JPH0368205B2 - - Google Patents

Info

Publication number
JPH0368205B2
JPH0368205B2 JP58154140A JP15414083A JPH0368205B2 JP H0368205 B2 JPH0368205 B2 JP H0368205B2 JP 58154140 A JP58154140 A JP 58154140A JP 15414083 A JP15414083 A JP 15414083A JP H0368205 B2 JPH0368205 B2 JP H0368205B2
Authority
JP
Japan
Prior art keywords
valve
flow rate
bypass
valves
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58154140A
Other languages
Japanese (ja)
Other versions
JPS6047801A (en
Inventor
Yoichi Tone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP15414083A priority Critical patent/JPS6047801A/en
Publication of JPS6047801A publication Critical patent/JPS6047801A/en
Publication of JPH0368205B2 publication Critical patent/JPH0368205B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/105Final actuators by passing part of the fluid
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/66Methods for processing data by generating or executing the game program for rendering three dimensional images
    • A63F2300/6653Methods for processing data by generating or executing the game program for rendering three dimensional images for altering the visibility of an object, e.g. preventing the occlusion of an object, partially hiding an object
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F2300/00Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
    • A63F2300/60Methods for processing data by generating or executing the game program
    • A63F2300/66Methods for processing data by generating or executing the game program for rendering three dimensional images
    • A63F2300/6661Methods for processing data by generating or executing the game program for rendering three dimensional images for changing the position of the virtual camera
    • A63F2300/6684Methods for processing data by generating or executing the game program for rendering three dimensional images for changing the position of the virtual camera by dynamically adapting its position to keep a game object in its viewing frustrum, e.g. for tracking a character or a ball

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービンにおける複数の加減弁または
バイパス弁を順次開閉制御するに好適なタービン
制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a turbine control device suitable for sequentially controlling the opening and closing of a plurality of control valves or bypass valves in a turbine.

〔発明の技術的背景〕[Technical background of the invention]

一般に、発電プラントにおけるタービンバイパ
ス系統は、複数系統から成り、各バイパス弁を介
して減温減圧装置に接続されている。これらバイ
パス弁を開閉して所定のバイパス流量を得るた
め、従来は各バイパス弁を一定のシーケンスで第
1弁から順次開閉制御していた。一方、タービン
主蒸気系統に設けられる複数の蒸気加減弁の開閉
制御の場合も、弁通過時の圧力降下による熱エネ
ルギーロスを最小に抑えるため、従来は、一定の
シーケンスで加減弁を第1弁から順次開閉制御し
ていた。
Generally, a turbine bypass system in a power generation plant consists of a plurality of systems, each of which is connected to a temperature reduction and pressure reduction device via a bypass valve. In order to obtain a predetermined bypass flow rate by opening and closing these bypass valves, conventionally, each bypass valve was sequentially controlled to open and close in a certain sequence starting from the first valve. On the other hand, in the case of opening/closing control of multiple steam control valves installed in the turbine main steam system, conventionally, in order to minimize thermal energy loss due to pressure drop when passing through the valves, the control valves are switched to the first valve in a certain sequence. It was controlled to open and close sequentially.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、上記従来方式のように複数の弁
を常に同一順序で順番に開閉制御すると、蒸気加
減弁の場合は、部分噴射時に同一の弁ばかりが頻
繁に使用され蒸気配管系統に局部的熱疲労が発生
する問題点を生じる。また、バイパス弁の場合
は、更に減温減圧装置に対して局所的な熱的疲労
を増大させる問題点があつた。
However, if multiple valves are always opened and closed in the same order as in the conventional method described above, in the case of steam control valves, the same valves are frequently used during partial injection, causing local thermal fatigue in the steam piping system. It causes problems that occur. Further, in the case of a bypass valve, there is a further problem in that it increases local thermal fatigue for the temperature reduction and pressure reduction device.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点を解消し、所要の制御性を
維持しながら、局所的熱疲労を分散逓減させるこ
とのできるタービン制御装置を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide a turbine control device that can disperse and reduce local thermal fatigue while maintaining required controllability.

〔発明の概要〕[Summary of the invention]

このため、本発明は各弁を順次開閉制御するた
めのパターンを用意しておき、このパターンと各
弁との対応を流量要求が生じる毎に順次切換える
ことにより、各弁の開閉順序をその都度変えるよ
うにしたことを特徴としている。
For this reason, the present invention prepares a pattern for sequentially controlling the opening and closing of each valve, and by sequentially switching the correspondence between this pattern and each valve each time a flow rate request occurs, the opening and closing order of each valve is changed each time. It is characterized by the fact that it can be changed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をバイパス弁の切換え制御に適用
した場合を例にとり、その実施例を図面を参照し
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an example in which the present invention is applied to switching control of a bypass valve will be described with reference to the drawings.

第1図は本発明の一実施例に係るタービン制御
装置の構成図を示したもので、1は原子炉、ボイ
ラ等の蒸気発生器である。蒸気発生器1で発生し
た蒸気は主蒸気止め弁2を通り、加減弁3で流量
を制御されてタービン4に流入する。タービン4
に流入した蒸気はタービン4を回転させ、更に発
電機5を駆動して電力を発生させる。また、起動
時あるいは事故時の余剰蒸気は複数のバイパス弁
6−1〜6−3で流量を分担制御されて、減温減
圧装置7に流入し、減温減圧の後、復水器8でタ
ービンで仕事をした蒸気と共に、凝縮復水され
る。タービン4の実速度は、速度検出器9により
検出され、比較器11において速度/負荷設定器
10からの速度設定と比較演算される。速度設定
と実速度の偏差は速度制御部12により速度流量
要求に変換されて、低値選択器13に送られる。
一方、タービン入口圧力は圧力検出器14により
検出され、比較器16において圧力設定器15か
らの圧力設定と較演算される。圧力設定とタービ
ン入口圧力の偏差は圧力制御部17により、圧力
流量要求に変換されて同様に低値選択器13に送
られる。低値選択器13は二つの流量要求のう
ち、低値を選択して加減弁流量要求として、これ
を加減弁制御部18に送る。これにより、加減弁
制御部18は前記流量要求に応じた弁開度に加減
弁を制御する。また、圧力流量要求と加減弁流量
要求は比較器19おいて比較演算され、加減弁流
量の不足分がバイパス弁流量要求としてバイパス
流量配分制御部20に送られる。バイパス流量配
分制御部20はバイパス弁流量要求に基づき、各
弁の流量要求を演算し、これを各バイパス弁制御
部21−1〜21−3に送る。各バイパス弁制御
部21−1〜21−3は前記弁指令に応じた弁開
度に各バイパス弁6−1,6−2,6−3を制御
する。かくして、タービン4は所定の速度、入口
蒸気圧において、加減弁3および各バイパス弁6
−1,6−2,6−3は所定の流量分担のもとに
制御されることとなる。
FIG. 1 shows a configuration diagram of a turbine control device according to an embodiment of the present invention, in which 1 is a steam generator such as a nuclear reactor or a boiler. The steam generated by the steam generator 1 passes through the main steam stop valve 2, the flow rate of which is controlled by the control valve 3, and flows into the turbine 4. turbine 4
The steam flowing into the turbine rotates the turbine 4 and further drives the generator 5 to generate electric power. In addition, the flow rate of surplus steam at the time of startup or an accident is divided and controlled by a plurality of bypass valves 6-1 to 6-3, flows into the temperature and pressure reducing device 7, and after temperature and pressure reduction, it is transferred to the condenser 8. It is condensed together with the steam that has done work in the turbine. The actual speed of the turbine 4 is detected by a speed detector 9, and compared with the speed setting from a speed/load setting device 10 in a comparator 11. The deviation between the speed setting and the actual speed is converted into a speed flow rate request by the speed control section 12 and sent to the low value selector 13.
On the other hand, the turbine inlet pressure is detected by the pressure detector 14 and compared with the pressure setting from the pressure setting device 15 in the comparator 16 . The deviation between the pressure setting and the turbine inlet pressure is converted by the pressure control section 17 into a pressure flow request and is also sent to the low value selector 13. The low value selector 13 selects the lower value of the two flow rate requests and sends it to the regulator valve controller 18 as a regulator flow rate request. Thereby, the adjusting valve control section 18 controls the adjusting valve to the valve opening degree according to the flow rate request. Further, the pressure flow rate request and the control valve flow rate request are compared and calculated in the comparator 19, and the shortfall in the control valve flow rate is sent to the bypass flow rate distribution control section 20 as a bypass valve flow rate request. The bypass flow rate distribution control section 20 calculates a flow rate request for each valve based on the bypass valve flow rate request, and sends this to each bypass valve control section 21-1 to 21-3. Each of the bypass valve control units 21-1 to 21-3 controls each of the bypass valves 6-1, 6-2, and 6-3 to the valve opening degree according to the valve command. Thus, at a predetermined speed and inlet steam pressure, the turbine 4 closes the regulator valve 3 and each bypass valve 6.
-1, 6-2, and 6-3 will be controlled based on predetermined flow rate sharing.

尚、通常のプラント運用中はエネルギー節減の
観点からバイパス弁は閉じていることが望まし
く、一定の閉バイアス22が前記比較器19に付
加されて、バイパス弁6−1,6−2,6−3を
閉じておくのが通例である。
Note that during normal plant operation, it is desirable that the bypass valves be closed from the viewpoint of energy saving, and a constant closing bias 22 is applied to the comparator 19 to close the bypass valves 6-1, 6-2, 6-. It is customary to keep 3 closed.

第2図は上記バイパス流量配分制御部20の詳
細図を示したもので、23−1〜23−3は比較
器19からのバイパス弁流量要求xに応じて、そ
れぞれ第3図のa〜cに示すパターンに従つて弁
流量要求y1,y2,,y3を出力する流量配分パター
ン発生器である。24はバイパス弁流量要求のレ
ベルを検出するレベル検出器、25はそのレベル
検出器24の出力即ちバイパス弁流量要求の有無
に応じて順次歩進するリングカウンタ、26,2
7,28はそのリングカウンタ25の歩進に応じ
て弁流量要求y1,y2,y3を順次切り換えて各バイ
パス弁6−1,6−2,6−3の各弁指令Z1
Z2,Z3とするための信号切換器である。
FIG. 2 shows a detailed diagram of the bypass flow rate distribution control section 20, and 23-1 to 23-3 are connected to a to c of FIG. 3, respectively, according to the bypass valve flow rate request x from the comparator 19. This is a flow distribution pattern generator that outputs valve flow requests y 1 , y 2 , y 3 according to the pattern shown in FIG. 24 is a level detector that detects the level of the bypass valve flow rate request; 25 is a ring counter that sequentially increments depending on the output of the level detector 24, that is, the presence or absence of the bypass valve flow rate request; 26, 2;
7 and 28 sequentially switch the valve flow rate requests y 1 , y 2 , y 3 according to the increment of the ring counter 25, and each valve command Z 1 , 28 for each bypass valve 6-1, 6-2, 6-3.
This is a signal switch for Z 2 and Z 3 .

以上の構成で、第4図のタイムチヤートにも示
すように、今、リングカウンタ25が切換信号a
を出力しているものとすると、各信号切換器26
〜28は26a,27a,28aの各接点が閉じ
る結果、バイパス弁流量配分制御部20の出力は
それぞれZ1としてy1,Z2としてy2,Z3としてy3
選択された状態になる。
With the above configuration, as shown in the time chart of FIG.
Assuming that each signal switch 26 is outputting
~ 28, as a result of the contacts 26a, 27a, and 28a closing, the outputs of the bypass valve flow rate distribution control section 20 are in a state where y1 is selected as Z1 , y2 is y2 as Z2, and y3 is selected as Z3 , respectively. .

この状態で比較器19よりバイパス弁流量要求
xが出力されると、これに対応する弁流量要求
y1,y2,y3が流量配分パターン発生器23−1〜
23−3より出力され、バイパス弁制御部21−
1〜21−3に加わる。これにより、バイパス弁
は6−1,6−2,6−3の順にバイパス弁流量
要求xに応じて開閉制御される。
In this state, when the bypass valve flow rate request x is output from the comparator 19, the corresponding valve flow rate request x is outputted from the comparator 19.
y 1 , y 2 , y 3 are flow rate distribution pattern generators 23-1~
23-3, bypass valve control section 21-
1 to 21-3. Thereby, the bypass valves 6-1, 6-2, and 6-3 are controlled to open and close in the order according to the bypass valve flow rate request x.

一方、レベル検出器24の出力信tはバイパス
弁流量要求xのレベルに応じてON,OFFする
が、バイパス弁流量要求xの「有」から「無」の
変化に応じて信号tは第4図に示すようにONか
らOFFに変化する。この信号tの変化により、
リングカウンタ25は切換信号をaからbへと歩
進する。これにより、各セレクタ26〜28は2
6b〜28bの各接点が閉じる結果、バイパス弁
流量配分制御部20の出力はZ1=y2,Z2=y3,Z3
=y1に切り換わる。
On the other hand, the output signal t of the level detector 24 turns ON and OFF depending on the level of the bypass valve flow rate request x, but the signal t changes from "present" to "absent" in accordance with the level of the bypass valve flow rate request x. It changes from ON to OFF as shown in the figure. Due to this change in signal t,
The ring counter 25 increments the switching signal from a to b. As a result, each selector 26 to 28 has two
As a result of each contact point 6b to 28b closing, the output of the bypass valve flow distribution control section 20 is Z1 = y2 , Z2 = y3 , Z3
=y Switch to 1 .

従つて、次に比較器19より再びバイパス弁流
量要求xが出力されたときは、各バイパス弁は6
−2,6−3,6−1の順にバイパス弁流量要求
xに応じた開閉制御が行なわれる。
Therefore, when the comparator 19 outputs the bypass valve flow rate request x again, each bypass valve has 6
-2, 6-3, and 6-1, the opening/closing control is performed in accordance with the bypass valve flow rate request x in this order.

このように、バイパス弁流量要求xの発生毎
に、各流量配分パターン発生器23−1〜23−
3から出力される流量要求y1〜y3が順次切り換え
られて各バイパス弁制御部21−1〜21−3に
送られることにより、各バイパス弁6−1〜6−
3の開閉順がその都度切り換えられる。この結
果、全てのバイパス弁管路が平均して使用される
こととなり、減温減圧装置7も含めて局部的熱疲
労が分散逓減される。
In this way, each flow distribution pattern generator 23-1 to 23-
The flow rate requests y 1 to y 3 outputted from 3 are sequentially switched and sent to each bypass valve control unit 21-1 to 21-3, whereby each bypass valve 6-1 to 6-
The opening/closing order of No. 3 is changed each time. As a result, all the bypass valve lines are used on average, and local thermal fatigue including the temperature reduction and pressure reduction device 7 is gradually reduced in a distributed manner.

尚、上記実施例ではバイパス弁が3弁の場合を
例にとり説明したが、本発明はこれに限らず任意
の複数のバイパス弁の場合に適用し得ることは言
う迄もない。
In the above embodiment, the case where there are three bypass valves has been described as an example, but it goes without saying that the present invention is not limited to this and can be applied to any number of bypass valves.

また、本発明はバイパス系統のみならず、ター
ビン加減弁系統にも適用が可能であり、起動停止
の都度リングカウンタを歩進させ、部分負荷運用
時の加減弁部分噴射による局部熱疲労を分散逓減
化することが可能である。
In addition, the present invention can be applied not only to the bypass system but also to the turbine control valve system, and by incrementing the ring counter each time it starts or stops, it can disperse and reduce local thermal fatigue caused by the control valve partial injection during partial load operation. It is possible to convert

〔発明の効果〕 以上のように本発明によれば、圧力制御あるい
は流量制御の分解能を損うことなく、バイパス系
統あるいは蒸気加減弁系統の局部的熱疲労を分散
逓減し、タービン系機器の寿命を延ばすことがで
きる。
[Effects of the Invention] As described above, according to the present invention, local thermal fatigue of the bypass system or the steam control valve system can be distributed and reduced without impairing the resolution of pressure control or flow rate control, and the service life of turbine system equipment can be extended. can be extended.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るタービン制御
装置の構成図、第2図は第1図のバイパス流量配
分制御部の詳細図、第3図a〜cは第2図の各流
量配分パターン発生器で発生するパターン図、第
4図は第2図の動作を説明するためのタイムチヤ
ートである。 1……蒸気発生器、2……主蒸気止め弁、6−
1〜6−3……バイパス弁、7……減温減圧装
置、20……バイパス流量配分制御部、21−1
〜21−3……バイパス弁制御部、22……閉バ
イアス、23−1〜23−3……流量配分パター
ン発生器、24……レベル検出器、25……リン
グカウンタ、26〜28……信号切換器。
FIG. 1 is a block diagram of a turbine control device according to an embodiment of the present invention, FIG. 2 is a detailed diagram of the bypass flow distribution control section of FIG. 1, and FIGS. 3 a to c are each flow distribution of FIG. 2. The pattern diagram generated by the pattern generator, FIG. 4, is a time chart for explaining the operation of FIG. 2. 1...Steam generator, 2...Main steam stop valve, 6-
1 to 6-3...Bypass valve, 7...Temperature reduction and pressure reduction device, 20...Bypass flow rate distribution control unit, 21-1
~21-3...Bypass valve control unit, 22...Closing bias, 23-1 to 23-3...Flow rate distribution pattern generator, 24...Level detector, 25...Ring counter, 26-28... Signal switch.

Claims (1)

【特許請求の範囲】 1 蒸気流量を調整する複数の弁を総流量要求に
応じて順番に開閉制御していくタービン制御装置
において、前記総流量の増減に応じて前記各弁を
順番に開閉するための弁流量または弁開度相当信
号を発生する複数の流量配分パターン発生器と、
前記総流量要求の発生の有無を検出する検出器
と、この検出器の出力に応じて歩進するリングカ
ウンタと、このリングカウンタの歩進に応じて前
記複数の流量配分パターン発生器の各出力を順次
切り換えて前記複数の弁の各弁指令とする信号切
換器とを備えることを特徴とするタービン制御装
置。 2 特許請求の範囲第1項記載において、前記弁
がバイパス弁であることを特徴とするタービン制
御装置。 3 特許請求の範囲第1項記載において、前記弁
が蒸気加減弁であることを特徴とするタービン制
御装置。
[Scope of Claims] 1. In a turbine control device that sequentially controls the opening and closing of a plurality of valves that adjust the steam flow rate in accordance with a total flow rate request, each of the valves is sequentially opened and closed in accordance with an increase or decrease in the total flow rate. a plurality of flow rate distribution pattern generators that generate signals corresponding to valve flow rates or valve opening degrees;
a detector that detects whether or not the total flow rate request occurs; a ring counter that increments in accordance with the output of the detector; and each output of the plurality of flow distribution pattern generators in accordance with the increment of the ring counter. A turbine control device comprising: a signal switching device that sequentially switches the signals to provide valve commands for each of the plurality of valves. 2. The turbine control device according to claim 1, wherein the valve is a bypass valve. 3. The turbine control device according to claim 1, wherein the valve is a steam control valve.
JP15414083A 1983-08-25 1983-08-25 Turbine control device Granted JPS6047801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15414083A JPS6047801A (en) 1983-08-25 1983-08-25 Turbine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15414083A JPS6047801A (en) 1983-08-25 1983-08-25 Turbine control device

Publications (2)

Publication Number Publication Date
JPS6047801A JPS6047801A (en) 1985-03-15
JPH0368205B2 true JPH0368205B2 (en) 1991-10-25

Family

ID=15577754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15414083A Granted JPS6047801A (en) 1983-08-25 1983-08-25 Turbine control device

Country Status (1)

Country Link
JP (1) JPS6047801A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7549282B2 (en) * 2005-10-25 2009-06-23 General Electric Company Multi-slot inter-turbine duct assembly for use in a turbine engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183502A (en) * 1981-05-08 1982-11-11 Toshiba Corp Turbine control device
JPS581247A (en) * 1981-06-26 1983-01-06 Mitsubishi Electric Corp Cntrolling method for instruction advance-fetch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57183502A (en) * 1981-05-08 1982-11-11 Toshiba Corp Turbine control device
JPS581247A (en) * 1981-06-26 1983-01-06 Mitsubishi Electric Corp Cntrolling method for instruction advance-fetch

Also Published As

Publication number Publication date
JPS6047801A (en) 1985-03-15

Similar Documents

Publication Publication Date Title
WO1983001651A1 (en) Hrsg damper control
JPH11352284A (en) Reactor system pressure control method through core power control
US4178762A (en) Efficient valve position controller for use in a steam turbine power plant
US6021169A (en) Feedwater control over full power range for pressurized water reactor steam generators
US6055945A (en) Full range feedwater control system for pressurized water reactor steam generators
JPH0368205B2 (en)
KR100511125B1 (en) Boiler Turbine Coordination Control System for Turbine Speed Regulation Rate in the Thermal Power Plant
JP3272843B2 (en) Turbine control device
JPS6239655B2 (en)
JPS61106903A (en) Speed governing type change-over device
JP3896520B2 (en) Steam turbine generator operation control method and apparatus
JP3747253B2 (en) Thermal power plant protection system
JPH0429921B2 (en)
JP2555200B2 (en) Combined power generation facility
JPS59138702A (en) Turbine controller
JPS6158903A (en) Turbine controller for nuclear reactor
JPH04339105A (en) Load controlling device for power generating plant
SU941638A1 (en) System for automatic control of power installation
JPH04214907A (en) Turbine controlling device
JPH0339165B2 (en)
JPS5841207A (en) Method of operating steam turbines utilizing waste heat boiler set remote
JPH03215198A (en) Load controller for combined cycle plant
JPS63259108A (en) Bypass valve control device for steam turbine
Caruso et al. Reactor megawatt demand setter
JPH02149705A (en) Operation method of multi-spindle type combined plant