JPH0367646A - Manufacture of fiber reinforced resin long composite molded body - Google Patents

Manufacture of fiber reinforced resin long composite molded body

Info

Publication number
JPH0367646A
JPH0367646A JP1205157A JP20515789A JPH0367646A JP H0367646 A JPH0367646 A JP H0367646A JP 1205157 A JP1205157 A JP 1205157A JP 20515789 A JP20515789 A JP 20515789A JP H0367646 A JPH0367646 A JP H0367646A
Authority
JP
Japan
Prior art keywords
resin
composite molded
impregnated fiber
molded body
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1205157A
Other languages
Japanese (ja)
Other versions
JP2661749B2 (en
Inventor
Hironori Tabata
博則 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1205157A priority Critical patent/JP2661749B2/en
Publication of JPH0367646A publication Critical patent/JPH0367646A/en
Application granted granted Critical
Publication of JP2661749B2 publication Critical patent/JP2661749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the impact resistance of a fiber reinforced resin long composite molded body reinforced by a large number of continuous long fibers by repeatedly applying tension and relaxation to at least one resin impregnated fiber material and integrally laminating all of resin impregnated fiber materials. CONSTITUTION:A large number of the long fibers 1 introduced into fluidized beds 30 are impregnated with a powdery thermoplastic resin 12 held to a suspended state to prepare three upper, intermediate and lower strip-like resin impregnated fiber materials 10'. When a tension control roll 21 moves upwardly, tension is applied to the intermediate resin impregnated fiber material 10' and, when the tension control roll 21 moves downwardly, relaxation is applied to the intermediate resin impregnated fiber material 10'. The intermediate resin impregnated fiber material 10' is passed through a shaking apparatus 20 and transferred while repeatedly shaken in the lateral direction to be passed between heating pinch rolls 40 and all of the resin impregnated fiber materials 10' are thermally welded herein to be integrally laminated.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続した多数の長繊維により強化した繊維強
化樹脂長尺複合成形体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a fiber-reinforced resin elongate composite molded article reinforced with a large number of continuous long fibers.

(従来の技術) ガラス繊維などの織布、不織布、ロービングに、不飽和
ポリエステル樹脂などの合成樹脂液を含浸して形成した
プリプレグシートを用いて、繊維強化樹脂長尺複合成形
体を製造する技術は広く知られている。
(Prior technology) A technology for manufacturing fiber-reinforced resin long composite molded bodies using prepreg sheets formed by impregnating woven fabrics, non-woven fabrics, or rovings such as glass fibers with synthetic resin liquids such as unsaturated polyester resins. is widely known.

かかる繊維強化樹脂長尺複合成形体の製造技術にあって
、織布や不織布を用いる場合は、強度バランスは良いが
、材料コストが高く、しかも合成樹脂液を均−且つ充分
に含浸し難いという問題がある。これに対し、ロービン
グのような長繊維を用いる場合は、上記のような問題は
少ないという利点がある。
In the manufacturing technology of such fiber-reinforced resin long composite molded bodies, when woven fabrics or non-woven fabrics are used, the strength balance is good, but the material cost is high and it is difficult to impregnate the synthetic resin liquid uniformly and sufficiently. There's a problem. On the other hand, when long fibers such as rovings are used, there is an advantage that the above-mentioned problems are less likely to occur.

(発明が解決しようとする課題) ところが、ロービングのような長繊維を用いた繊維強化
樹脂長尺複合成形体は、長繊維が長手方向のみに配列し
ており、幅方向の強度が低い。そのため、織布や不織布
を用いたものに比べ、耐衝撃性が充分に改善されないと
いう問題がある。
(Problems to be Solved by the Invention) However, in a fiber-reinforced resin long composite molded article using long fibers such as roving, the long fibers are arranged only in the longitudinal direction, and the strength in the width direction is low. Therefore, there is a problem that the impact resistance is not sufficiently improved compared to those using woven fabrics or nonwoven fabrics.

また、かかる繊維強化樹脂長尺複合成形体は、これを芯
材として押出機のクロスヘッド金型に導入し、これに熱
可塑性樹脂を溶融押出被覆し一体化する場合、強度に方
向性があり耐熱性も充分でなく、そのためクロスヘッド
金型内で樹脂圧力により芯材が変形したり彼れを生じた
りして、均一な製品を得難いという問題もある。
In addition, when such a fiber-reinforced resin long composite molded product is introduced into a crosshead mold of an extruder as a core material and is melt-extruded coated with a thermoplastic resin and integrated, the strength is directional. Heat resistance is also insufficient, and as a result, the core material may be deformed or warped due to resin pressure within the crosshead mold, making it difficult to obtain a uniform product.

本発明は、上記の問題を解決するものであり、その目的
とするところは、耐衝撃性が充分に改善され、また製品
の均一性が改善された繊維強化樹脂長尺複合成形体の製
造方法を提供することにある。
The present invention solves the above-mentioned problems, and its purpose is to provide a method for producing a long fiber-reinforced resin composite molded article that has sufficiently improved impact resistance and improved product uniformity. Our goal is to provide the following.

(課題を解決するための手段) 本発明の繊維強化樹脂長尺複合成形体の製造方法は、次
の二つの発明からなる。
(Means for Solving the Problems) The method for producing a fiber-reinforced resin elongated composite molded article of the present invention consists of the following two inventions.

第一の発明は、連続した多数の長繊維を流動床に導入し
、これに粉末状の熱可塑性樹脂を含浸させて少なくとも
二枚の帯状の樹脂含浸繊維材を作り、これを積層一体化
するに際し、その中の少なくとも一枚の樹脂含浸繊維材
に緊張と弛緩とを繰り返し与え、次いでこの樹脂含浸繊
維材を長手方向に対して幅方向に繰り返し揺動させ、そ
の後全ての樹脂含浸繊維材を積層一体化することを特徴
とする。
The first invention involves introducing a large number of continuous long fibers into a fluidized bed, impregnating them with a powdered thermoplastic resin to create at least two belt-shaped resin-impregnated fiber materials, and laminating them into one piece. At this time, tension and relaxation are repeatedly applied to at least one resin-impregnated fiber material, and then this resin-impregnated fiber material is repeatedly swung in the width direction as well as the longitudinal direction, and then all the resin-impregnated fiber materials are It is characterized by being laminated and integrated.

第二の発明は、上記の方法で製造された繊維強化樹脂長
尺複合成形体を押出機のクロスヘッド金型に導入し、こ
れに熱可塑性樹脂を溶融押出被覆し一体化することを特
徴とする。
The second invention is characterized in that the fiber-reinforced resin long composite molded article produced by the above method is introduced into a crosshead mold of an extruder, and the thermoplastic resin is melt-extruded coated and integrated. do.

以上の構成により、本発明の目的が達成される。With the above configuration, the object of the present invention is achieved.

以下、図面を参照しながら、本発明方法を説明する。The method of the present invention will be explained below with reference to the drawings.

第1図は第一の発明を説明するための概略図である。第
1図において、連続した多数の長繊維11は、ボビンか
ら繰り出され長手方向に帯状に配列されて、多孔質の底
板31を備えた流動床30に導入される。長繊維1工は
、通常、流動床30に導入される前か、或いは流動床3
0の中で解繊される。図においては、流動床30の中で
解繊具32により解繊される。長繊維11としては、ガ
ラス繊維、カーボン繊維、セラミック繊維などのロービ
ングが好適に用いられる。
FIG. 1 is a schematic diagram for explaining the first invention. In FIG. 1, a large number of continuous long fibers 11 are unwound from a bobbin, arranged in a strip in the longitudinal direction, and introduced into a fluidized bed 30 equipped with a porous bottom plate 31. The long fibers are usually fed before being introduced into the fluidized bed 30 or before being introduced into the fluidized bed 30.
It is defibrated in 0. In the figure, the fibers are defibrated by a defibrator 32 in a fluidized bed 30. As the long fibers 11, rovings such as glass fibers, carbon fibers, and ceramic fibers are preferably used.

上方と中間と下方の流動床30には、粉末状の熱可塑性
樹脂12が空気圧により多孔質の底板31の上方に吹き
上げられて浮遊状態に保たれている。粉末状の熱可塑性
樹脂12の粒子径は、一般に10〜200μ程度とされ
る。そして、上方と中間と下方の流動床30にそれぞれ
導入された多数の長繊維11に、浮遊状態にある粉末状
の熱可塑性樹脂12がそれぞれ含浸され、上中下三枚の
帯状の樹脂含浸繊維材10”が作られる。
In the upper, intermediate, and lower fluidized beds 30, powdered thermoplastic resin 12 is blown up by air pressure above a porous bottom plate 31 and kept in a floating state. The particle size of the powdered thermoplastic resin 12 is generally about 10 to 200 microns. Then, a large number of long fibers 11 introduced into the upper, middle, and lower fluidized beds 30 are each impregnated with powdered thermoplastic resin 12 in a suspended state, and three belt-shaped resin-impregnated fibers are formed in the upper, middle, and lower parts. 10” of wood is made.

熱可塑性樹脂12としては、ポリ塩化ビニル、ポリエチ
レン、ポリプロピレン、ポリフェニレンサルファイドや
ポリエーテルスルフォンなどのエンジニアリング樹脂等
が用いられる。上記長繊維11は熱可塑性樹脂12に対
して90容量%まで含浸され得るが、60容量%以下の
範囲で含浸されるのが好ましい。
As the thermoplastic resin 12, engineering resins such as polyvinyl chloride, polyethylene, polypropylene, polyphenylene sulfide, and polyether sulfone are used. The long fibers 11 may be impregnated with the thermoplastic resin 12 up to 90% by volume, but preferably within a range of 60% by volume or less.

そして、中間の樹脂含浸繊維材lO”は張力制御バー又
はロール21に掛けられる。この張力制御バー又はロー
ル21は、点線で図示したように、上方及び下方へ比較
的速く、一定の振幅及び周期で上下方向に往復移動する
ように構成されている。したがって、張力制御ロール2
1が上方へ移動するときに、中間の樹脂含浸繊維材10
゛ に緊張が与えられ、張力制御ロール21が下方へ移
動するときに、中間の樹脂含浸繊維材10”に弛緩が与
えられる。このようにして中間の樹脂含浸繊維材10゛
に緊張と弛緩とが繰り返し与えられ、中間の樹脂含浸繊
維材10゛が上下の樹脂含浸繊維材10”よりも余分に
流動床30から引き出される。
The intermediate resin-impregnated fibrous material lO'' is then applied to a tension control bar or roll 21 which moves upwardly and downwardly, relatively quickly, with constant amplitude and periodicity, as shown in dotted lines. Therefore, the tension control roll 2 is configured to reciprocate in the vertical direction.
1 moves upward, the intermediate resin-impregnated fiber material 10
Tension is applied to the intermediate resin-impregnated fibrous material 10'', and as the tension control roll 21 moves downward, relaxation is applied to the intermediate resin-impregnated fibrous material 10''. is applied repeatedly, and the middle resin-impregnated fiber material 10'' is drawn out from the fluidized bed 30 more than the upper and lower resin-impregnated fiber materials 10''.

次いで、中間の樹脂含浸繊維材10゛ は揺動装置20
に通される。この揺動装置20はレール上に設置され、
樹脂含浸繊維材10゛の長手方向(移送方向)に対して
幅方向、即ち紙面に対して垂直方向に、一定の振幅及び
周期で往復移動するように構成されている。したがって
、この揺動装置に通された中間の樹脂含浸繊維材10”
は、幅方向に繰り返し揺動しながら移送される。
Next, the intermediate resin-impregnated fiber material 10 is moved to a rocking device 20.
passed through. This swing device 20 is installed on a rail,
It is configured to reciprocate with a constant amplitude and period in the width direction of the resin-impregnated fiber material 10' in the longitudinal direction (transfer direction), that is, in the direction perpendicular to the plane of the paper. Therefore, the intermediate resin-impregnated fibrous material 10" passed through this rocking device
is transported while repeatedly swinging in the width direction.

その直後、この中間の樹脂含浸繊維材10′に上方と下
方の樹脂含浸繊維材10゛ が重ねられ、一対の積層用
の加熱ピンチロール40に通され、ここで樹脂含浸繊維
材10゛ の全ての層が熱溶着され積層一体化される。
Immediately thereafter, the upper and lower resin-impregnated fiber materials 10' are superimposed on this intermediate resin-impregnated fiber material 10', and passed through a pair of heating pinch rolls 40 for lamination, where all of the resin-impregnated fiber materials 10' are stacked. The layers are thermally welded and laminated into one piece.

ここで樹脂含浸繊維材10゛ の樹脂12が完全に溶融
していない場合もあるので、引き続いて赤外線ヒーター
等を備えた加熱炉41に通されここで樹脂12が完全に
溶融され、一対の厚み調整用のピンチロール42で厚み
が調整された後、一対の引取ピンチロール50で引き取
られる。このようにして、繊維強化樹脂長尺複合成形体
10が製造される。この長尺複合成形体10は、図のよ
うに一旦巻き取ってもよいが、巻き取ることなく次の工
程へ連続させてもよい。
At this point, the resin 12 of the resin-impregnated fiber material 10' may not be completely melted, so it is subsequently passed through a heating furnace 41 equipped with an infrared heater, etc., where the resin 12 is completely melted, and the thickness of the pair of fibers is After the thickness is adjusted by the adjustment pinch rolls 42, it is taken up by a pair of take-up pinch rolls 50. In this way, the fiber-reinforced resin elongated composite molded body 10 is manufactured. This long composite molded body 10 may be wound up once as shown in the figure, but it may also be continued to the next step without being wound up.

第2図は第二の発明を説明するための概略図である。第
1図に示す方法で製造された長尺複合成形体10は、第
2図に示すように、加熱フォーミング装置60により加
熱軟化され、軒樋、波板、デツキ材などの所望の形状に
賦形され、引き続いて冷却フォーミング装置61により
冷却される。所望の形状に賦形された長尺複合成形体1
0は、上記のように冷却フォーミング装置61により冷
却した方が次のクロスヘッド金型への導入が円滑になし
得て好ましいが、賦形された複合芯材10は必ずしも冷
却しないでもよい。
FIG. 2 is a schematic diagram for explaining the second invention. The long composite molded body 10 manufactured by the method shown in FIG. 1 is heated and softened by a heating forming device 60, as shown in FIG. It is then cooled by a cooling forming device 61. Long composite molded body 1 shaped into a desired shape
0 is preferably cooled by the cooling forming device 61 as described above because it can be smoothly introduced into the next crosshead mold, but the shaped composite core material 10 does not necessarily need to be cooled.

このように賦形された長尺複合成形体10は、引き続い
て押出機71のクロスヘッド金型70に導入され、ここ
でクロスヘッド金型70から溶融押出される熱可塑性樹
脂13が、長尺複合成形体10の全面に融着し被覆一体
化される。熱可塑性樹脂13としては、前記長繊維11
に含浸される熱可塑性樹脂12と同様な樹脂が用いられ
る。また、クロスヘッド金型70のランド部の長さは、
押出温度、押出速度、使用樹脂等により適宜窓められ、
その間隙は所望の形状に設計され、軒樋、波板、デツキ
材など所望の形状に賦形される。
The elongated composite molded body 10 shaped in this way is subsequently introduced into the crosshead mold 70 of the extruder 71, where the thermoplastic resin 13 melted and extruded from the crosshead mold 70 is The entire surface of the composite molded body 10 is fused and coated integrally. As the thermoplastic resin 13, the long fibers 11
The same resin as the thermoplastic resin 12 impregnated in is used. In addition, the length of the land portion of the crosshead mold 70 is
The window is adjusted appropriately depending on the extrusion temperature, extrusion speed, resin used, etc.
The gap is designed into a desired shape and shaped into a desired shape such as an eaves gutter, corrugated plate, or decking material.

その後、冷却金型等からなるサイジング装置80により
表面仕上げが行われ冷却後、カタピラ式引張機等の引張
装置90で引き取られ、熱可塑性樹脂13で被覆された
繊維強化樹脂長尺複合成形体14が製造される。
Thereafter, the surface is finished by a sizing device 80 consisting of a cooling mold, etc., and after cooling, it is taken out by a tensioning device 90 such as a caterpillar tensioning machine, and the fiber-reinforced resin long composite molded body 14 is coated with a thermoplastic resin 13. is manufactured.

(作用) 第一発明の方法によれば、連続した多数の長繊維を流動
床に導入して粉末状の熱可塑性樹脂を含浸させるので含
浸が容易に行われる。また、少なくとも一枚の樹脂含浸
繊維材を長平方向に対して幅方向に繰り返し揺動させ、
全ての樹脂含浸繊維材と積層一体化するので、揺動させ
た樹脂含浸繊維材を構成する長繊維は、長平方向に対し
て交叉するように斜めに配向し、異方向に対する強度バ
ランスが良くなる。
(Function) According to the method of the first invention, since a large number of continuous long fibers are introduced into a fluidized bed and impregnated with a powdered thermoplastic resin, impregnation is easily performed. Further, at least one resin-impregnated fiber material is repeatedly swung in the width direction with respect to the longitudinal direction,
Since it is laminated and integrated with all the resin-impregnated fiber materials, the long fibers that make up the oscillated resin-impregnated fiber materials are oriented obliquely so as to cross the longitudinal direction, improving the strength balance in different directions. .

しかも、揺動させる前の樹脂含浸繊維材には緊張と弛緩
とが繰り返し与えられるので、それによりこの樹脂含浸
繊維材は他の樹脂含浸繊維材よりも余分に流動床から引
き出され、この余分に引き出される樹脂含浸繊維材によ
り、その後の幅方向への繰り返し揺動操作が抵抗なく円
滑に行われる。それゆえ、積層一体化の際に、揺動させ
た樹脂含浸繊維材の揺動度合いが戻って減少することが
確実に防止される。
Moreover, since tension and relaxation are repeatedly applied to the resin-impregnated fiber material before rocking, this resin-impregnated fiber material is pulled out of the fluidized bed more than other resin-impregnated fiber materials, and this excess The resin-impregnated fiber material that is drawn out allows subsequent repeated swinging operations in the width direction to be performed smoothly without resistance. Therefore, during lamination and integration, the degree of oscillation of the oscillated resin-impregnated fiber material is reliably prevented from returning and decreasing.

また、第二発明の方法によれば、上記第一発明の方法に
より製造された長尺複合成形体を芯材として使用するの
で、この芯材は異方向に対する強度バランスが良く、こ
れを押出機のクロスヘッド金型に導入しても、クロスヘ
ッド金型から溶融押出される熱可塑性樹脂の熱と押出圧
力により長尺複合成形体の芯材が変形したり破れを生じ
たりすることが防止される。
Further, according to the method of the second invention, since the elongated composite molded body produced by the method of the first invention is used as a core material, this core material has a good balance of strength in different directions, and is extruded. Even when introduced into a crosshead mold, the core material of the long composite molded product is prevented from deforming or tearing due to the heat and extrusion pressure of the thermoplastic resin melted and extruded from the crosshead mold. Ru.

そして、クロスヘッド金型から溶融押出される熱可塑性
樹脂の熱と押出圧力により、熱可塑性樹脂は長尺複合成
形体芯材に強く押しつけられて強固に接着し一体化され
る。
Then, due to the heat and extrusion pressure of the thermoplastic resin melted and extruded from the crosshead mold, the thermoplastic resin is strongly pressed against the core material of the elongated composite molded body, and is firmly adhered and integrated.

(実施例) 以下、本発明の実施例及び比較例を示す。(Example) Examples and comparative examples of the present invention are shown below.

1韮劃 本実施例では、第1図及び第2図に示す方法で、軒樋と
なる繊維強化樹脂長尺複合成形体を製造した。
1. In this example, a fiber-reinforced resin long composite molded body to be used as an eaves gutter was manufactured by the method shown in FIGS. 1 and 2.

先ず、ガラスロービング(114400:日東紡製)1
1を長手方向に多数条配列させて流動床30に導入し、
そこで解繊しながら圧力2.5 kg/ c+fiの空
気により吹き上げられて浮遊状態にある粉末状の塩化ビ
ニル樹脂配合物(平均粒径100μ、融点180℃)(
TK−400:信越化学製)12を含浸させ、帯状の樹
脂含浸繊維材10’を、上方、中間、下方に三枚作成し
た。この時の速度は0.2m/分であった。この三枚の
樹脂含浸繊維材10゛の厚さは約0.5m、ガラスロー
ビング含有量は30容量%であった。そして、中間の樹
脂含浸繊維材10゛を、振幅が2CI+1、周期が3往
復/秒で上下方向に移動する張力制御ロール21に通し
た。
First, glass roving (114400: manufactured by Nittobo) 1
1 is introduced into the fluidized bed 30 in a plurality of strips arranged in the longitudinal direction,
There, the powdered vinyl chloride resin compound (average particle size 100μ, melting point 180℃) is blown up by air at a pressure of 2.5 kg/c+fi while being defibrated (average particle size 100μ, melting point 180℃)
TK-400 (manufactured by Shin-Etsu Chemical Co., Ltd.) 12 was impregnated to create three belt-shaped resin-impregnated fiber materials 10' at the top, middle, and bottom. The speed at this time was 0.2 m/min. The thickness of these three resin-impregnated fiber materials of 10 mm was approximately 0.5 m, and the glass roving content was 30% by volume. Then, the intermediate resin-impregnated fiber material 10'' was passed through a tension control roll 21 that moves vertically at an amplitude of 2CI+1 and a cycle of 3 reciprocations/second.

次いで、この中間の樹脂含浸繊維材10”を、振幅がl
0CII、周期が1.5往復/分で幅方向に揺動する揺
動装置20に通した。その後、この中間の樹脂含浸繊維
材10”に上方と下方の樹脂含浸繊維材10゛を重さね
、200℃の溶着用の加熱ビンチロール40に通し、全
ての層を熱圧着して積層一体化した。引き続いて加熱炉
41に通して樹脂12を200℃に加熱して完全に溶融
し、さらに厚み調整用のピンチロール42に通した後、
引取ビンチロール50で引き取り、繊維強化樹脂長尺複
合成形体lOを製造した。この場合、中間の樹脂含浸繊
維材10°を構成する長繊維11は、長平方向に対して
約13度斜めに配向していた。以上の方法は第一発明に
相当する。
Next, this intermediate resin-impregnated fiber material 10'' is
It was passed through a swinging device 20 that swings in the width direction at 0CII and a cycle of 1.5 reciprocations/minute. After that, 10" of upper and lower resin-impregnated fiber materials are placed on top of this intermediate resin-impregnated fiber material 10", passed through a heating vinyl roll 40 for welding at 200°C, and all layers are thermo-pressed and laminated together. Subsequently, the resin 12 was heated to 200° C. in a heating furnace 41 to completely melt it, and then passed through a pinch roll 42 for thickness adjustment.
The fiber-reinforced resin elongated composite molded article 10 was produced by taking it off with a take-up vinyl roll 50. In this case, the long fibers 11 constituting the intermediate resin-impregnated fiber material 10 degrees were oriented obliquely at about 13 degrees with respect to the longitudinal direction. The above method corresponds to the first invention.

この長尺複合成形体10を170°Cの温度に保持され
たフォーミング装置60により加熱軟化させ角型の軒樋
状に賦形した後冷却した。続いて、賦形された長尺複合
成形体lOを押出機のクロスヘッド金型70に導入し、
この表面に塩化ビニル樹脂配合物13を185℃で0.
5mmの厚さに溶融押出して被覆した。
This long composite molded body 10 was heated and softened using a forming device 60 maintained at a temperature of 170° C., shaped into a square eaves gutter shape, and then cooled. Subsequently, the shaped long composite molded body IO is introduced into the crosshead mold 70 of the extruder,
PVC resin compound 13 was applied to this surface at 185°C with a temperature of 0.
The coating was melt extruded to a thickness of 5 mm.

次いで、サイジング装置80により表面仕上げを行い冷
却して引張機90で引き取り、厚さ1.5閣の軒樋とな
る繊維強化樹脂長尺複合成形体14を製造した。この時
のライン速度は3a+/分であった。なお、上記のクロ
スヘッド金型70は、ランド長さが200mで、角型の
軒樋状の間隙を有するものを用いた。以上の方法は第二
発明に相当する。
Next, the product was surface-finished using a sizing device 80, cooled, and taken up by a tensile machine 90 to produce a fiber-reinforced resin elongated composite molded product 14 that would become an eaves gutter with a thickness of 1.5 cm. The line speed at this time was 3a+/min. The crosshead mold 70 used had a land length of 200 m and a rectangular gutter-like gap. The above method corresponds to the second invention.

この軒樋複合成形体14について、次の方法で熱伸縮性
、耐衝撃性、押出成形性を評価した。
Thermal stretchability, impact resistance, and extrusion moldability of this eave gutter composite molded body 14 were evaluated using the following methods.

その結果、線膨張係数は2X10−’/”C1衝撃強度
は30kg−cm、押出成形性の評価では、複合成形体
10の変形や破れが認められず、得られた軒樋複合成形
体14の厚みは均一であった。
As a result, the coefficient of linear expansion was 2X10-'/''C1, the impact strength was 30 kg-cm, and in the extrusion moldability evaluation, no deformation or tearing of the composite molded body 10 was observed, and the obtained eave gutter composite molded body 14 The thickness was uniform.

(1)熱伸縮性 軒樋複合成形体14を4mの長さに裁断して試験片とし
、これを恒温恒温室に入れ20°Cでの長さLm(lを
測定し、次に60°Cに温度を上昇させて60℃での長
さり、。を測定し、次式で線膨張係数αを算出した。α
・(Li2−Lto)/(40(”C) XLz。)。
(1) The heat-stretchable eaves gutter composite molded body 14 is cut into a length of 4 m to obtain a test piece, which is placed in a thermostatic chamber and the length Lm (l) at 20°C is measured, and then The length at 60°C was measured by increasing the temperature to 60°C, and the coefficient of linear expansion α was calculated using the following formula: α
・(Li2-Lto)/(40("C) XLz.).

(2)耐衝撃性 軒樋複合成形体14から50nuw X 50mn+に
切断して試験片を作威し、この試験片にデュポン衝撃試
験機で1.5 kgの錘を落下させ、試験片が破損する
落下距離から衝撃強度を測定した。
(2) A test piece was prepared by cutting the impact-resistant eaves gutter composite molded body 14 into 50 nuw x 50 m+ pieces, and a 1.5 kg weight was dropped onto this test piece using a DuPont impact tester, and the test piece was damaged. The impact strength was measured from the falling distance.

(3)押出成形性 芯材となる複合成形体10を押出機のクロスヘッド金型
70に導入し、この表面に塩化ビニル樹脂配合物13を
連続して5時間溶融押出して被覆した際の、複合成形体
10の変形や破れの状態を観察した。
(3) Extrudability When the composite molded body 10 serving as the core material is introduced into the crosshead mold 70 of the extruder, and the vinyl chloride resin compound 13 is coated on the surface by continuous melt extrusion for 5 hours, The state of deformation and tearing of the composite molded body 10 was observed.

北較刺 実施例において、中間の樹脂含浸繊維材lO゛を、張力
制御ロール21及び揺動装置20に通さず、それ以外は
実施例と同様に行った。その結果、線膨張係数は2X1
0−’/”C1衝撃強度は7.5 kg・cm、押出成
形性の評価では、押出開始後約30分で複合成形体10
に破れが発生し、得られた軒樋複合成形体14の厚みは
、複合成形体10の破れ部分で不均一であった。
In the comparative example, the intermediate resin-impregnated fiber material lO' was not passed through the tension control roll 21 and the rocking device 20, but otherwise the same procedure as in the example was carried out. As a result, the coefficient of linear expansion is 2X1
0-'/"C1 impact strength is 7.5 kg cm, and extrusion moldability evaluation shows that the composite molded product 10
A tear occurred, and the thickness of the obtained eave gutter composite molded body 14 was non-uniform at the torn portion of the composite molded body 10.

(発明の効果) 上述の通り、第一発明の方法においては、多数の長繊維
への熱可塑性樹脂の含浸性が良く、また複合成形体を構
成する長繊維が、長平方向に対して交叉するように斜め
に確実且つ良好に配向し、異方向に対する強度バランス
が良くなる。それゆえ、複合成形体の耐衝撃性が改善さ
れる。
(Effects of the Invention) As described above, in the method of the first invention, the thermoplastic resin impregnates a large number of long fibers with good impregnation, and the long fibers constituting the composite molded article intersect with the long plane direction. As such, it is reliably and well oriented diagonally, and the strength balance in different directions is improved. Therefore, the impact resistance of the composite molded body is improved.

また、第二発明の方法においては、溶融押出被覆の際に
芯材となる上記複合成形体が変形したり、破れを生じた
りすることが防止され、しかも芯材となる複合成形体と
これに被覆される熱可塑性樹脂とが強固に融着一体化さ
れる。それゆえ、製品の均一性が改善され、耐久性の優
れた樹脂被覆の複合成形体が得られる。
Further, in the method of the second invention, the composite molded body serving as the core material is prevented from being deformed or broken during melt extrusion coating, and the composite molded body serving as the core material and the composite molded body are The coated thermoplastic resin is firmly fused and integrated. Therefore, the uniformity of the product is improved, and a resin-coated composite molded article with excellent durability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は第一発明方法の一例を示す概略図、第2図は第
二発明方法の一例を示す概略図である。 10・・・長尺複合成形体、10゛・・・樹脂含浸繊維
材、11・・・長繊維、12・・・粉末状の熱可塑性樹
脂、13・・・被覆された熱可塑性樹脂、14・・・樹
脂被覆の長尺複合成形体、20・・・揺動装置、21・
・・張力制御バー又はロール、30・・・流動床、40
・・・積層用の加熱ピンチロール、41・・・加熱炉、
42・・・厚み調整用のピンチロール、50・・・引取
ピンチロール、60・・・加熱フォーミング装置、70
・・・押出機のクロスヘッド金型、80・・・サイジン
グ装置、90・・・引張装置。
FIG. 1 is a schematic diagram showing an example of the first invention method, and FIG. 2 is a schematic diagram showing an example of the second invention method. DESCRIPTION OF SYMBOLS 10... Long composite molded object, 10゛... Resin-impregnated fiber material, 11... Long fiber, 12... Powdered thermoplastic resin, 13... Coated thermoplastic resin, 14 ... Resin-coated elongated composite molded body, 20... Rocking device, 21.
...Tension control bar or roll, 30...Fluidized bed, 40
...Heating pinch roll for lamination, 41...Heating furnace,
42...Pinch roll for thickness adjustment, 50...Take-up pinch roll, 60...Heating forming device, 70
...Crosshead mold of extruder, 80...Sizing device, 90...Tension device.

Claims (1)

【特許請求の範囲】 1、連続した多数の長繊維を流動床に導入し、これに粉
末状の熱可塑性樹脂を含浸させて少なくとも二枚の帯状
の樹脂含浸繊維材を作り、これを積層一体化するに際し
、その中の少なくとも一枚の樹脂含浸繊維材に緊張と弛
緩とを繰り返し与え、次いでこの樹脂含浸繊維材を長手
方向に対して幅方向に繰り返し揺動させ、その後全ての
樹脂含浸繊維材を積層一体化することを特徴とする繊維
強化樹脂長尺複合成形体の製造方法。 2、請求項1記載の方法で製造された繊維強化樹脂長尺
複合成形体を押出機のクロスヘッド金型に導入し、これ
に熱可塑性樹脂を溶融押出被覆し一体化することを特徴
とする繊維強化樹脂長尺複合成形体の製造方法。
[Claims] 1. A large number of continuous long fibers are introduced into a fluidized bed and impregnated with a powdered thermoplastic resin to form at least two belt-shaped resin-impregnated fiber materials, which are laminated together. During the process, tension and relaxation are repeatedly applied to at least one resin-impregnated fiber material, and then this resin-impregnated fiber material is repeatedly rocked in the width direction as well as the longitudinal direction, and then all the resin-impregnated fibers are A method for manufacturing a fiber-reinforced resin elongated composite molded article, characterized by laminating and integrating materials. 2. The fiber-reinforced resin elongated composite molded body produced by the method according to claim 1 is introduced into a crosshead mold of an extruder, and a thermoplastic resin is melt-extruded coated thereon and integrated. A method for producing a fiber-reinforced resin long composite molded article.
JP1205157A 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body Expired - Fee Related JP2661749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205157A JP2661749B2 (en) 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205157A JP2661749B2 (en) 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body

Publications (2)

Publication Number Publication Date
JPH0367646A true JPH0367646A (en) 1991-03-22
JP2661749B2 JP2661749B2 (en) 1997-10-08

Family

ID=16502366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205157A Expired - Fee Related JP2661749B2 (en) 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body

Country Status (1)

Country Link
JP (1) JP2661749B2 (en)

Also Published As

Publication number Publication date
JP2661749B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
JPH02134232A (en) Continuous molding method of reinforced product
US6294036B1 (en) Method and device for making composite sheets
WO2003046057A1 (en) Fiber-reinforced thermoplastic resin sheet, structural material comprising the same, and process for producing fiber-reinforced thermoplastic resin sheet
US5716697A (en) Glass fiber containing polymer sheet and process for preparing same
JPH0367646A (en) Manufacture of fiber reinforced resin long composite molded body
JP2661748B2 (en) Method for producing fiber-reinforced resin long composite molded body
JPH0740341A (en) Production of fibrous composite sheet
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JPH08150664A (en) Production of fiber composite sheet
JPH02217231A (en) Fiber reinforced synthetic resin molded form and production thereof
JP3027043B2 (en) Method for producing fiber composite sheet
JPH04366627A (en) Fiber-reinforced sheet
JPH02160512A (en) Prepreg sheet and production thereof
JPH0985744A (en) Manufacture of fiber composite sheet
JPH03254936A (en) Production of fiber reinforced thermoplastic resin sheet
JPH02220841A (en) Composite formed body in continuous form and manufacture thereof
JP2000158571A (en) Manufacture of composite laminated molding and laminated mat used for it
JPH07100829A (en) Manufacture of long fiber-reinforced thermoplastic resin sheet
JPH071448A (en) Production of fiber reinforced resin sheet and fiber reinforced resin molded product
JP2003071958A (en) Composite molding and its manufacturing method
JPH1067052A (en) Continuous production of fiber-reinforced thermoplastic resin foam
JPH05147034A (en) Production of stamp molding sheet
JP2003025355A (en) Long fiber reinforced thermoplastic resin sheet, method for manufacturing the same, and composite molded object reinforced by the sheet
JPH02258255A (en) Long-sized composite molded body and manufacture thereof
JPH10113943A (en) Continuous manufacture of fiber reinforced thermoplastic resin foam

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees