types of ion exchange resins, and the first and second ions adsorbed these ions. This system regenerates the ion exchange layer and reuses the recycled waste liquid.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を添附図面について説明する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings.

排脱廃水、ゴミ焼゛却炉洗煙廃水等よりなる被処理水a
を酸性反応槽1に導入する。次にこの反応槽1に硫酸ア
ルミニウムbを注入し、酸性下で撹拌112で撹拌処理
を行なう。反応槽1の滞留時間は3時間以上にするのが
好ましく、また被処理水a中に多量のテトラフルオロホ
ウ酸イオンを含む場合は、反応槽1内に硫酸Cの注入に
よってPHを4以下にする。硫酸アルミニウムbの存在
下にPHを4以下に調整することにより、テトラブルオ
ロホウ酸イオン(BF4−)は次の反応式によってフッ
化物とホウ酸とに分解され次工程以下のテトラフルオロ
ホウ酸イオンの負荷を減少することができる。
Water to be treated (a) consisting of wastewater discharged, garbage incinerator smoke washing wastewater, etc.
is introduced into the acidic reaction tank 1. Next, aluminum sulfate b is injected into the reaction tank 1, and agitation treatment is performed at the stirring 112 under acidic conditions. The residence time in the reaction tank 1 is preferably 3 hours or more, and if the water to be treated a contains a large amount of tetrafluoroborate ions, the pH is lowered to 4 or less by injecting sulfuric acid C into the reaction tank 1. do. By adjusting the pH to 4 or less in the presence of aluminum sulfate b, tetrafluoroborate ion (BF4-) is decomposed into fluoride and boric acid according to the following reaction formula, and is converted into tetrafluoroborate in the next step. The ion load can be reduced.

2A1(SOJi +3118F4 + 91120→
4^j! F3+6112304 +3Hg BO3酸
性反応槽1から流出した流出水dはアルカリ性反応槽3
に導入されこの反応槽3に消石灰eが注入されアルカリ
性下で撹拌機4で撹拌される。
2A1(SOJi +3118F4 +91120→
4^j! F3+6112304 +3Hg The water d flowing out from the BO3 acidic reaction tank 1 is sent to the alkaline reaction tank 3.
Slaked lime e is injected into this reaction tank 3 and stirred by a stirrer 4 under alkaline conditions.

アルカリ性反応槽3内の滞留時間は0.5時間以上が好
ましい。さらにアルカリ性反応槽3内のPHは10以上
、望ましくは12以上にするのがよい。このアルカリ性
反応槽3内で生成される水酸化物の形態は明らかでない
が、不溶性で沈降性もよく、次工程の固液弁11111
5における固液分離を容易にする。
The residence time in the alkaline reaction tank 3 is preferably 0.5 hours or more. Further, the pH inside the alkaline reaction tank 3 is preferably 10 or higher, preferably 12 or higher. The form of the hydroxide produced in this alkaline reaction tank 3 is not clear, but it is insoluble and has good sedimentation properties.
Facilitates solid-liquid separation in step 5.

アルカリ性反応櫓流出水fは固液分離槽5に導入され上
澄水Qと凝集沈殿物りとに分離される。
The alkaline reaction tower outflow water f is introduced into a solid-liquid separation tank 5 and separated into supernatant water Q and coagulated precipitate.

以上の工程によって、被処理水aは、遊離のフッ素イオ
ンが除去される他、テトラフルオロホウ酸イオンの一部
を不溶性沈殿物としホウ酸イオンの一部も不溶性沈殿物
とし上澄液q中のホウ素濃虜は低下される。
Through the above steps, free fluorine ions are removed from the water to be treated (a), and some of the tetrafluoroborate ions are made into insoluble precipitates, and some of the borate ions are also made into insoluble precipitates in the supernatant liquid (q). Boron concentration is reduced.

得られた上澄水0はOH型アニオン交換樹脂を充填した
第1のイオン交換層6を有する1段イオン交換樹脂塔7
に導入される。1段イオン交換樹脂塔7で用いられるイ
オン交換樹脂は、0f−1型塩基性アニオン交換樹脂で
あり、弱塩基性または強塩基性の何れの形でも使用でき
るが、特にテトラフルオロホウ酸イオンを選択的に吸着
する樹脂であることが望ましい。
The obtained supernatant water 0 is transferred to a one-stage ion exchange resin column 7 having a first ion exchange layer 6 filled with an OH type anion exchange resin.
will be introduced in The ion exchange resin used in the first-stage ion exchange resin column 7 is a 0f-1 type basic anion exchange resin, and can be used in either a weakly basic or strongly basic form, but in particular, tetrafluoroborate ion is used. A resin that selectively adsorbs is desirable.

上澄水Qと第1のイオン交換層6との接触滞留時間は、
5分以上で、通常5V=6 (1/h ) t’通液す
るのが望ましい。
The contact residence time between the supernatant water Q and the first ion exchange layer 6 is
It is usually desirable to pass the liquid at 5V=6 (1/h) t' for 5 minutes or more.

1段イオン交換樹脂塔7から流出した流出水iはOH型
弱塩基性アニオン交換樹脂よりなる第2のイオン交換層
8を有する2段イオン交換樹脂塔9に導入される。2段
イオン交換樹脂塔9で用いられるイオン交換樹脂は、O
H型弱塩基性アニオン交換樹脂のうち、特にホウ酸イオ
ンを選択的に吸着する樹脂が望ましい。1段イオン交換
樹脂塔7からの流出水:と第2のイオン交換層8との接
触滞留時間は5分以上で、通常5V=6(1/h)で通
液するのが望ましい。
Effluent water i from the first-stage ion-exchange resin column 7 is introduced into a two-stage ion-exchange resin column 9 having a second ion-exchange layer 8 made of an OH type weakly basic anion-exchange resin. The ion exchange resin used in the two-stage ion exchange resin column 9 is O
Among H-type weakly basic anion exchange resins, resins that selectively adsorb borate ions are particularly desirable. The contact residence time between the outflow water from the first stage ion exchange resin column 7 and the second ion exchange layer 8 is 5 minutes or more, and it is usually desirable to pass the water at 5V=6 (1/h).

以上の1段、2段のイオン交換処理によって上澄水qに
含まれるテトラフルオロホウ酸イオン(BF4−)およ
びホウ酸イオン(B(h”−)は夫々のイオン交換層6
.8に吸着され、ホウ素濃度としてly/j!以下の清
澄な処理水jが得られる。
Tetrafluoroborate ions (BF4−) and borate ions (B(h”−)) contained in supernatant water q are transferred to the respective ion exchange layers 6 through the above-described one-stage and two-stage ion exchange treatments.
.. 8, and the boron concentration is ly/j! The following clear treated water j is obtained.

尚、上澄水Qの通水の順序は第1のイオン交換層6、第
2のイオン交換層8の順に通水する必要がある。何故な
らば、第1のイオン交換層6に充填されたイオン交換樹
脂はテトラフルオロホウ酸イオンを選択的に吸着し、ホ
ウ酸イオンは殆ど吸着しない。また第2のイオン交換層
8のイオン交換樹脂は、ホウ酸イオンを吸着するがテト
ラフルオロホウ酸イオンも吸着する。このため第2のイ
オン交換局8に上澄水Qを通液するとホウ酸イオンとテ
トラフルオロホウ酸イオンが同時に吸着され吸着能を急
速に低下するからである。また第1、第2のイオン交換
層6.8の順に通水すれば第1のイオン交換層6で吸着
されなかった微量のテトラフルオロホウ酸イオンを第2
のイオン交換層8で吸着させることができる。
Note that the supernatant water Q needs to be passed through the first ion exchange layer 6 and the second ion exchange layer 8 in this order. This is because the ion exchange resin filled in the first ion exchange layer 6 selectively adsorbs tetrafluoroborate ions and hardly adsorbs borate ions. Further, the ion exchange resin of the second ion exchange layer 8 adsorbs borate ions, but also tetrafluoroborate ions. For this reason, when the supernatant water Q is passed through the second ion exchange station 8, borate ions and tetrafluoroborate ions are simultaneously adsorbed, rapidly reducing the adsorption capacity. In addition, if water is passed through the first and second ion exchange layers 6.8 in this order, trace amounts of tetrafluoroborate ions not adsorbed by the first ion exchange layer 6 will be removed from the second ion exchange layer 6.8.
can be adsorbed by the ion exchange layer 8.

イオン交換によってテトラフルオロホウ酸イオンまたは
ホウ酸イオンを交換吸着した夫々のイオン交換樹脂は、
吸着濃度が低下次第その再生を行なう。
Each ion exchange resin that exchanges and adsorbs tetrafluoroborate ions or borate ions through ion exchange,
As soon as the adsorption concentration decreases, it is regenerated.

テトラフルオロホウ酸イオンを吸着した第1のイオン交
換層6には苛性ソーダ水溶液kを、ホウ酸イオンを吸着
した第2のイオン交換層8には硫酸水溶液1を通液し、
夫々再生廃液m、nを得る。
A caustic soda aqueous solution K is passed through the first ion exchange layer 6 that has adsorbed tetrafluoroborate ions, and a sulfuric acid aqueous solution 1 is passed through the second ion exchange layer 8 that has adsorbed borate ions.
Regenerated waste liquids m and n are obtained, respectively.

次に、第2のイオン交換層8を804型からOH型に戻
すために、1段イオン交換樹脂塔7の再生廃液mを第2
のイオン交換層8に通液する。
Next, in order to return the second ion exchange layer 8 from the 804 type to the OH type, the regenerated waste liquid m from the first stage ion exchange resin tower 7 is transferred to the second ion exchange layer 8.
The liquid is passed through the ion exchange layer 8 of.

テトラフルオロホウ酸イオンを交換吸着した第1のイオ
ン交換層6の樹脂は、苛性ソーダで再生を行うだけでも
再生効率を低下させるこはないが、ホウ酸イオンを交換
吸着した第2のイオン交換層8の樹脂は、苛性ソーダで
再生を行うだけでは単に樹脂をOH型に整えるだけで再
生効率が悪い。
The resin of the first ion exchange layer 6 that has exchanged and adsorbed tetrafluoroborate ions will not reduce the regeneration efficiency even if it is simply regenerated with caustic soda, but the resin of the second ion exchange layer 6 that has exchanged and adsorbed borate ions will not reduce the regeneration efficiency. Regeneration of the resin No. 8 with caustic soda simply changes the resin to an OH type, which results in poor regeneration efficiency.

このため第2のイオン交換層8は苛性ソーダよりも再生
効率の高い硫酸を用いて再生を行う。しかしながら硫酸
再生のみでは、被処理水の通水再開時に処理水中へホウ
素がリークするため、第2のイオン交換層8をSO+型
からOH型に戻す必要がある。そこで第2のイオン交換
層8の再生工程では硫酸再生を行ったのち、苛性ソーダ
を多量に含む1段イオン交換樹脂塔7からの再生廃液m
を第2のイオン交換層8に通液し、このイオン交換層8
の樹脂をSO4型からOH型に戻し再々生廃液pを得る
。この際、1段イオン交換樹脂塔7の再生廃液mに含ま
れるテトラフルオロホウ酸イオン(第1のイオン交換層
6の再生の際脱着されたテトラフルオロホウ酸イオンが
多量に存在する。)は、第2のイオン交換層8に交換吸
着されることはない。
Therefore, the second ion exchange layer 8 is regenerated using sulfuric acid, which has higher regeneration efficiency than caustic soda. However, if only sulfuric acid regeneration is performed, boron will leak into the treated water when the flow of the water to be treated is resumed, so it is necessary to return the second ion exchange layer 8 from the SO+ type to the OH type. Therefore, in the regeneration step of the second ion exchange layer 8, after performing sulfuric acid regeneration, the regenerated waste liquid m from the first stage ion exchange resin tower 7 containing a large amount of caustic soda is
is passed through the second ion exchange layer 8, and this ion exchange layer 8
The resin is returned from the SO4 type to the OH type to obtain recycled waste liquid p. At this time, the tetrafluoroborate ions contained in the recycled waste liquid m of the first-stage ion exchange resin tower 7 (a large amount of tetrafluoroborate ions desorbed during the regeneration of the first ion exchange layer 6 are present). , are not exchanged and adsorbed by the second ion exchange layer 8.

再生工程において最終的に生ずる廃液は、硫酸イオンと
ホウ酸イオンを高濃度に含む2段イオン交!!ll樹脂
塔9の再生廃液nと、苛性ソーダとテトラフルオロホウ
酸イオンを高濃度に含む再々生廃液pとである。これら
の両虎液n、pは混合して酸性反応槽1に戻すか、混合
せずに夫々を酸性反応槽1またはアルカリ性反応槽3に
戻す。その何れかは、被処理水aの性状あるいは装置の
運転状況に応じて決定する。
The waste liquid finally generated in the regeneration process is a two-stage ion exchanger containing high concentrations of sulfate ions and borate ions! ! These are a regenerated waste liquid n from the resin tower 9, and a regenerated waste liquid p containing a high concentration of caustic soda and tetrafluoroborate ions. These liquids n and p are either mixed and returned to the acidic reaction tank 1, or returned to the acidic reaction tank 1 or the alkaline reaction tank 3, respectively, without being mixed. Either one is determined depending on the properties of the water to be treated a or the operating conditions of the apparatus.

被処理水aのテトラフルオロホウ酸イオン濃度が高く、
あるいは、第1のイオン交換層6のテトラフルオロホウ
酸イオン交換吸着能が小さい場合には、再々生廃液pを
酸性反応槽1に戻し、この再々生廃液pに含まれるテト
ラフルオロホウ酸イオンをフッ化物とホウ酸イ・オンに
分解するとよい。
The concentration of tetrafluoroborate ions in treated water a is high,
Alternatively, if the tetrafluoroborate ion exchange adsorption capacity of the first ion exchange layer 6 is small, the recycled waste liquid p is returned to the acidic reaction tank 1, and the tetrafluoroborate ions contained in the recycled waste liquid p are removed. It is best to decompose it into fluoride and borate ion.

その結果テトラフルオロホウ酸イオン濃度が減少し、第
1イオン交換層6の樹脂の負荷が減少される。この場合
は、2段イオン交換樹脂塔9からの再生廃液nはアルカ
リ性反応槽3へ戻す。
As a result, the tetrafluoroborate ion concentration decreases, and the resin load on the first ion exchange layer 6 is reduced. In this case, the regenerated waste liquid n from the two-stage ion exchange resin tower 9 is returned to the alkaline reaction tank 3.

また、被処理水aのテトラフルオロホウ酸イオン濃度お
よびホウ酸イオン濃度が低い場合で、かつ、前処理にお
ける薬剤量を軽減する必要があるときは、硫酸イオンを
多量に含む2段イオン交換樹脂塔9の再生廃液nを、酸
性反応槽1に戻し、苛性ソーダを多聞に含む再々生廃液
pをアルカリ性反応槽3に戻すことができる。この場合
は、酸性反応槽1またはアルカリ性反応4!13への硫
11cや消石灰eの添加量が軽減されることになる。
In addition, when the tetrafluoroborate ion concentration and borate ion concentration of water to be treated a are low, and when it is necessary to reduce the amount of chemicals in pretreatment, a two-stage ion exchange resin containing a large amount of sulfate ions can be used. The recycled waste liquid n from the tower 9 can be returned to the acidic reaction tank 1, and the recycled waste liquid p containing a large amount of caustic soda can be returned to the alkaline reaction tank 3. In this case, the amount of sulfur 11c and slaked lime e added to the acidic reaction tank 1 or the alkaline reaction 4!13 will be reduced.

最終的に生じた凝集沈殿物りは、アルミニウムを含む水
産化物およびこれら水産化物に吸着されたホウ素化合物
等からなる汚泥で、固液弁11槽5の下端から引出され
、必要に応じて脱水処理や同化処理が施される。
The final coagulated sediment is sludge consisting of aluminum-containing aquatic products and boron compounds adsorbed to these aquatic products, and is drawn out from the lower end of the solid-liquid valve 11 tank 5 and subjected to dewatering treatment as necessary. and assimilation treatment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、テトラフルオロホウ酸イオンとホウ酸
イオンを含む被処理水のホウ素を沈殿性化合物として分
離し上澄水をOH型塩基性アニオン交換樹脂を充填した
第1のイオン交換層に通水して残存するテトラフルオロ
ホウ酸イオンを吸着させ、続いてOH型弱塩基性アニオ
ン交換樹脂を充填した第2のイオン交換層に通水して残
存するホウ酸イオンを吸着させるため、被処理水中の大
部分のホウ素は沈殿性化合物として予め分離され、第1
、第2のイオン交換樹脂槽に通水される上澄水には小量
のテトラフルオロホウ酸イオンと小量のホウ酸イオンが
残存するのみであるから、夫々のイオン交換樹脂の負荷
を軽減し吸着性能を高めるとともに長期間吸着性能を保
持させることができる。また、第1、第2のイオン交換
層に通水しテトラフルオロホウ酸イオンとホウ酸イオン
を別個に夫々に適したイオン交換樹脂を用いて吸着除去
したから除去率が高く、処理水中のホウ素濃度を1sy
/J以下にすることができる。さらにテトラフルオロホ
ウ酸イオンを吸着した第1のイオン交換層に苛性ソーダ
を通液し、ホウ酸イオンを吸着した第2のイオン交換層
に硫酸を通液し次に苛性ソーダを通液した第1のイオン
交換層の廃液を第2のイオン交換層に通液するから、樹
脂に吸着したテトラフルオロホウ酸イオンまたはホウ酸
イオンが離脱してイオン交換性能を再生することができ
、また硫酸を通液した第2のイオン交換層には苛性ソー
ダを含む第1のイオン交換層の廃液を更に通液してOH
型にすることによりホウ酸イオンの吸着性能を付与させ
るとともに再生用薬剤を節約することができる。
According to the present invention, boron in the water to be treated containing tetrafluoroborate ions and borate ions is separated as a precipitable compound, and the supernatant water is passed through the first ion exchange layer filled with an OH type basic anion exchange resin. Water is used to adsorb the remaining tetrafluoroborate ions, and then the water is passed through a second ion exchange layer filled with an OH type weakly basic anion exchange resin to adsorb the remaining borate ions. Most of the boron in water is pre-separated as precipitable compounds and is
Since only a small amount of tetrafluoroborate ion and a small amount of borate ion remain in the supernatant water passed to the second ion exchange resin tank, the load on each ion exchange resin is reduced. It is possible to improve adsorption performance and maintain adsorption performance for a long period of time. In addition, since water is passed through the first and second ion exchange layers and tetrafluoroborate ions and borate ions are adsorbed and removed separately using ion exchange resins suitable for each, the removal rate is high, and boron in the treated water is removed. Concentration 1sy
/J or less. Furthermore, caustic soda was passed through the first ion exchange layer that adsorbed tetrafluoroborate ions, sulfuric acid was passed through the second ion exchange layer that adsorbed borate ions, and then caustic soda was passed through the first ion exchange layer. Since the waste liquid from the ion exchange layer is passed through the second ion exchange layer, the tetrafluoroborate ions or borate ions adsorbed on the resin can be released and the ion exchange performance can be regenerated. The waste liquid from the first ion exchange layer containing caustic soda is further passed through the second ion exchange layer to form an OH
By making it into a mold, it is possible to impart adsorption performance for borate ions and to save regeneration chemicals.

〔発明の実験例〕[Experimental example of invention]

前述の実施例の装置を用いて排ntx排水処理の実験を
行った。
EXAMPLE 2 An experiment was conducted on waste NTX wastewater treatment using the apparatus of the above-mentioned example.

排脱排水(PH7,1〜7.3、ホウ素濃度330〜3
60mg−B/j!、蒸発残留物1.2%)に硫酸アル
ミニウムを4g/J添加したのち、3時間撹拌を行い、
そのあと消石灰を6g/l加え30分撹拌ののち約1時
間放置して固液分離を行った。凝集沈殿上澄水のホウ素
濃度はホウ酸性ホウ素(BO3−8) 120■/A、
テトラフルオロホウ酸ホウ素(BF4−8) 5 m9
/ 1 ”’Cあった。
Drainage wastewater (PH7.1-7.3, boron concentration 330-3
60mg-B/j! , evaporation residue 1.2%) was added with 4 g/J of aluminum sulfate, and stirred for 3 hours.
Thereafter, 6 g/l of slaked lime was added, stirred for 30 minutes, and then left to stand for about 1 hour to perform solid-liquid separation. The boron concentration of the coagulation sedimentation supernatant water is boric acid boron (BO3-8) 120■/A,
Boron tetrafluoroborate (BF4-8) 5 m9
/ 1 ”'C was there.

この上澄水を1段イオン交換樹脂塔7に通水したところ
、流出水のテトラフルオロホウ酸性ホウ素濃度は200
B、Vで平均0.5m!I−B/1以下であった。なお
、この時のホウ酸性ホウ素8I麿は、108m9−BI
3であった。さらに、この1段イオン交換樹脂塔7の流
出水を2段イオン交換樹脂塔9に通水したところ、処理
水のホウ酸性ホウ素濃度は20B、Vで平均0.5In
!J−B/1以下であり、全ホウ素濃度は1 mg −
8/ 1以下となった。
When this supernatant water was passed through the first stage ion exchange resin column 7, the tetrafluoroboric acid boron concentration of the effluent was 200.
Average 0.5m for B and V! It was below I-B/1. In addition, the boric acid boron 8Imaro at this time is 108m9-BI
It was 3. Furthermore, when the effluent water from the first-stage ion-exchange resin tower 7 was passed through the second-stage ion-exchange resin tower 9, the boric acid boron concentration of the treated water was 20B, V and an average of 0.5In.
! J-B/1 or less, and the total boron concentration is 1 mg −
It became 8/1 or less.

次に処理水のホウ素濃度が1■−BI3を越えた時点で
、原水の供給をやめ再生を行った。
Next, when the boron concentration of the treated water exceeded 1 - BI3, the supply of raw water was stopped and regeneration was performed.

第1のイオン交換層6の再生は苛性ソーダを用い、再生
レベル65gNa叶/l−樹脂、5V2(1/h)で通
液した。その結果このイオン交換層6からテトラフルオ
ロホウ酸ホウ素(BF4−8)の濃度が300189/
Jlの液が得られ、はぼホウ素脱着率は100%であっ
た。
The first ion exchange layer 6 was regenerated using caustic soda at a regeneration level of 65 g Na/l resin and 5V2 (1/h). As a result, the concentration of boron tetrafluoroborate (BF4-8) from this ion exchange layer 6 was 300189/
A liquid of Jl was obtained, and the boron desorption rate was 100%.

また、2段イオン交換樹脂塔9の再生は硫酸を用い、再
生レベル48 gH!30+ / j!−樹脂、5V2
(1/h)で通液した。この結果、イオン交換層8から
ホウ酸性ホウ素(BO3−B)の濃度717mfl/1
の液が得られ、はぼホウ素1112着率100%であっ
た。
Furthermore, the two-stage ion exchange resin tower 9 is regenerated using sulfuric acid, and the regeneration level is 48 gH! 30+/j! -Resin, 5V2
(1/h). As a result, the concentration of boric acid boron (BO3-B) from the ion exchange layer 8 was 717 mfl/1.
A liquid with a boron 1112 deposition rate of 100% was obtained.

さらに、1段イオン交換樹脂塔7の再生廃液を全開5V
2(1/h)で第2イオン交換層8に通液した。その結
果、この第2イオン交換層8からテトラフルオロホウ酸
ホウ素(BF、−8)の濃度として300189/1の
液が得られた。この結果より、1段イオン交換樹脂塔7
の再生廃液に含まれるテトラフルオロホウ酸ホウ素は第
2イオン交換層8には吸着されないことが分った。
Furthermore, the regenerated waste liquid of the first stage ion exchange resin tower 7 is fully opened to 5V.
The liquid was passed through the second ion exchange layer 8 at a rate of 2 (1/h). As a result, a liquid with a boron tetrafluoroborate (BF, -8) concentration of 300189/1 was obtained from the second ion exchange layer 8. From this result, the first stage ion exchange resin column 7
It was found that boron tetrafluoroborate contained in the recycled waste liquid was not adsorbed by the second ion exchange layer 8.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の一実施例を示す処理方法の工程説明図であ
る。 6・・第1のイオン交換層、8・・第2のイオン交換層
The figure is a process explanatory diagram of a treatment method showing an embodiment of the present invention. 6. First ion exchange layer, 8. Second ion exchange layer.

Claims (2)

【特許請求の範囲】[Claims] (1) テトラフルオロホ「ン酸イオン(BF今一)と
ホウ酸イオン(BO3’−)を含む被処理水のホウ素を
沈殿性化合物として分離し上澄水をOH型塩基性アニオ
ン交換樹脂を充填した第1のイオン交換層に通水して残
存するテトラフルオロホウ酸イオンを除去し流出水を続
いてOH型弱塩基性アニオン交換樹脂を充填した第′2
のイオン交換層に通水して残存するホウ酸イオンを除去
する工程と、前記第1のイオン交換層が吸着したテトラ
フルオロホウ酸イオンを苛性ソーダの通液により離脱さ
せこの廃液を硫酸の通液により吸着したホウ酸イオンを
離脱した後の第2のイオン交換層に通液させ夫々前記イ
オン交換樹脂を再生する工程とより2゜。ヶ、ア。6□
つ素。あ廃水。処一方法。
(1) Boron in the water to be treated containing tetrafluorophonate ions (BF Imaichi) and borate ions (BO3'-) is separated as a precipitating compound, and the supernatant water is filled with an OH-type basic anion exchange resin. The remaining tetrafluoroborate ions were removed by passing water through the first ion exchange layer, and the effluent was then passed through the second ion exchange layer filled with an OH type weakly basic anion exchange resin.
A step of passing water through the ion exchange layer to remove remaining borate ions, and removing the tetrafluoroborate ions adsorbed by the first ion exchange layer by passing caustic soda through it, and passing this waste solution through sulfuric acid. and a step of regenerating the ion exchange resin by passing liquid through the second ion exchange layer after removing the boric acid ions adsorbed by the ion exchange layer. A, a. 6□
Tsu element. Ah, wastewater. Treatment method.
(2) 被処理水に硫酸アルミニウムを加えて撹拌し次
に消石灰を加えて撹拌しホウ素を含む沈殿性化合物を生
成することを特徴とする特許請求の範囲第1項に記載の
ホウ素含有廃水の処理方法。
(2) Boron-containing wastewater according to claim 1, characterized in that aluminum sulfate is added to the water to be treated and stirred, and then slaked lime is added and stirred to produce a precipitable compound containing boron. Processing method.
JP7370384A 1984-04-12 1984-04-12 Treatment of waste water containing boron Granted JPS60216882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7370384A JPS60216882A (en) 1984-04-12 1984-04-12 Treatment of waste water containing boron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7370384A JPS60216882A (en) 1984-04-12 1984-04-12 Treatment of waste water containing boron

Publications (2)

Publication Number Publication Date
JPS60216882A true JPS60216882A (en) 1985-10-30
JPH0368757B2 JPH0368757B2 (en) 1991-10-29

Family

ID=13525835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7370384A Granted JPS60216882A (en) 1984-04-12 1984-04-12 Treatment of waste water containing boron

Country Status (1)

Country Link
JP (1) JPS60216882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079069B1 (en) * 2004-08-10 2011-11-02 가부시키가이샤 신꼬오 간쿄우 솔루션 Method of treating wastewater and apparatus for treating wastewater
US20140138318A1 (en) * 2012-11-21 2014-05-22 OVIVO LUXEMBOURG S.a.r.I. Treatment of water, particularly for obtaining ultrapure water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101079069B1 (en) * 2004-08-10 2011-11-02 가부시키가이샤 신꼬오 간쿄우 솔루션 Method of treating wastewater and apparatus for treating wastewater
US20140138318A1 (en) * 2012-11-21 2014-05-22 OVIVO LUXEMBOURG S.a.r.I. Treatment of water, particularly for obtaining ultrapure water
US9776892B2 (en) * 2012-11-21 2017-10-03 Ovivo, Inc. Process for treating water with a counter-current ion exchange unit including silica and boron concentatration monitoring and regeneration thereof

Also Published As

Publication number Publication date
JPH0368757B2 (en) 1991-10-29

Similar Documents

Publication Publication Date Title
CN101234827B (en) Treatment and resource reclaiming method for chromium-containing wastewater containing high concentration sodium sulfate
CN110282783B (en) Ammonium phosphate chemical wastewater treatment system and method
JPS62191800A (en) Method of processing waste water containing uranium and fluorine
CN104129831A (en) Method for simultaneous removal and recovery of heavy metal ions and organic acid by using chelating resin
CN207567040U (en) A kind of processing up to standard of high ammonia nitrogen desulfurization wastewater and reclaiming system
CN103936189A (en) Processing method for recovery processing of high ammonia nitrogen wastewater
CN203715400U (en) Low-concentration lead-containing wastewater treatment equipment
CN113666561A (en) High-salt sulfur-containing fluorine-containing wastewater treatment process
JP4543481B2 (en) Method for treating water containing boron and fluorine
JPS5815193B2 (en) How to treat boron-containing water
CN114272961B (en) Ion exchange resin regeneration method for removing impurities from lithium sulfate solution
JP3942235B2 (en) Method for treating boron-containing water
JP3968678B2 (en) Method for treating tetraalkylammonium ion-containing liquid
JPS5924876B2 (en) How to treat boron-containing water
JPS60216882A (en) Treatment of waste water containing boron
JP4543478B2 (en) Method for treating boron-containing water
CN1259251C (en) Method for biochemical treatment of discharged water
JPS63236588A (en) Treatment of phosphor-containing waste water
RU2049073C1 (en) Process for ion-exchange purification of sewage and industrial solutions from copper and nickel ions
JPS6357799A (en) Treatment of plating solution
CN104418446A (en) Method and equipment for treating low-concentration lead-containing wastewater
JP4058801B2 (en) Method for treating water containing boron and phosphorus
CN116621402B (en) Near-zero emission recovery method and system for phosphorus-containing polishing waste acid
CN216584296U (en) System for getting rid of fluorinion in ferric phosphate waste water
CN218810940U (en) High hydrochloric acid solution recovery processing system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees