JPH0368584B2 - - Google Patents

Info

Publication number
JPH0368584B2
JPH0368584B2 JP24732286A JP24732286A JPH0368584B2 JP H0368584 B2 JPH0368584 B2 JP H0368584B2 JP 24732286 A JP24732286 A JP 24732286A JP 24732286 A JP24732286 A JP 24732286A JP H0368584 B2 JPH0368584 B2 JP H0368584B2
Authority
JP
Japan
Prior art keywords
processor
monitoring
information
failure
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24732286A
Other languages
Japanese (ja)
Other versions
JPS63102434A (en
Inventor
Kazuhiro Fujikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61247322A priority Critical patent/JPS63102434A/en
Publication of JPS63102434A publication Critical patent/JPS63102434A/en
Publication of JPH0368584B2 publication Critical patent/JPH0368584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Monitoring And Testing Of Exchanges (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Selective Calling Equipment (AREA)

Description

【発明の詳細な説明】 〔概要〕 通信回線を分散配置されたプロセツサを用いて
監視し、障害発生により影響を受ける通信回線の
監視を受け持つプロセツサへも障害発生に基づく
判定情報やその時刻情報等を転送し、分散処理に
よつて各プロセツサの処理量を低減し、且つプロ
セツサの障害によつても、他の健全なプロセツサ
によつてその監視領域について監視を継続できる
ようにしたものである。
[Detailed Description of the Invention] [Summary] Communication lines are monitored using distributed processors, and judgment information based on the occurrence of a failure, its time information, etc. is also sent to the processor responsible for monitoring the communication line affected by the occurrence of a failure. The processing load of each processor is reduced through distributed processing, and even if a processor fails, other healthy processors can continue monitoring the monitoring area.

〔産業上の利用分野〕[Industrial application field]

本発明は、複数のプロセツサによる監視領域を
一部重複するように設定して、通信回線の監視を
行う分散監視制御方式に関するものである。
The present invention relates to a distributed monitoring and control system for monitoring communication lines by setting monitoring areas by a plurality of processors to partially overlap.

無線通信回線等を含む通信回線の中継局等に於
ける各種の監視情報を監視局に転送し、障害発生
を迅速に且つ正確に検出して回復処理を行い、通
信回線の断時間を極力短くすることが要望されて
いる。
Transfers various monitoring information from communication line relay stations, etc., including wireless communication lines, etc. to the monitoring station, quickly and accurately detects the occurrence of a failure, and performs recovery processing to minimize communication line downtime. It is requested to do so.

〔従来の技術〕[Conventional technology]

従来の通信回線の監視方式としては、集中監視
方式と分散監視方式とが採用されており、集中監
視方式は、例えば、第5図に示すように、1台の
プロセツサ(CPU)11により通信回線12を
総て監視するものであり、プロセツサ11は、通
信回線12の中継局、端局等の監視点13−1〜
13−5から各種の監視情報を収集し、その監視
情報に基づいて障害発生か否かの判定を行い、障
害発生の判定が行われた時は、保守者を派遣して
回復できるように、障害発生個所の表示や警報出
力等を行うものである。
Conventional methods for monitoring communication lines include a centralized monitoring method and a distributed monitoring method. For example, in the centralized monitoring method, as shown in FIG. 12, and the processor 11 monitors all monitoring points 13-1 to 13-1 such as relay stations and terminal stations of the communication line 12.
We collect various monitoring information from 13-5, determine whether a failure has occurred based on the monitoring information, and when it is determined that a failure has occurred, we dispatch maintenance personnel to recover. It displays the location of the failure and outputs an alarm.

又分散監視方式は、第6図に示すように、複数
の監視領域22,23,24,25に分割し、各
監視領域にプロセツサ(CPU)21−1〜21
−4を配置し、各プロセツサ21−1〜21−4
は自己の監視領域内の通信回線(図示を省略)の
監視点からの監視情報を収集して、障害発生か否
かの判定を行い、障害発生の場合は、集中監視方
式の場合と同様に処理するものである。
In addition, the distributed monitoring method is divided into multiple monitoring areas 22, 23, 24, and 25, as shown in FIG.
-4, and each processor 21-1 to 21-4
collects monitoring information from monitoring points on communication lines (not shown) within its own monitoring area, and determines whether a failure has occurred.If a failure occurs, the system collects monitoring information from monitoring points on communication lines (not shown) within its own monitoring area. It is something to be processed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前述の従来の集中監視方式は、1台のプロセツ
サ11により通信回線の全範囲を監視するもので
あるから、処理すべき情報量が非常に多くなり、
大型のプロセツサ11を必要とするので、経済的
な問題が生じる欠点があつた。又この点を解決す
る為に、収集すべき監視情報数を制限すると、監
視の信頼性が低くなる欠点が生じる。又このプロ
セツサに障害が発生すると、通信回線の全範囲に
わたり監視ができない状態となり、この点からも
信頼性の高い監視を行うことができない欠点があ
つた。
In the conventional centralized monitoring method described above, the entire range of the communication line is monitored by one processor 11, so the amount of information to be processed is extremely large.
Since it requires a large processor 11, it has the drawback of causing economical problems. Furthermore, if the number of monitoring information to be collected is limited in order to solve this problem, the reliability of monitoring becomes low. Furthermore, if a failure occurs in this processor, it becomes impossible to monitor the entire range of the communication line, and from this point of view as well, there is a drawback that highly reliable monitoring cannot be performed.

又前述の従来の分散監視方式は、集中監視方式
に於ける監視領域を分割して、それぞれプロセツ
サを配置したもので、各プロセツサが処理すべき
情報量は監視領域の分割数に反比例して少なくな
り、プロセツサの小型化を図ることができる。
Furthermore, in the conventional distributed monitoring method described above, the monitoring area in the centralized monitoring method is divided and processors are placed in each area, and the amount of information that each processor has to process is reduced in inverse proportion to the number of divisions of the monitoring area. Therefore, the processor can be made smaller.

しかし、通信回線は各監視領域にわたつて設け
られているものであり、例えば、監視領域22に
於ける通信回線の監視点からの収集監視情報を用
いて、プロセツサ21−1が障害発生と判定した
時に、他の監視領域、例えば、24に於ける通信
回線も影響を受ける場合であつても、その監視領
域24を受け持つプロセツサ21−3は、障害発
生を検出することができないことになる。
However, the communication line is provided across each monitoring area, and for example, the processor 21-1 determines that a failure has occurred using the monitoring information collected from the communication line monitoring point in the monitoring area 22. When this occurs, even if communication lines in other monitoring areas, for example 24, are also affected, the processor 21-3 in charge of that monitoring area 24 will not be able to detect the occurrence of the failure.

そこで、プロセツサ21−1〜21−4間で相
互に収集した監視情報を転送することが考えられ
るが、プロセツサ数が多くなると、相互接続を行
う為の回線が複雑となり、且つ各プロセツサ21
−1〜21−4に於ける処理量が増加する欠点が
生じる。又監視情報の転送遅れ等によつて他の監
視領域のプロセツサの判定誤りが発生する可能性
がある。又集中監視方式の場合と類似して、プロ
セツサに障害が発生すると、そのプロセツサが受
け持つ領域の通信回線を監視できない欠点があつ
た。
Therefore, it is conceivable to mutually transfer the collected monitoring information between the processors 21-1 to 21-4, but as the number of processors increases, the lines for interconnection become complicated, and each processor 21
-1 to 21-4 have the disadvantage that the amount of processing increases. Further, due to a delay in the transfer of monitoring information, there is a possibility that a processor in another monitoring area makes a judgment error. Also, similar to the case of the centralized monitoring system, when a failure occurs in a processor, there is a drawback that communication lines in the area that the processor is in charge of cannot be monitored.

本発明は、複数のプロセツサにより分散監視を
行うと共に、他の監視領域に対しても監視を可能
とし、正確で且つ迅速な監視を行わせることを目
的とするものである。
An object of the present invention is to perform distributed monitoring using a plurality of processors, to enable monitoring of other monitoring areas, and to perform accurate and quick monitoring.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の分散監視制御方式は、第1図を参照し
て説明すると、分散配置された複数のプロセツサ
(CPU)1−1〜1−mにより通信回線2を監視
するもので、各プロセツサ1−1〜1−mによる
監視領域の一部が重複するように設定され、親局
となるプロセツサ(例えば、1−1)を介して子
局となる任意のプロセツサとの間で障害情報を転
送する回線4−1,4−2を備え、通信回線2の
監視点3−1〜3−7からの監視情報に基づいて
障害発生と判定したプロセツサは、その障害発生
の判定結果情報、時刻情報、影響回線情報、障害
個所情報等からなる障害情報を、その障害発生に
より影響を受ける通信回線2の監視領域を有する
プロセツサに、親局となるプロセツサ1−1を介
して転送するものである。
The distributed monitoring and control system of the present invention will be explained with reference to FIG. A part of the monitoring areas of the processors 1 to 1-m are set to overlap, and fault information is transferred between a processor that is a master station (for example, 1-1) and any processor that is a slave station. A processor equipped with lines 4-1 and 4-2 and determining that a failure has occurred based on the monitoring information from monitoring points 3-1 to 3-7 of the communication line 2 uses judgment result information of the failure occurrence, time information, Fault information consisting of affected line information, fault location information, etc. is transferred to the processor having the monitoring area of the communication line 2 affected by the occurrence of the fault via the processor 1-1 serving as a master station.

〔作用〕[Effect]

プロセツサ1−1の監視領域を二点鎖線、プロ
セツサ1−2の監視領域を一点鎖線、プロセツサ
1−mの監視領域を点線として示すように、それ
ぞれ一部が重複する監視領域に設定されている。
従つて、或る1台のプロセツサに障害が発生して
も、一部重複する監視領域を持つプロセツサによ
つて監視を継続することが可能となる。
The monitoring areas are set to partially overlap each other, with the monitoring area of processor 1-1 shown as a two-dot chain line, the monitoring area of processor 1-2 as a one-dot chain line, and the monitoring area of processor 1-m shown as a dotted line. .
Therefore, even if a failure occurs in one processor, monitoring can be continued by processors having partially overlapping monitoring areas.

又各プロセツサは、通信回線2の監視点3−1
〜3−7からの監視情報を基に障害発生か否かを
判定し、障害発生と判定した時、その時刻、その
障害によつて影響を受ける回線、障害発生個所等
の情報を得ることができるから、その障害により
影響を受ける通信回線2の監視領域のプロセツサ
に、判定結果情報、時刻情報、影響回線情報、障
害個所情報等からなる障害情報を、親局となるプ
ロセツサ1−1を介して転送する。
Each processor also has a monitoring point 3-1 on the communication line 2.
It is possible to determine whether a failure has occurred based on the monitoring information from ~3-7, and when it is determined that a failure has occurred, to obtain information such as the time, the line affected by the failure, and the location where the failure occurred. Therefore, the fault information consisting of judgment result information, time information, affected line information, fault location information, etc. is sent to the processor in the monitoring area of the communication line 2 affected by the fault via the processor 1-1, which is the master station. and transfer it.

従つて、障害情報を受信したプロセツサは、時
刻情報を参照して自監視領域に於ける通信回線の
監視点からの監視情報を判定する時に、障害発生
の時刻以前か以後かに対応して、正いし判定を行
うことが可能となる。又親局を介して転送するこ
とにより、プロセツサ間の回線を単純化すること
ができる。
Therefore, when the processor that has received the failure information refers to the time information and determines the monitoring information from the monitoring point of the communication line in its own monitoring area, it determines whether it is before or after the time when the failure occurred. It is possible to determine if it is correct. Furthermore, by transferring data via a master station, the lines between processors can be simplified.

〔実施例〕〔Example〕

以下図面を参照して本発明の実施例について詳
細に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施例の説明図であり、プロ
セツサ(CPU)1−1〜1−mにより無線通信
回線、搬送通信回線等の通信回線2を監視するも
のであり、プロセツサ1−1の監視領域を二点鎖
線、プロセツサ1−2の監視領域を一点鎖線、プ
ロセツサ1−mの監視領域を点線で示すように、
一部重複させてそれぞれ設定されている。
FIG. 1 is an explanatory diagram of an embodiment of the present invention, in which processors (CPUs) 1-1 to 1-m monitor communication lines 2 such as wireless communication lines and carrier communication lines. The monitoring area of processor 1-2 is shown by a dashed-dotted line, the monitoring area of processor 1-2 is shown by a dashed-dotted line, and the monitoring area of processor 1-m is shown by a dotted line.
Each setting is partially duplicated.

通信回線2は、1回線の場合を例示している
が、複数回線或いは分岐回線等を含むものであ
り、監視領域対応にプロセツサ1−1〜1−mに
よつて監視される。そして、通信回線2の中継
局、端局等を監視点3−1〜3−7とし、各監視
点3−1〜3−7から中継装置の温度、消費電
力、出力電力等の状態情報、伝送情報の誤り率情
報等の監視情報がプロセツサ1−1〜1−mにそ
れぞれ通信回線とは別個の回線によつて、実線矢
印及び点線矢印で示すように転送される。
Although the communication line 2 is illustrated as having one line, it may include multiple lines or branch lines, and is monitored by processors 1-1 to 1-m corresponding to monitoring areas. Then, relay stations, terminal stations, etc. of the communication line 2 are set as monitoring points 3-1 to 3-7, and status information such as temperature, power consumption, output power, etc. of the relay device is obtained from each monitoring point 3-1 to 3-7. Monitoring information such as error rate information of transmission information is transferred to the processors 1-1 to 1-m through lines separate from the communication line, as shown by solid line arrows and dotted line arrows.

又プロセツサ1−1〜1−mは、親局となるプ
ロセツサ1−1と、各子局となるプロセツサ1−
2〜1−mとの間に、障害情報を転送する回線4
−1,4−2が設けられている。又各プロセツサ
1−1〜1−mは、障害発生個所とその影響を受
ける通信回線との関係をテーブル等により保持し
ているものであり、又親局となるプロセツサ1−
1は、障害情報の転送先を選定する機能を備えて
いる。
The processors 1-1 to 1-m are divided into a master station processor 1-1 and a slave station processor 1-1.
Line 4 that transfers fault information between 2 and 1-m.
-1 and 4-2 are provided. Each of the processors 1-1 to 1-m maintains the relationship between the failure location and the communication line affected by the failure using a table or the like.
1 has a function of selecting a destination to which fault information is to be transferred.

プロセツサ1−2は、監視点3−1,3−2か
らの監視情報を収集して障害は否かを判定するも
ので、この監視点3−1,3−2については、プ
ロセツサ1−mの監視領域にも入るので、点線矢
印で示すように、プロセツサ1−mに於いてもそ
の監視情報を収集している。例えば、プロセツサ
1−2に於いて、監視点3−2からの監視情報に
基づいて障害発生を判定した時、その障害によつ
て影響を受ける通信回線が判り、その影響を受け
る通信回線の監視領域の例えばプロセツサ1−m
に障害情報を転送するものである。その場合、そ
の判定結果情報、時刻情報、影響回線情報、障害
発生個所情報等からなる障害情報に、宛先と送信
元とを付加して回線4−1に送出する。
The processor 1-2 collects monitoring information from the monitoring points 3-1 and 3-2 and determines whether there is a failure. Since the processor 1-m also enters the monitoring area of the processor 1-m, the processor 1-m also collects the monitoring information, as shown by the dotted arrow. For example, when the processor 1-2 determines that a failure has occurred based on the monitoring information from the monitoring point 3-2, it can determine which communication lines are affected by the failure and monitor the affected communication lines. For example, processor 1-m in the area
This is to transfer fault information to. In this case, the destination and source are added to the fault information including the determination result information, time information, affected line information, fault location information, etc., and the resultant information is sent to the line 4-1.

親局となるプロセツサ1−1は、宛先を識別し
てその障害情報を回線4−2に送出する。従つ
て、プロセツサ1−2からプロセツサ1−mへ障
害情報を転送することができる。この障害情報を
受信したプロセツサ1−mは、監視点3−3,3
−4等からの監視情報中に異常が見られる場合が
あつても、障害情報中の時刻情報及び障害個所情
報を参照して、障害が監視点3−2に於いて発生
したことを識別することができる。
Processor 1-1, which is the master station, identifies the destination and sends the fault information to line 4-2. Therefore, failure information can be transferred from processor 1-2 to processor 1-m. The processor 1-m that received this failure information checks the monitoring points 3-3, 3
- Even if an abnormality is found in the monitoring information from monitoring point 3-2, etc., it is possible to identify that the fault has occurred at monitoring point 3-2 by referring to the time information and fault location information in the fault information. be able to.

第2図はプロセツサ間の接続説明図であり、プ
ロセツサ1−1〜1−5が分散配置され、それぞ
れのプロセツサ1−1〜1−5により通信回線
(図示せず)を監視し、それぞれの監視領域が一
部重複するように設定されている。そして、親局
となるプロセツサ1−1と、子局となるプロセツ
サ1−2〜1−5との間に回線a〜dが設けられ
ている。又親局となるプロセツサ1−1には、回
線選択テーブル5が設けられている。
FIG. 2 is an explanatory diagram of connections between processors. Processors 1-1 to 1-5 are arranged in a distributed manner, and each processor 1-1 to 1-5 monitors a communication line (not shown). The monitoring areas are set to partially overlap. Lines a to d are provided between processor 1-1, which is a master station, and processors 1-2 to 1-5, which are slave stations. Further, a line selection table 5 is provided in the processor 1-1, which is the master station.

第3図は、プロセツサ1−1に設けた回線選択
テーブルの説明図であり、送信元と宛先とにより
選択する回線a〜dが格納されている。例えば、
プロセツサ1−2を送信元、宛先をプロセツサ1
−4とすると、回線cが選択される。
FIG. 3 is an explanatory diagram of a line selection table provided in the processor 1-1, in which lines a to d to be selected depending on the source and destination are stored. for example,
Processor 1-2 is the source and destination is processor 1.
-4, line c is selected.

第4図は障害情報の説明図であり、Fはフレー
ムパターンであり、宛先、送信元、判定結果、時
刻、影響回線、障害個所の各情報を含むものであ
る。このような障害情報が前述の例のように、プ
ロセツサ1−2からプロセツサ1−4に向けて送
出されると、親局となるプロセツサ1−1は、宛
先と送信元とを抽出して回線選択テーブル5を参
照し、送信元がプロセツサ1−2で宛先がプロセ
ツサ1−4であるから、回線aを介して受信した
障害情報を回線cへ送出することになる。従つ
て、プロセツサ1−4はプロセツサ1−2からの
障害情報を受信することができる。
FIG. 4 is an explanatory diagram of failure information, where F is a frame pattern that includes information on destination, source, determination result, time, affected line, and failure location. When such fault information is sent from processor 1-2 to processor 1-4 as in the example above, processor 1-1, which is the master station, extracts the destination and source and connects the line. Referring to selection table 5, since the source is processor 1-2 and the destination is processor 1-4, the fault information received via line a is sent to line c. Therefore, processor 1-4 can receive failure information from processor 1-2.

又親局となるプロセツサ1−1から各プロセツ
サ1−2〜1−5へ障害情報を送出する場合も、
この回線選択テーブル5を参照することにより、
その障害情報を送出する回線a〜dを容易に選択
することができる。
Also, when sending fault information from processor 1-1, which is the master station, to each processor 1-2 to 1-5,
By referring to this line selection table 5,
Lines a to d for transmitting the fault information can be easily selected.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は、分散配置され
たプロセツサ1−1〜1−mにより通信回線2を
分散監視するものであり、その監視領域は、それ
ぞれ一部重複するように設定されている。従つ
て、或るプロセツサに障害が発生しても、他のプ
ロセツサによつてその監視領域内の通信回線を監
視することができ利点がある。
As explained above, in the present invention, the communication line 2 is monitored in a distributed manner by the distributed processors 1-1 to 1-m, and the monitoring areas are set to partially overlap with each other. . Therefore, even if a failure occurs in a certain processor, the communication line within its monitoring area can be monitored by other processors, which is advantageous.

又障害発生と判定した時に、その判定結果と共
に時刻情報を含む障害情報を、その障害発生によ
り影響を受ける通信回線の監視領域のプロセツサ
に転送するものであるから、何時の時点の障害判
定であるかを識別することができ、それによつて
自プロセツサに於ける監視情報の収集遅れが大き
い場合でも、迅速に障害発生を識別し、且つ障害
個所及び影響回線について通知されるから、2プ
ロセツサにより同一障害発生個所を監視しても迅
速に且つ正しい判定を行うことができる。
Furthermore, when it is determined that a failure has occurred, the failure information including time information is transferred along with the determination result to the processor in the monitoring area of the communication line affected by the failure, so it is important to know at what time the failure was determined. As a result, even if there is a large delay in collection of monitoring information in the own processor, the occurrence of a fault can be quickly identified, and the fault location and affected line will be notified. Even if the location where the failure occurs is monitored, a quick and correct determination can be made.

又親局となるプロセツサを介して障害情報を転
送するものであるから、プロセツサ間の回線を比
較的簡単化できる利点があり、且つプロセツサ間
で提携をとつて相互監視を行うものであるから、
通信回線の監視の信頼性を大幅に向上することが
できる利点がある。
In addition, since fault information is transferred via the processor serving as the master station, there is an advantage that the line between the processors can be relatively simplified, and since the processors cooperate to perform mutual monitoring,
This has the advantage that the reliability of monitoring communication lines can be greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の説明図、第2図はプ
ロセツサ間の接続説明図、第3図は回線選択テー
ブルの説明図、第4図は障害情報の説明図、第5
図は従来例の集中監視方式の説明図、第6図は従
来例の分散監視方式の説明図である。 1−1〜1−mはプロセツサ(CPU)、2は通
信回線、3−1〜3−7は監視点、4−1,4−
2は回線、5は回線選択テーブルである。
Fig. 1 is an explanatory diagram of an embodiment of the present invention, Fig. 2 is an explanatory diagram of connections between processors, Fig. 3 is an explanatory diagram of a line selection table, Fig. 4 is an explanatory diagram of fault information, and Fig. 5 is an explanatory diagram of the connection between processors.
FIG. 6 is an explanatory diagram of a conventional centralized monitoring system, and FIG. 6 is an explanatory diagram of a conventional distributed monitoring system. 1-1 to 1-m are processors (CPUs), 2 is a communication line, 3-1 to 3-7 are monitoring points, 4-1, 4-
2 is a line, and 5 is a line selection table.

Claims (1)

【特許請求の範囲】 1 それぞれ分散配置された複数のプロセツサ
(1−1〜1−m)による通信回線2の各監視領
域の一部が重複するように設定され、親局となる
プロセツサを介して任意の子局となるプロセツサ
との間で障害情報を転送する回線を備え、 前記監視領域内の前記通信回線2の障害発生を
判定したプロセツサは、該障害発生の判定結果情
報、時刻情報、影響回線情報、障害個所情報等を
含む障害情報を、該障害発生により影響を受ける
通信回線2の監視領域を有するプロセツサに、前
記親局となるプロセツサを介して転送する ことを特徴とする分散監視制御方式。
[Scope of Claims] 1. Monitoring areas of the communication line 2 by a plurality of distributed processors (1-1 to 1-m) are set to partially overlap, and The processor is equipped with a line for transferring fault information between the communication line 2 and a processor that is an arbitrary slave station, and the processor that has determined that a fault has occurred in the communication line 2 within the monitoring area receives judgment result information of the fault occurrence, time information, Distributed monitoring characterized in that failure information including affected line information, failure location information, etc. is transferred to a processor having a monitoring area of the communication line 2 affected by the occurrence of the failure via the processor serving as the master station. control method.
JP61247322A 1986-10-20 1986-10-20 Decentralized supervisory control system Granted JPS63102434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61247322A JPS63102434A (en) 1986-10-20 1986-10-20 Decentralized supervisory control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61247322A JPS63102434A (en) 1986-10-20 1986-10-20 Decentralized supervisory control system

Publications (2)

Publication Number Publication Date
JPS63102434A JPS63102434A (en) 1988-05-07
JPH0368584B2 true JPH0368584B2 (en) 1991-10-29

Family

ID=17161673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61247322A Granted JPS63102434A (en) 1986-10-20 1986-10-20 Decentralized supervisory control system

Country Status (1)

Country Link
JP (1) JPS63102434A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01309536A (en) * 1988-06-08 1989-12-13 Fujitsu Ltd Detection system for fading occurrence section in radio channel
JPH053511A (en) * 1991-06-03 1993-01-08 Fujitsu Ltd Communication line monitoring system
US7769474B2 (en) 2005-09-20 2010-08-03 Honeywell International Inc. Method for soft-computing supervision of dynamical processes with multiple control objectives
CN112820063B (en) * 2021-04-19 2021-07-09 四川鼎锐成科技有限公司 Fire control early warning system based on image data processing

Also Published As

Publication number Publication date
JPS63102434A (en) 1988-05-07

Similar Documents

Publication Publication Date Title
JPH0368584B2 (en)
CN112506633A (en) Multi-machine redundancy system and processing method
JPH01217666A (en) Fault detecting system for multiprocessor system
JPH08305661A (en) Fault release system for distributedly installed system
JPS6121642A (en) Data collecting system
JPH01166161A (en) Mutual monitoring system for multiprocessor system
JPS58123255A (en) Detection system for fault position of single loop transmission system
JPS6314542B2 (en)
JPH0535343Y2 (en)
JPS62174838A (en) Processor fault detection method in multiprocessor system
KR20000041926A (en) Restarting system and method for specific processor in inter processor communication system
JPS62102642A (en) Detecting method for fault position of network
JPS63232542A (en) Poling system in ring type network
JPH02239354A (en) Fault informing system for information transfer-side unit
JPH08331014A (en) Transmission backup method for data collection system
JPS5842491B2 (en) Fault recognition method in multiprocessor system
JPS6130144A (en) State monitor system
JPH053486A (en) Data transmitter system
JPS62264796A (en) Information supervising system
JPH06350492A (en) Abnormality detecting system for distribution line carrier communications system
JPH01269152A (en) Processor trouble detecting system in distributed processing system
JPH0471340A (en) System failure analyzer
JPH06187314A (en) Fault reporting system
JPS5838808B2 (en) Data transfer method in multiprocessor system
JPH02144635A (en) Device fault diagnostic system