【発明の詳細な説明】[Detailed description of the invention]
(産業上の利用分野)
この明細書で開示する技術は、エアコン用コン
プレツサーカバーのどの超深絞り性を要求される
部位に使用される熱延鋼板に関し、特に耐2次加
工脆性に優れた特性を示すものについての提案で
ある。
(従来の技術)
従来、深絞り用熱延鋼板としては、例えば、低
炭素(C:0.02〜0.07wt%;以下単に%で示す)
Alキルド鋼またはリムド鋼を素材としてこれを
熱間圧延の際にて高温で巻取つたもの、或いはよ
り軟質化を目的として極低C鋼(C:0.01%)を
素材としてBやNbを添加した種類の鋼板が知ら
れている。
また最近では、特公昭60−7690号公報に示され
ているような、C:0.10%以下の低炭素リムド鋼
を素材とし、酸化物および硫化物として消費され
た残りの有効Mnを0.10%以上に限定した上で、
スラブの低温加熱(1050〜1200℃)と低温圧延
(700〜800℃)とを組み合わせる特殊な処理を経
て製造された熱延鋼板も知られている。
しかし、このよぬな既知の超深絞り用熱延鋼板
の場合、例えばコンプレツサーカバー等の超深絞
り加工を経る部位のような使途ではなお十分とは
言えないのが実情である。
(発明が解決しようとする問題点)
一般に熱延鋼板の場合、冷延鋼板とは異なり、
絞り性に有効な{111}集合組織が発達しにくく、
絞り性の尺度であるγ値は0.5〜1.0程度である。
(ちなみに、冷延鋼板の値は1.3〜2.2程度であ
る)従つて、熱延鋼板の絞り性を、値の増加、
すなわち{111}集合組織が発達させることによ
り期待するのは不可能である。
ところで、絞り加工性の良し悪しはプレス時に
如何にして減厚しないですむかということに対応
する。かかる意味合いでは板厚の厚い熱延鋼板は
γ値が小さくとも、絞り加工に対しては幾分冷延
鋼板より有利になる。すなわち熱延鋼板において
絞り性を向上させるためには、鋼板の延性をでき
うる限り向上させることが必要となるわけであ
る。
すなわち超深絞り用熱延鋼板として具備すべき
必要な性質は以下の通りである。
高延性であること。
低降伏点応力であること。
絞り加工時又は加工後の衝撃による割れ発生
すなわち2次加工割れがないこと。
(問題点を解決するための手段)
本発明者らは、上記の諸性質を具備させるため
鋼の成分組成に着目して研究をすすめた結果、上
記具備すべき、の条件を解決するために極低
C組成とすること、そして〜の全部の要求に
対しては、極低C鋼のC,N,S,Ti量とりわ
けSを通常レベル(S=0.005〜0.015%)より極
端に低レベルとし、さらには、C,N,S量に応
じてTi量を限定することにより、有利に適合さ
せることができることを知見したのである。
要するに本発明は、C:0.0040wt%以下、
Mn:0.20wt%以下、Ti:(48/14N(%)+48/32S
(%)+0.003)〜(3×48/12C(%)+48/14N(
%)+
48/32S(%)wt%、Al:0.005〜0.10wt%、P:
0.015wt%以下N:0.0040wt%以下、S:0.0035
%wt以下を含有し、残部が不可避的不純物およ
びFeよりなる耐2次加工脆性の良好な超深絞り
用熱延鋼板である。
(作用)
以下本発明鋼板の成分組成が上記のように限定
される理由について説明する。
〔C〕:Cは耐2次加工脆性を向上させるために、
鋼板中に適量(2〜9ppm)を固溶状態で残存
させる必要がある。なお、このC含有量につい
ては、後述する〔Ti〕、〔S〕含有量との関連
でも一層詳しく説明するが、C量が多くなると
Ti量が少ない場合、固溶Cが10ppm以上残存
しやすくなり、耐時効性の劣化とともに延性す
なわち深絞り性が劣化する。またTi量が多い
と形成される炭化物(TiC)の量が増加し、析
出硬化が起こつてやはり延性が劣化する。この
ためC量は少ないほどよく、その上限は0.0040
%(40ppm)であるが、より好ましくは35ppm
以下にすべきである。
〔Mn〕:Mn含有量が多いと加工性が劣化するの
で上限は0.20%とする。
〔Ti〕:Tiは、この発明での鋼組成のうちで最も
重要な元素であり、鋼中のS,NとCの一部を
固定し、かつ加工性の向上を図るために、最低
でも48/14N(%)+48/32S(%)+0.003は必要と
す
る。
ここで、48/14N(%)、48/32S(%)はN、Sを
固定するためのTi量に相当する。これらの和
にさらに0.003%を加えた値をTiの下限とした
のは、鋼中Cの一部をTiCとして固定し、残量
を固溶Cとして残留させることにより、耐時効
性を劣化されることなく、耐2次加工性脆性を
付与するためである。
これよりすくないと、CはさらにはNが鋼中
に固溶し、耐2次加工脆性は非常に良好になる
が、耐歪時効性が急激に劣化するとともに加工
性特に延性が劣化するようになる。これに対し
てこのTiは、かなり多量に添加してもこの発
明の場合Sを非常に少なくしているために固溶
Cが適量残留し、耐この上限は、3×48/12C
(%)+48/14N(%)+48/32S(%)である。この
量
を超えるTiの添加は、もはやすべてのCがTiC
として固定され固溶Cが残留しなくなつて耐2
次加工脆性が劣化するばかりか、Tiの固溶強
化により加工性さえも劣化するのでこの量に限
定される。
〔Al〕:鋼中のOを固定し、Tiの歩留りを上げる
ため最低0.005%が必要である。0.10以上の添
加はコストアツプになるとともに効果が飽和す
る。
〔p〕:pもMnと全く同じ理由により0.015%以
下に限定される。
〔N〕:Nは次に述べるSと同様、Tiで優先的に
高温域(≧1000℃のスラブ加熱又は粗圧延時)
でTiNとして固定されるから固溶Nにより悪
影響はほとんど無視できる。しかし、このNが
多くなると、TiNの析出強化により硬質化し
加工性が劣化する。したがつて、Nの上限をN
≦0.0040%とするが、より好ましくはN≦
0.0035%とすべきである。
〔S〕:Sは本発明の中でTiとともに最も重要な
元素の1つである。Sの大部分は、例えばスラ
ブ鋳造後の冷却中、スラブの加熱中あるいは熱
間圧延時の粗圧延の段階等のような1000℃以上
の高温域で、TiSとして固定される。ここで重
要なことは、生成したTiSが鋼中のCをTiCと
して固定するための析出核となる点である。す
なわち、本発明のようにSが0.0035%以下の極
低S領域になると、鋼中Cの全量が析出しなく
なり、鋼中に固溶Cとして2〜10ppm残留する
ようになる。本発明の如き極低C鋼では、2次
加工割れは粒界で起きるのが普通だが、固溶C
量が2〜10ppmも残留するようになると大部分
が粒界に偏析して粒界強度を高め、耐2次加工
脆性を改善するのである。この点従来製造され
ている鋼のS量は通常0.005%以上であり、こ
のようなS量では、耐2次加工脆性改善の効果
はない。すなわち本発明の目指す効果は、この
S量を0.0035%以下の極低S領域まで下げるこ
とにより始めて実現されるのである。
上述した成分組成よりなる鋼は、常法に従う処
理によつて熱間圧延鋼板とする。すなわち、転炉
出鋼後脱ガス処理し連続鋳造でスラブとされるの
が一般的な方法であるが、この溶製プロセスにつ
いては、いかなる方式であつても本発明の効果に
は影響しなし。従つて、例えば、板厚30mm程度の
シートバーとして鋳込んでも同様の効果が期待で
きる。また、熱延条件についても、スラブ再加熱
後、粗圧延−仕上げ圧延と経たものを、コイルに
巻取るという工程が一般的であるが、CC−DRす
なわちスラブ直送圧延を行つても同様の効果が期
待できる。次に得られて熱延鋼板は必要に応じ
て、レベリング加工ないしは脱スケールを行つて
製品とする。また、本発明は溶融Znめつき等の
表面処理を行つても同様の作用効果が得られる。
(実施例)
表1に示す成分組成の鋼を転炉出鋼し、RH脱
ガス後連続鋳造にてスラブとした。このスラブを
1250℃に加熱後熱間圧延により920℃±5℃で仕
上げ、570℃で巻き取つた。(板厚3.2mm)
脱スケール後機械的性質と耐2次加工脆性を調
脱スケール後機械的性質と耐2次加工脆性を調
べた。耐歪時効性の尺度しては、時効指数を採用
した。時効指数が3Kg/mm2以下なら常温での歪時
効の進行は極めて遅く、実質的に非時効である。
また、耐2次加工脆性の試験は、サンプルを100
mmφに抜打き、50mmφの平底ポンチで深絞り成形
し(絞り比2.0)、このサンプルに−50℃で5Kgの
重りを1mの高さから落下させたときの割れの有
無で判定した。その結果を表2に示す。
ここで、、、は圧延方向、圧延直角方
向、圧延方向と45°の値の平均値で定義される。
例えば、延性は〔(El0+El90+2El45)/4〕で
表わされる。(なお添字は圧延方向と試験片との
なす角度)
(Field of Industrial Application) The technology disclosed in this specification relates to hot-rolled steel sheets used in parts of compressor covers for air conditioners that require ultra-deep drawability, and has particularly excellent resistance to secondary work brittleness. This is a proposal for something that exhibits certain characteristics. (Prior art) Conventionally, hot-rolled steel sheets for deep drawing have been made using, for example, low carbon (C: 0.02 to 0.07 wt%; hereinafter simply expressed as %).
Al-killed steel or rimmed steel is used as a material and rolled at high temperature during hot rolling, or ultra-low C steel (C: 0.01%) is used as a material and B or Nb is added to make it softer. Steel plates of this type are known. Recently, as shown in Japanese Patent Publication No. 60-7690, low carbon rimmed steel with C: 0.10% or less is used as a material, and the remaining effective Mn consumed as oxides and sulfides is reduced to 0.10% or more. After being limited to
Hot-rolled steel sheets manufactured through a special process that combines low-temperature heating of slabs (1050-1200°C) and low-temperature rolling (700-800°C) are also known. However, in the case of this known hot-rolled steel sheet for ultra-deep drawing, the actual situation is that it is still not sufficient for use in areas that undergo ultra-deep drawing, such as compressor covers. (Problems to be solved by the invention) In general, in the case of hot-rolled steel sheets, unlike cold-rolled steel sheets,
{111} texture, which is effective for drawability, is difficult to develop,
The γ value, which is a measure of drawability, is about 0.5 to 1.0.
(By the way, the value of cold-rolled steel sheet is about 1.3 to 2.2) Therefore, the drawability of hot-rolled steel sheet is determined by increasing the value,
In other words, it is impossible to expect the {111} texture to develop. By the way, the quality of drawability corresponds to how well the material can be prevented from being thinned during pressing. In this sense, even if a thick hot-rolled steel plate has a small γ value, it is somewhat more advantageous than a cold-rolled steel plate in drawing processing. In other words, in order to improve drawability in a hot rolled steel sheet, it is necessary to improve the ductility of the steel sheet as much as possible. That is, the necessary properties that a hot-rolled steel sheet for ultra-deep drawing should have are as follows. Must be highly ductile. Must have low yield point stress. There shall be no cracking due to impact during or after drawing, that is, no secondary processing cracks. (Means for Solving the Problems) As a result of conducting research focusing on the chemical composition of steel in order to provide the above-mentioned properties, the present inventors have found that in order to solve the above-mentioned conditions that should be provided, To meet all the requirements for ultra-low C steel, the C, N, S, and Ti contents of the ultra-low C steel, especially S, must be at an extremely lower level than the normal level (S = 0.005 to 0.015%). Furthermore, they found that by limiting the amount of Ti in accordance with the amounts of C, N, and S, it is possible to achieve an advantageous adaptation. In short, the present invention provides C: 0.0040wt% or less,
Mn: 0.20wt% or less, Ti: (48/14N (%) + 48/32S (%) + 0.003) ~ (3 x 48/12C (%) + 48/14N (
%) + 48/32S (%)wt%, Al: 0.005-0.10wt%, P: 0.015wt% or less N: 0.0040wt% or less, S: 0.0035
%wt or less, with the remainder consisting of unavoidable impurities and Fe, which is a hot-rolled steel sheet for ultra-deep drawing that has good resistance to secondary work brittleness. (Function) The reason why the composition of the steel sheet of the present invention is limited as described above will be explained below. [C]: C is used to improve secondary processing brittleness.
It is necessary to leave an appropriate amount (2 to 9 ppm) in a solid solution state in the steel plate. The C content will be explained in more detail in relation to the [Ti] and [S] contents described later, but as the C content increases,
When the amount of Ti is small, 10 ppm or more of solid solution C tends to remain, leading to deterioration of aging resistance and deterioration of ductility, that is, deep drawability. Moreover, when the amount of Ti is large, the amount of carbide (TiC) formed increases, precipitation hardening occurs, and ductility deteriorates as well. Therefore, the lower the amount of C, the better, and the upper limit is 0.0040.
% (40ppm), but more preferably 35ppm
Should be: [Mn]: If the Mn content is high, workability deteriorates, so the upper limit is set to 0.20%. [Ti]: Ti is the most important element in the steel composition in this invention, and is added at least to fix a part of S, N and C in the steel and to improve workability. 48/14N (%) + 48/32S (%) + 0.003 is required. Here, 48/14N (%) and 48/32S (%) correspond to the amount of Ti for fixing N and S. The reason for setting the lower limit of Ti as the sum of these values and adding 0.003% is that by fixing a part of the C in the steel as TiC and leaving the remaining amount as solid solution C, the aging resistance is deteriorated. This is to impart secondary processing resistant brittleness without causing any damage. If the amount is less than this, C and even N will be dissolved in the steel, and the secondary work brittleness will be very good, but the strain aging resistance will rapidly deteriorate and the workability, especially the ductility, will deteriorate. Become. On the other hand, even if Ti is added in a fairly large amount, in the case of the present invention, since the S content is very small, a suitable amount of solid solution C remains, and the upper limit of this resistance is 3×48/12C (%). +48/14N (%) +48/32S (%). Adding more than this amount of Ti means that all the C is TiC.
The solid solution C is fixed as
This amount is limited because not only the brittleness during subsequent processing deteriorates, but also the workability deteriorates due to the solid solution strengthening of Ti. [Al]: At least 0.005% is required to fix O in the steel and increase the yield of Ti. Addition of 0.10 or more increases costs and saturates the effect. [p]: p is also limited to 0.015% or less for exactly the same reason as Mn. [N]: Similar to S described below, N preferentially works in the high temperature range (at ≧1000℃ slab heating or rough rolling) for Ti.
Since it is fixed as TiN, the adverse effects of solid solution N can be almost ignored. However, when the amount of N increases, the steel becomes hard due to precipitation strengthening of TiN, and workability deteriorates. Therefore, the upper limit of N is N
≦0.0040%, more preferably N≦
Should be 0.0035%. [S]: S is one of the most important elements along with Ti in the present invention. Most of the S is fixed as TiS in a high temperature range of 1000° C. or higher, for example, during cooling after slab casting, during heating of the slab, or during the rough rolling stage during hot rolling. What is important here is that the generated TiS becomes a precipitation nucleus for fixing C in the steel as TiC. That is, when S is in the extremely low S region of 0.0035% or less as in the present invention, the entire amount of C in the steel ceases to precipitate, and 2 to 10 ppm of solid solution C remains in the steel. In ultra-low C steels such as those of the present invention, secondary work cracking usually occurs at grain boundaries, but solid solution C
When the amount remains in the range of 2 to 10 ppm, most of it segregates at grain boundaries, increasing grain boundary strength and improving secondary work brittleness. In this regard, the amount of S in conventionally manufactured steel is usually 0.005% or more, and such an amount of S has no effect on improving the resistance to secondary work brittleness. In other words, the effects aimed at by the present invention can only be achieved by lowering this S amount to an extremely low S region of 0.0035% or less. Steel having the above-mentioned composition is processed into a hot-rolled steel sheet by a conventional method. In other words, the general method is to degas the steel after tapping it in a converter and then continuously cast it into a slab, but any method used for this melting process will not affect the effects of the present invention. . Therefore, the same effect can be expected even if it is cast as a sheet bar with a thickness of about 30 mm, for example. Regarding the hot rolling conditions, the common process is to reheat the slab, then go through rough rolling and finish rolling, and then wind it into a coil, but the same effect can be obtained by performing CC-DR, that is, direct slab rolling. can be expected. Next, the hot-rolled steel sheet obtained is subjected to leveling processing or descaling as necessary to produce a product. Further, in the present invention, similar effects can be obtained even when surface treatment such as molten Zn plating is performed. (Example) Steel having the composition shown in Table 1 was tapped from a converter, and after RH degassing, it was continuously cast to form a slab. this slab
After heating to 1250°C, it was finished by hot rolling at 920°C ± 5°C and rolled up at 570°C. (Plate thickness: 3.2 mm) Mechanical properties and resistance to secondary processing brittleness after descaling were investigated Mechanical properties and resistance to secondary processing brittleness after descaling were investigated. The aging index was used as a measure of strain aging resistance. If the aging index is 3 Kg/mm 2 or less, the progress of strain aging at room temperature is extremely slow, and there is virtually no aging.
In addition, in the secondary processing brittleness test, samples were
Samples were punched out to mmφ and deep drawn using a 50mmφ flat-bottomed punch (drawing ratio 2.0), and the presence or absence of cracks was determined by dropping a 5 kg weight onto this sample from a height of 1 m at -50°C. The results are shown in Table 2. Here, , is defined as the rolling direction, the direction perpendicular to the rolling direction, and the average value of the values at 45° to the rolling direction.
For example, ductility is expressed as [(El 0 +El 90 +2El 45 )/4]. (The subscript is the angle between the rolling direction and the test piece.)
【表】【table】
【表】【table】
【表】
○ 割れなし
× 割れ発生
供試材No.1、2、3は、それぞれC,Mn,P
が本発明の範囲を外れた例であり材質が劣る。
又供試材No.7は、Sが外れた例であり、耐2次
加工脆性が劣る。
供試材No.9は、Nが外れた例で材質が劣る。
供試材No.10、11は、Tiの上、下限を外れた例
であり、供試材No.10は耐歪時効性が劣り、供試材
No.11は耐2次加工脆性が劣る。
そして供試材No.4、5、6、8は、本発明の鋼
であり、材質および耐2次加工脆性とも良好であ
る。
(発明の効果)
以上説明したように本発明によれば、コンプレ
ツサーカバーあるいは自動車の構造部材等、とく
に超深絞り性を要求される部分に好適に用いられ
る熱延鋼板を得ることができると共にその鋼板の
耐2次加工脆性を著しく向上させることができ
る。[Table] ○ No cracking × Cracking occurred Sample materials No. 1, 2, and 3 are C, Mn, and P, respectively.
This is an example outside the scope of the present invention, and the material is inferior. In addition, sample material No. 7 is an example in which S is removed, and the resistance to secondary processing brittleness is poor. Sample material No. 9 is an example in which N is removed and the material quality is inferior. Sample materials No. 10 and 11 are examples of Ti exceeding the upper and lower limits, and sample material No. 10 has poor strain aging resistance.
No. 11 has poor secondary processing brittleness. Test materials No. 4, 5, 6, and 8 are steels of the present invention, and have good material quality and secondary processing brittleness resistance. (Effects of the Invention) As explained above, according to the present invention, it is possible to obtain a hot-rolled steel sheet that is suitable for use in parts that particularly require ultra-deep drawability, such as compressor covers or structural members of automobiles. At the same time, the secondary working brittleness resistance of the steel plate can be significantly improved.