JPH0784619B2 - Method for producing cold-rolled steel sheet excellent in deep drawability and resistance to secondary work brittleness - Google Patents

Method for producing cold-rolled steel sheet excellent in deep drawability and resistance to secondary work brittleness

Info

Publication number
JPH0784619B2
JPH0784619B2 JP1230875A JP23087589A JPH0784619B2 JP H0784619 B2 JPH0784619 B2 JP H0784619B2 JP 1230875 A JP1230875 A JP 1230875A JP 23087589 A JP23087589 A JP 23087589A JP H0784619 B2 JPH0784619 B2 JP H0784619B2
Authority
JP
Japan
Prior art keywords
amount
less
steel sheet
steel
secondary work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1230875A
Other languages
Japanese (ja)
Other versions
JPH0394021A (en
Inventor
俊一 橋本
充 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP1230875A priority Critical patent/JPH0784619B2/en
Publication of JPH0394021A publication Critical patent/JPH0394021A/en
Publication of JPH0784619B2 publication Critical patent/JPH0784619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は冷延鋼板の製造方法に係り、特に深絞り性と耐
2次加工脆性に優れた冷延鋼板の製造方法に関するもの
である。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a cold rolled steel sheet, and more particularly to a method for manufacturing a cold rolled steel sheet excellent in deep drawability and secondary work embrittlement resistance.

(従来の技術) 近年、自動車部材や電気機器外板に使用される冷延鋼板
には、高いプレス成形性が要求されている。
(Prior Art) In recent years, high press formability is required for cold-rolled steel sheets used for automobile members and outer panels of electric devices.

このような要求を満たす冷延鋼板の製造方法としては、
極低炭素鋼にTi、Nbなどの炭窒化物形成元素を単独又は
複合添加して鋼中のC、Nを固定し得る鋼を用いて、未
再結晶フェライト域で熱延し、更に冷延を施すことによ
って圧延集合組織を形成し、更に種々の方法で再結晶焼
鈍を施して、深絞り性に有利な(111)集合組織を発達
させる方法が提案されている。
As a method for manufacturing a cold rolled steel sheet that satisfies such requirements,
Using a steel that can fix C and N in steel by adding carbonitride forming elements such as Ti and Nb to ultra-low carbon steel, hot-rolling in the unrecrystallized ferrite region, and further cold-rolling There is proposed a method of forming a rolling texture by applying a heat treatment, and then performing recrystallization annealing by various methods to develop a (111) texture advantageous for deep drawability.

(発明が解決しようとする課題) しかし、一方では、Ti、Nbなどの炭窒化物形成元素によ
り鋼中のC、Nを充分固定した極低炭素鋼では、プレス
成形後の2次加工において脆性破断による割れが発生す
るという問題がある。これは、鋼中の固溶Cがないた
め、フェライト粒界へのCの偏析がなくなって粒界が弱
くなるためである。
(Problems to be Solved by the Invention) However, on the other hand, in an ultra-low carbon steel in which C and N in steel are sufficiently fixed by carbonitride forming elements such as Ti and Nb, brittleness occurs in secondary working after press forming. There is a problem that cracking occurs due to breakage. This is because, since there is no solid solution C in the steel, segregation of C at the ferrite grain boundaries disappears and the grain boundaries become weaker.

更に、P添加鋼では、粒界にPが偏析し、粒界の脆化を
助長するという問題がある。
Further, in the P-added steel, there is a problem that P segregates at the grain boundaries, which promotes embrittlement of the grain boundaries.

したがって、従来は、耐2次加工脆性の改善のために、
予め鋼中のC、Nが残存するようにTiやNbの添加量を制
御して溶製することが試みられていた。しかし、この方
法では、例え固溶C、Nが残存する成分鋼が溶製できた
としても、この固溶C、Nは本質的に鋼のr値や延性を
劣化させるものであるので、プレス成形性の大幅な低下
を来たさざるを得なかった。すなわち、本質的にプレス
成形性と耐2次加工脆性は両立し得ないものであった。
また、一方、このような微量C、Nを残存させること
は、製鋼技術上成り立つものでなかった。
Therefore, conventionally, in order to improve the secondary processing brittleness resistance,
It has been attempted in advance to control the amount of addition of Ti and Nb so that C and N in the steel remain, and perform melting. However, in this method, even if the component steel in which the solid solution C and N remain can be produced, since the solid solution C and N essentially deteriorate the r value and ductility of the steel, Inevitably, the formability was significantly reduced. That is, the press formability and the secondary work embrittlement resistance were essentially incompatible.
On the other hand, leaving such a small amount of C and N was not established in steelmaking technology.

この点、従来より、以下のような提案がなされている
が、プレス成形性と耐2次加工脆性を共に優れたものと
することは困難である。
In this respect, conventionally, the following proposals have been made, but it is difficult to provide both excellent press formability and secondary work brittleness resistance.

例えば、深絞り用鋼板の耐2次加工割れ性を改善する目
的で、Ti、Nbを添加して鋼中のCを固定し、冷間圧延後
オープンコイル焼鈍時に浸炭を行い、鋼板表面に浸炭層
を形成する方法(特開昭63−38556号)が提案されてい
る。しかし、この方法の場合、長時間に及ぶバッチ焼鈍
の際に浸炭を実施するため、鋼板の表層部にのみ高濃度
の浸炭層(平均C量:0.02〜0.10%)が形成され、また
表層部と中心部でフェライト粒度に差が生じる等、板厚
方向に成分、組織が異なる鋼板となる問題があり、更
に、こうしたバッチ焼鈍タイプでは、当然乍ら生産性が
低いと共に、板長及び板幅方向の材質が不均一となり易
い不利を生じる。
For example, in order to improve the resistance to secondary work cracking of deep drawing steel sheet, Ti and Nb are added to fix C in the steel, and carburizing is performed during open coil annealing after cold rolling to carburize the steel sheet surface. A method of forming a layer (Japanese Patent Laid-Open No. 63-38556) has been proposed. However, in the case of this method, since carburization is performed during batch annealing for a long time, a high-concentration carburized layer (average C amount: 0.02 to 0.10%) is formed only on the surface layer of the steel sheet, and There is a problem that the steel sheet has a different composition and structure in the plate thickness direction, such as a difference in the ferrite grain size between the center and the center.In addition, the batch annealing type naturally has low productivity and the plate length and plate width. There is a disadvantage that the material in the direction tends to be non-uniform.

また、同様に、Ti、Nbを添加して深絞り用鋼板を製造す
る方法として、冷間圧延後に再結晶焼鈍を行った後、更
に浸炭処理を施す方法(特開平1−96330号)もある
が、主に多量の炭化物、窒化物の析出による強度の向上
を狙ったものであって、耐2次加工脆性に対する配慮が
なく、また焼鈍後にバッチにて長時間浸炭処理を行うた
め、浸炭量が過剰且つ不均一となり易く、しかも生産性
が低く、工程も煩雑になるという欠点がある。
Similarly, as a method for producing a deep-drawing steel sheet by adding Ti and Nb, there is also a method of performing recarburization annealing after cold rolling and then performing a carburizing treatment (JP-A-1-96330). However, it is mainly aimed at improving the strength by precipitation of a large amount of carbides and nitrides, there is no consideration for secondary work embrittlement resistance, and since carburizing is performed for a long time in batch after annealing, the carburizing amount Are prone to become excessive and non-uniform, the productivity is low, and the process is complicated.

本発明は、上記従来技術の技術の問題点を解決するため
になされたものであって、極低炭素鋼を用いて、深絞り
性と耐2次加工脆性に優れた冷延鋼板を生産性よく製造
する方法を提供することを目的とするものである。
The present invention has been made in order to solve the problems of the above-mentioned conventional techniques, and uses an ultra-low carbon steel to produce a cold-rolled steel sheet excellent in deep drawability and secondary work embrittlement resistance. The object is to provide a method of manufacturing well.

(課題を解決するための手段) かゝる目的を達成するため、本発明者らは、従来の極低
炭素鋼においてプレス成形性が劣化する原因について検
討した。
(Means for Solving the Problem) In order to achieve such an object, the present inventors examined the cause of deterioration of press formability in conventional ultra low carbon steel.

その結果、固用C、Nがプレス成形性を低下させる原因
は、圧延集合組織の形成段階及び再結晶集合組織の形成
段階で局所的なすべり系、転位の再配列に影響を及ぼ
し、深絞り性に好ましい(111)集合組織の発達を阻害
するためであることが判明した。
As a result, the causes of the solid C and N lowering the press formability are that the local slip system and the rearrangement of dislocations are affected at the stage of forming the rolling texture and the stage of forming the recrystallization texture, resulting in deep drawing. It was found that this is because it inhibits the development of (111) texture, which is favorable for sex.

そこで、本発明者らは、このような原因を解消し、且つ
耐2次加工脆性を優れたものとし得る方策について鋭意
研究を重ねた結果、極低炭素鋼において特定の成分調整
を行うと共に圧延条件を規定することによって、再結晶
集合組織が決定される焼鈍時の再結晶完了時までは固用
C、Nを零の状態にしておき、その後浸炭雰囲気中で連
続焼鈍を行うことにより、最終製品段階で粒界に数ppm
程度のCを存在させ、粒界を強化することにより、脆化
を防止する方法を見い出し、ここに本発明をなしたもの
である。
Therefore, the inventors of the present invention have conducted intensive studies on a method for eliminating such a cause and improving the secondary work embrittlement resistance, and as a result, adjusted specific components and rolled the ultra low carbon steel. By defining the conditions, the recrystallization texture is determined and the solid C and N are kept in a state of zero until the completion of recrystallization during annealing. After that, continuous annealing is performed in a carburizing atmosphere to obtain the final Several ppm at grain boundaries at the product stage
A method of preventing embrittlement by finding a certain amount of C and strengthening the grain boundaries has been found, and the present invention has been made here.

すなわち、本発明は、C:0.007%以下、Si:0.1%以下、M
n:0.05〜0.50%、P:0.12%以下、S:0.015%以下、sol.A
l:0.005〜0.05%、N:0.006%以下を含有し、更にTi及び
Nbの単独又は複合添加で、下式(1)に従う有効Ti量
(Ti*と表す)及びNb量とC量との関係が下式(2) Ti*=totalTi−{(48/32)×S+(48/14)×N} …
(1) 1≦(Ti*/48+Nb/93)/(C/12)≦4.5 …(2) を満足する範囲で含有し、必要に応じて更にB:0.0001〜
0.0030%を含有し、残部がFe及び不可避的不純物よりな
る鋼を、900〜1200℃の温度範囲にて粗圧延を行った
後、600〜850℃の範囲で未再結晶フェライト域での圧下
量R1の熱間圧延を行い、その後600℃以下で巻き取り、
酸洗した後、更に圧下量R2≧50%(但し、R1とR2の合計
圧下量R={1−(1−R1/100)・(1−R2/100)}×
100が95%>R>65%)の冷間圧延を施し、更に浸炭雰
囲気ガス中で再結晶温度以上の温度範囲で連続焼鈍を行
うことを特徴とする深絞り性と耐2次加工脆性に優れた
冷延鋼板の製造方法を要旨とするものである。
That is, the present invention, C: 0.007% or less, Si: 0.1% or less, M
n: 0.05 to 0.50%, P: 0.12% or less, S: 0.015% or less, sol.A
l: 0.005 to 0.05%, N: 0.006% or less, Ti and
With the addition of Nb alone or in combination, the effective Ti amount (expressed as Ti *) according to the following formula (1) and the relationship between the Nb amount and the C amount are expressed by the following formula (2) Ti * = totalTi-{(48/32) × S + (48/14) × N} ...
(1) 1 ≦ (Ti * / 48 + Nb / 93) / (C / 12) ≦ 4.5 (2) The content is in the range that satisfies the above condition, and if necessary, further B: 0.0001-
Steel containing 0.0030% and the balance Fe and unavoidable impurities is roughly rolled in the temperature range of 900 to 1200 ° C, and then rolled in the unrecrystallized ferrite region in the range of 600 to 850 ° C. R 1 hot rolling, then winding at 600 ℃ or less,
After pickling, further reduction rate R 2 ≧ 50% (provided that the total reduction rate R = the R 1 and R 2 {1- (1-R 1/100) · (1-R 2/100)} ×
100% is 95%>R> 65%), and further continuous annealing is performed in the carburizing atmosphere gas in the temperature range above the recrystallization temperature for deep drawability and secondary work embrittlement resistance. The gist is a method of manufacturing an excellent cold-rolled steel sheet.

以下に本発明を更に詳細に説明する。The present invention will be described in more detail below.

(作用) 本発明は、要するに、前述の如く理論上不可能とされて
いた技術に対して極低炭素鋼を用い、且つ、耐2次加工
脆性のために粒界の欠陥を埋めるのに必要なC量2〜15
ppmを確保するならば、連続焼鈍でも可能であることを
見い出したものである。この理由は、Cの進入は粒内拡
散でなく、その速度が10倍程度速い粒界拡散でなされた
ものであり、更に粒界純度の非常に高い極低炭素鋼であ
れば、その拡散速度が更に上がるため、連続焼鈍におい
て、焼鈍前に固溶C量が零であったものが、まず粒界
に、次いで粒内に所定量のC量を確保することができる
ことによるものである。
(Operation) The present invention is, in short, required to use the ultra-low carbon steel for the technology that was theoretically impossible as described above, and to fill the grain boundary defects due to the secondary work embrittlement resistance. C amount 2 to 15
It has been found that continuous annealing can be performed if ppm is secured. The reason for this is that the penetration of C is not by intragranular diffusion, but by grain boundary diffusion, which is about 10 times faster, and in the case of ultra-low carbon steel with extremely high grain boundary purity, its diffusion rate is This is because, in continuous annealing, the amount of solid solution C was zero before annealing in the continuous annealing, but it is possible to secure a predetermined amount of C in the grain boundaries first and then in the grains.

まず、本発明における鋼の化学成分限定理由について説
明する。
First, the reasons for limiting the chemical composition of steel in the present invention will be described.

C: Cは、その含有量が増大するにつれてCを固定するTi、
Nbの添加量が増加し、製造費用の増加につながる。更に
TiC及びNbC析出量が増大し粒成長を阻害してr値が劣化
するので、C含有量は少ないほどよく、上限値を0.007
%とする。なお、製鋼技術上の観点からC含有量の下限
値は0.0005%とするのが望ましい。
C: C is Ti that fixes C as its content increases,
The amount of Nb added increases, leading to an increase in manufacturing cost. Further
Since the precipitation amount of TiC and NbC increases, the grain growth is hindered and the r value deteriorates, the smaller the C content is, the better the upper limit is 0.007.
%. From the viewpoint of steelmaking technology, the lower limit of C content is preferably 0.0005%.

Si: Siは溶鋼の脱酸を主目的に添加されるが、添加量が多す
ぎると表面性状や化成処理性或いは塗装性を劣化させる
ので、その含有量は0.1%以下とする。
Si: Si is added mainly for the purpose of deoxidizing molten steel, but if the addition amount is too large, the surface properties, the chemical conversion treatment property or the coating property are deteriorated, so the content is made 0.1% or less.

Mn: Mnは熱間脆性の防止を主目的に添加されるが、0.05%よ
り少ないとその効果が得られず、一方、添加量が多すぎ
ると延性を劣化させるので、その含有量は0.05〜0.50%
の範囲とする。
Mn: Mn is added mainly for the purpose of preventing hot embrittlement, but if it is less than 0.05%, its effect is not obtained, while if the addition amount is too large, ductility deteriorates, so its content is 0.05- 0.50%
The range is.

P: Pは、r値の低下を伴うことなく、鋼強度を高める効果
を有するが、粒界に偏析し2次加工脆性を起こし易くす
るので、その含有量は0.12%以下に抑制する。
P: P has the effect of increasing the steel strength without lowering the r value, but segregates at the grain boundaries and easily causes secondary work embrittlement, so the content is limited to 0.12% or less.

S: Sは、Tiと結合してTiSを形成するので、その含有量が
増大するとC、Nを固定するのに必要なTi量が増大す
る。またMnS系の伸長した介在物が増加して局部延性を
劣化させるので、その含有量は0.015%以下に抑制す
る。
S: S combines with Ti to form TiS, so if the content thereof increases, the amount of Ti required to fix C and N increases. Further, the MnS-based elongated inclusions increase and deteriorate the local ductility, so the content thereof is suppressed to 0.015% or less.

Al: Alは溶鋼の脱酸を目的に添加されるが、その含有量がso
l.Alで0.005%より少ないと、その目的が達成されず、
一方、0.05%を超えると脱酸効果が飽和すると共にAl2O
3介在物が増加して加工成形性を劣化させる。したがっ
て、その含有量はsol.Alで0.005〜0.05%の範囲とす
る。
Al: Al is added for the purpose of deoxidizing molten steel, but its content is
If less than 0.005% in l.Al, the purpose will not be achieved,
On the other hand, if it exceeds 0.05%, the deoxidizing effect is saturated and Al 2 O
3 Inclusions increase and workability deteriorates. Therefore, the content is sol.Al in the range of 0.005 to 0.05%.

N: Nは、Tiと結合してTiNを形成するので、その含有量が
増大するとCを固定するのに必要なTi量が増大する。ま
たTiN析出量が増加して粒成長が阻害されr値が劣化す
る。したがって、その含有量は少ないほど好ましく、0.
006%以下に抑制する。
N: N combines with Ti to form TiN, so an increase in the content increases the amount of Ti required to fix C. Further, the TiN precipitation amount increases, grain growth is hindered, and the r value deteriorates. Therefore, the smaller the content, the better.
Control to 006% or less.

Ti、Nb: Ti、NbはC、Nを固定することによってr値を高める作
用がある。この場合、前述の如くTiはS、Nと結合して
TiS、TiNを形成するので、製品におけるTi量は、次式
(1)で計算される有効Ti量(Ti*)として換算される
量にて考慮する必要がある。
Ti, Nb: Ti, Nb has the effect of increasing the r value by fixing C and N. In this case, Ti is combined with S and N as described above.
Since TiS and TiN are formed, it is necessary to consider the Ti amount in the product by the amount converted as the effective Ti amount (Ti *) calculated by the following equation (1).

Ti*=totalTi−{(48/32)×S+(48/14)×N} …
(1) したがって、本発明の目的に対してはTi*量、Nb量とC
量との関係が(2)式 1≦(Ti*/48+Nb/93)/(C/12)≦4.5 …(2) を満足する範囲で含有する必要がある。この(2)式の
値が1より小さいとC、Nを充分に固定することができ
ず、r値を劣化させる。一方、4.5を超えるとr値を高
める作用が飽和すると共に、後工程の浸炭雰囲気焼鈍時
に侵入したCが、固溶しているTi或いはNbとすぐに結合
してしまい、Cの粒界偏析を阻止するので、耐2次加工
脆性の防止が得られず、また過剰のTi、Nbによる硬化の
ために加工性も劣化し、コストアップにもつながる。
Ti * = totalTi − {(48/32) × S + (48/14) × N} ...
(1) Therefore, for the purpose of the present invention, Ti * amount, Nb amount and C
It must be contained within the range of the relationship with the amount in the formula (2) 1 ≦ (Ti * / 48 + Nb / 93) / (C / 12) ≦ 4.5 (2). If the value of the equation (2) is smaller than 1, C and N cannot be fixed sufficiently and the r value is deteriorated. On the other hand, if it exceeds 4.5, the action of increasing the r value is saturated, and C that has entered during the annealing in the carburizing atmosphere in the subsequent step is immediately combined with the solid solution Ti or Nb, and the grain boundary segregation of C occurs. Since it prevents, it is not possible to prevent the secondary processing brittleness, and the workability is deteriorated due to hardening by excessive Ti and Nb, which leads to an increase in cost.

B: Bは耐2次加工脆性に対して有効な元素であるので、必
要に応じて添加することができる。添加する場合、その
効果を得るためには少なくとも0.0001%以上が必要であ
るが、0.0030%を超えるとその効果は飽和し、且つr値
を低下させるので、その添加量は0.0001〜0.0030%の範
囲とする。
B: B is an element effective for the secondary work embrittlement resistance, so that it can be added if necessary. If added, at least 0.0001% or more is necessary to obtain the effect, but if it exceeds 0.0030%, the effect is saturated and the r value is lowered, so the addition amount is in the range of 0.0001 to 0.0030%. And

次に本発明の製造方法について説明する。Next, the manufacturing method of the present invention will be described.

従来、冷延鋼板のr値向上のためには、冷延率を90%程
度とればよいことがわかっていたが、冷延機の能力の都
合上、このような高圧下量の冷延率を採用することは困
難であった。本発明者らは、この問題点を解決するため
鋭意研究を重ねた結果、冷延集合組織の一部を熱延段階
で作り、続き冷延でそれを完全なものとし、また冷延鋼
板に要求される形状、精度、表面品質については冷延段
階で作り上げればよいことを見出したものである。
In the past, it was known that the cold rolling rate should be about 90% in order to improve the r value of the cold rolled steel sheet. However, due to the capacity of the cold rolling machine, the cold rolling rate under such high pressure Was difficult to employ. As a result of intensive studies to solve this problem, the present inventors have made a part of the cold-rolled texture at the hot-rolling stage, and subsequently made it complete by cold-rolling. It has been found that the required shape, precision, and surface quality can be created in the cold rolling stage.

具体的には、上記化学成分を有する鋼を常法により溶
解、鋳造するが、続く熱間圧延は特定条件にて行う。
Specifically, the steel having the above chemical composition is melted and cast by a conventional method, and the subsequent hot rolling is performed under specific conditions.

すなわち、900〜1200℃の温度範囲にて粗圧延を行った
後、600〜850℃の範囲で未再結晶フェライト域での圧下
量R1の熱間圧延を行い、その後600℃以下で巻き取る。
That is, after performing rough rolling in the temperature range of 900 to 1200 ° C, hot rolling with a reduction amount R 1 in the unrecrystallized ferrite region in the range of 600 to 850 ° C, and then winding at 600 ° C or less. .

次いで酸洗後、更に圧下量R2≧50%(但し、R1とR2の合
計圧下量Rが95%>R>65%)を冷延を施す。ここで、
R1とR2の合計圧下量Rは、 R={1−(1−R1/100)・(1−R2/100)}×100 と定義される。
Then, after pickling, a reduction amount R 2 ≧ 50% (however, the total reduction amount R of R 1 and R 2 is 95%>R> 65%) is cold-rolled. here,
The total rolling reduction of R 1 and R 2 R is defined as R = {1- (1-R 1/100) · (1-R 2/100)} × 100.

更に、この冷間圧延後、浸炭雰囲気中で再結晶温度以上
の範囲で連続焼鈍を行い、r値に有利な(111)面方位
に集合組織を形成させる。
Further, after this cold rolling, continuous annealing is performed in a range of the recrystallization temperature or higher in a carburizing atmosphere to form a texture in the (111) plane orientation advantageous for the r value.

既に知られているように、r値は主として鋼の(111)
面方位集合組織に依存しており、その形成には再結晶焼
鈍前に存在する固溶C、Nが悪影響をもっていることが
知られているが、本発明においては再結晶焼鈍前に上記
巻取処理によって固溶C及び固溶Nが完全に除かれ、上
記の集合組織が得られる。しかも、一旦、再結晶が完了
し集合組織が形成されれば、その後に侵入するCはr値
には悪影響を与えない。浸炭雰囲気中より侵入したCの
うちTiC、Nbとして固定されなかったCが粒界に偏析し
て耐2次加工脆性を改善するのである。
As is already known, the r value is mainly for steel (111).
It depends on the plane orientation texture, and it is known that solid solution C and N existing before recrystallization annealing have an adverse effect on the formation thereof. By the treatment, solid solution C and solid solution N are completely removed, and the above-mentioned texture is obtained. Moreover, once the recrystallization is completed and the texture is formed, C invading thereafter does not adversely affect the r value. Of the C that has entered from the carburizing atmosphere, TiC and C that are not fixed as Nb segregate at the grain boundaries and improve the secondary work embrittlement resistance.

連続焼鈍の雰囲気にはカーボンポテンシャルを制御した
浸炭ガスを用い、目的とする浸炭量はカーボンポテンシ
ャル、焼鈍温度、焼鈍時間の組合せを選択することによ
り制御し、耐2次加工脆性のために粒界の欠陥を埋める
のに必要なC量が2〜15ppmとなるような条件で上記連
続焼鈍を行えばよい。2ppmよりも少ないと耐2次加工脆
性を得るために粒界の欠陥を埋めるのに必要なC量が不
足し、一方、15ppmを超えると伸び等の加工性が劣化
し、また連続焼鈍の通板速度を低下させねばならず、生
産性の低下を招くので望ましくない。連続焼鈍炉の炉内
滞留時間は2sec〜2minの範囲が好ましい。
Carburizing gas with controlled carbon potential is used in the atmosphere of continuous annealing, and the target amount of carburization is controlled by selecting the combination of carbon potential, annealing temperature, and annealing time. The continuous annealing may be carried out under the condition that the amount of C required to fill the defects of 2 to 15 ppm. If it is less than 2 ppm, the amount of C necessary to fill the defects at the grain boundaries in order to obtain resistance to secondary working brittleness is insufficient, while if it exceeds 15 ppm, the workability such as elongation deteriorates, and continuous annealing It is not desirable because the plate speed must be reduced and the productivity is reduced. The residence time in the continuous annealing furnace is preferably in the range of 2 sec to 2 min.

次に本発明の実施例を示す。Next, examples of the present invention will be described.

(実施例) 第1表に示す化学成分を有する50mm厚の供試鋼を1150℃
で30分間加熱して溶体化処理を行った後、1100〜950℃
の温度範囲で粗圧延し、これに続く仕上げ圧延温度及び
フェライト域総圧下量を種々変化させて熱延鋼板を製造
した。なお、巻取り処理はすべて400℃で1hr保持、炉冷
することにより模擬した。
(Example) A test steel having a chemical composition shown in Table 1 and having a thickness of 50 mm was heated to 1150 ° C.
After heat treatment for 30 minutes at 1100 ~ 950 ℃
Rough rolling was performed in the temperature range of 1, and the hot rolling steel sheet was manufactured by variously changing the subsequent finish rolling temperature and the total reduction amount in the ferrite region. The winding process was simulated by holding at 400 ° C for 1 hr and cooling the furnace.

次いで、酸洗後、冷延率を種々変化させて0.8mm厚の冷
延鋼板を製造し、浸炭雰囲気中において連続焼鈍として
850℃で1分間の再結晶焼鈍を行った。
Then, after pickling, the cold rolling rate was variously changed to produce 0.8 mm thick cold rolled steel sheet, which was continuously annealed in a carburizing atmosphere.
Recrystallization annealing was performed at 850 ° C. for 1 minute.

得られた冷延鋼板のr値と2次加工脆性限界温度を第2
表に示すと共に、一部について第1図〜第2図に整理し
て示す。
The r value of the obtained cold rolled steel sheet and the secondary working brittleness limit temperature
In addition to being shown in the table, some of them are arranged and shown in FIGS. 1 and 2.

なお、脆性試験は、総絞り比2.7でカップ成形して得ら
れたカップを35mm高さにトリムした後、各試験温度の冷
媒中にカップを置いて頂角40゜の円錐ポンチに押し込ん
で脆性破壊の発生しない限界温度を測定した。これを2
次加工脆性限界温度とした。
In the brittleness test, the cup obtained by forming a cup with a total drawing ratio of 2.7 was trimmed to a height of 35 mm, then placed in a refrigerant at each test temperature and pushed into a conical punch with an apex angle of 40 ° to make it brittle. The critical temperature at which breakage did not occur was measured. This 2
The next processing brittleness limit temperature was set.

第2表より明らかなとおり、本発明例はいずれも、r値
が高く深絞り性に優れていると共に、耐2次加工脆性が
改善されていることがわかる。
As is clear from Table 2, in all the examples of the present invention, the r value is high, the deep drawability is excellent, and the secondary work embrittlement resistance is improved.

一方、不活性ガス中で連続焼鈍を施した比較例は、深絞
り性又は耐2次加工脆性に劣っており、また浸炭雰囲気
ガス中で連続焼鈍を行った比較例は、本発明範囲外の化
学成分を有しているため、深絞り性或いは耐2次加工脆
性のいずれかが劣っている。
On the other hand, the comparative example subjected to continuous annealing in an inert gas is inferior in deep drawability or secondary work embrittlement resistance, and the comparative example subjected to continuous annealing in a carburizing atmosphere gas is outside the scope of the present invention. Since it has a chemical component, it is inferior in either deep drawability or secondary work embrittlement resistance.

なお、第1図は、第1表の鋼No.1を用いて800℃以下の
合計圧下量Rとr値の関係を整理したものであって、合
計圧下量Rが65%以上で高いr値を示すことがわかる。
Note that FIG. 1 shows the relationship between the total reduction R and the r value at 800 ° C. or less using steel No. 1 in Table 1, and the total reduction R is 65% or more and the high r It turns out that it shows a value.

第2図は、800℃以下の合計圧下量Rが65%以上の鋼に
ついて(Ti*/45+Nb/93)/(C/12)の値とr値及び2
次加工脆性限界温度との関係を整理したものであり、こ
の式の値が本発明範囲内(1〜4.5)の鋼について本発
明に従う浸炭雰囲気中での連続焼鈍を施すことにより、
優れた高いr値が得られると共に、2次加工脆性限界温
度が低下することがわかる。
Fig. 2 shows the values of (Ti * / 45 + Nb / 93) / (C / 12) and r values for steels with a total reduction R of 800 ° C or less of 65% or more and 2
It is a summary of the relationship with the next working brittleness limit temperature, by performing continuous annealing in the carburizing atmosphere according to the present invention for the steel of which the value of this formula is within the range of the present invention (1 to 4.5),
It can be seen that an excellent high r value is obtained and the secondary working brittleness limit temperature is lowered.

(発明の効果) 以上詳述したように、本発明によれば、極低炭素鋼を用
い、且つその化学成分を規制すると共に圧延条件を規制
することにより、連続焼鈍前の固溶C、Nを零として、
次いで浸炭雰囲気ガス中で連続焼鈍を行うので、優れた
深絞り性と耐2次加工脆性を有する冷延鋼板を得ること
ができ、しかも生産性が高く、特に冷延機の能力に過度
の負担を強いることがない。
(Effects of the Invention) As described in detail above, according to the present invention, by using ultra-low carbon steel, and controlling the chemical composition thereof and the rolling conditions, the solid solution C, N before continuous annealing can be obtained. Is zero,
Next, continuous annealing is performed in a carburizing atmosphere gas, so cold-rolled steel sheets with excellent deep drawability and resistance to secondary work embrittlement can be obtained. Moreover, productivity is high, and the capacity of cold-rolling machines is excessively burdened. I will not force you.

【図面の簡単な説明】[Brief description of drawings]

第1図及び第2図は実施例で得られた冷延鋼板の特性を
整理して示す図であり、第1図は800℃以下の合計圧下
量Rとr値との関係を示し、第2図は(Ti*/45+Nb/9
3)/(C/12)の値とr値及び2次加工脆性限界温度と
の関係を示している。
FIG. 1 and FIG. 2 are diagrams showing the characteristics of the cold-rolled steel sheets obtained in the examples, and FIG. 1 shows the relationship between the total reduction R and the r value at 800 ° C. or less. Figure 2 shows (Ti * / 45 + Nb / 9
The relationship between the value of 3) / (C / 12), the r value, and the secondary working brittleness limit temperature is shown.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】重量%で(以下、同じ)、C:0.007%以
下、Si:0.1%以下、Mn:0.05〜0.50%、P:0.12%以下、
S:0.015%以下、sol.Al:0.005〜0.05%、N:0.006%以下
を含有し、更にTi及びNbの単独又は複合添加で、下式
(1)に従う有効Ti量(Ti*と表す)及びNb量とC量と
の関係が下式(2) Ti*=totalTi−{(48/32)×S+(48/14)×N} …
(1) 1≦(Ti*/48+Nb/93)/(C/12)≦4.5 …(2) を満足する範囲で含有し、残部がFe及び不可避的不純物
よりなる鋼を、900〜1200℃の温度範囲にて粗圧延を行
った後、600〜850℃の範囲で未再結晶フェライト域での
圧下量R1の熱間圧延を行い、その後600℃以下で巻き取
り、酸洗した後、更に圧下量R2≧50%(但し、R1とR2
合計圧下量R={1−(1−R1/100)・(1−R2/10
0)}×100が95%>R>65%)の冷間圧延を施し、更に
浸炭雰囲気ガス中で再結晶温度以上の温度範囲で連続焼
鈍を行うことを特徴とする深絞り性と耐2次加工脆性に
優れた冷延鋼板の製造方法。
1. In% by weight (hereinafter the same), C: 0.007% or less, Si: 0.1% or less, Mn: 0.05 to 0.50%, P: 0.12% or less,
S: 0.015% or less, sol.Al: 0.005 to 0.05%, N: 0.006% or less, and by adding Ti and Nb alone or in combination, the effective Ti amount according to the following formula (1) (expressed as Ti *) And the relationship between the amount of Nb and the amount of C is expressed by the following equation (2) Ti * = totalTi − {(48/32) × S + (48/14) × N} ...
(1) Steel containing 1 ≦ (Ti * / 48 + Nb / 93) / (C / 12) ≦ 4.5 (2) with the balance being Fe and inevitable impurities at 900-1200 ° C After performing rough rolling in the temperature range, hot rolling with a reduction amount R 1 in the unrecrystallized ferrite region in the range of 600 to 850 ° C., then winding at 600 ° C. or less, pickling, and further reduction ratio R 2 ≧ 50% (provided that the total reduction rate R = {1- (1-R 1/100 of the R 1 and R 2) · (1-R 2/10
0)} × 100 is 95%>R> 65%), and is further annealed in a temperature range above the recrystallization temperature in a carburizing atmosphere gas. Secondary process Cold-rolled steel sheet manufacturing method with excellent brittleness.
【請求項2】前記鋼が、B:0.0001〜0.0030%を含有する
請求項1に記載の方法。
2. The method according to claim 1, wherein the steel contains B: 0.0001 to 0.0030%.
JP1230875A 1989-09-05 1989-09-05 Method for producing cold-rolled steel sheet excellent in deep drawability and resistance to secondary work brittleness Expired - Lifetime JPH0784619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230875A JPH0784619B2 (en) 1989-09-05 1989-09-05 Method for producing cold-rolled steel sheet excellent in deep drawability and resistance to secondary work brittleness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230875A JPH0784619B2 (en) 1989-09-05 1989-09-05 Method for producing cold-rolled steel sheet excellent in deep drawability and resistance to secondary work brittleness

Publications (2)

Publication Number Publication Date
JPH0394021A JPH0394021A (en) 1991-04-18
JPH0784619B2 true JPH0784619B2 (en) 1995-09-13

Family

ID=16914678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230875A Expired - Lifetime JPH0784619B2 (en) 1989-09-05 1989-09-05 Method for producing cold-rolled steel sheet excellent in deep drawability and resistance to secondary work brittleness

Country Status (1)

Country Link
JP (1) JPH0784619B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995009931A1 (en) * 1993-10-05 1995-04-13 Nkk Corporation Continuously annealed and cold rolled steel sheet
JP2007267530A (en) * 2006-03-29 2007-10-11 Fujikura Ltd Junction box for automobile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974232A (en) * 1982-10-20 1984-04-26 Nippon Steel Corp Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
JPS60149729A (en) * 1984-01-11 1985-08-07 Kawasaki Steel Corp Production of cold rolled steel sheet for press forming
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS6237341A (en) * 1985-08-12 1987-02-18 Kawasaki Steel Corp Hot-rolled steel plate for superdrawing having superior resistance to secondary operation brittleness
JPS6338556A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd Cold rolled steel sheet for deep drawing having superior resistance to cracking by secondary working and its manufacture
JPS63121623A (en) * 1986-11-11 1988-05-25 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing having excellent ridging resistance and chemical convertibility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5974232A (en) * 1982-10-20 1984-04-26 Nippon Steel Corp Production of bake hardenable galvanized steel sheet for ultradeep drawing having extremely outstanding secondary processability
JPS60149729A (en) * 1984-01-11 1985-08-07 Kawasaki Steel Corp Production of cold rolled steel sheet for press forming
JPS61119621A (en) * 1984-11-16 1986-06-06 Nippon Steel Corp Manufacture of cold rolled steel sheet for deep drawing
JPS6237341A (en) * 1985-08-12 1987-02-18 Kawasaki Steel Corp Hot-rolled steel plate for superdrawing having superior resistance to secondary operation brittleness
JPS6338556A (en) * 1986-08-04 1988-02-19 Nisshin Steel Co Ltd Cold rolled steel sheet for deep drawing having superior resistance to cracking by secondary working and its manufacture
JPS63121623A (en) * 1986-11-11 1988-05-25 Kawasaki Steel Corp Production of cold rolled steel sheet for deep drawing having excellent ridging resistance and chemical convertibility

Also Published As

Publication number Publication date
JPH0394021A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
EP2415894B1 (en) Steel sheet excellent in workability and method for producing the same
JP4650006B2 (en) High carbon hot-rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
EP1731626A1 (en) High-rigidity high-strength thin steel sheet and method for producing same
EP2184374A1 (en) High-strength hot-dip galvanized steel sheet and process for producing the same
EP0048761A1 (en) High-tensile, cold-rolled steel plate with excellent formability and process for its production, as well as high-tensile, galvanized steel plate with excellent formability, and process for its production
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
EP0559225B1 (en) Producing steel sheet having high tensile strength and excellent stretch flanging formability
JPH07188834A (en) High strength steel sheet having high ductility and its production
US20190218638A1 (en) Method for the manufacture of twip steel sheet having an austenitic matrix
JPH0215609B2 (en)
JPH0567684B2 (en)
JP2002226937A (en) Cold rolled steel sheet and plated steel sheet capable of increasing strength by heat treatment after forming and method for producing the same
JPH07116521B2 (en) Thin steel sheet manufacturing method
JPH0784619B2 (en) Method for producing cold-rolled steel sheet excellent in deep drawability and resistance to secondary work brittleness
JPH0784618B2 (en) Method for producing cold-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JP3466298B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH0784622B2 (en) Method for producing hot-rolled steel sheet for deep drawing excellent in secondary processing brittleness resistance
JP3911075B2 (en) Manufacturing method of steel sheet for ultra deep drawing with excellent bake hardenability
JPH0774412B2 (en) High-strength thin steel sheet excellent in workability and resistance to placement cracking and method for producing the same
JP3366661B2 (en) Manufacturing method of high tensile cold rolled steel sheet with excellent deep drawability
JPH03150317A (en) Manufacture of hot dip galvanized cold rolled steel sheet for deep drawing having excellent brittlement resistance in secondary working
JPH0756051B2 (en) Manufacturing method of high strength cold rolled steel sheet for processing
JPH06248340A (en) Production of hot rolled steel sheet excellent in workability
JPH0745696B2 (en) Method for producing hot rolled steel sheet with excellent workability
JPH0466621A (en) Production of hot rolled steel plate for deep drawing excellent in resistance to secondary working brittleness