JPH02217231A - Fiber reinforced synthetic resin molded form and production thereof - Google Patents

Fiber reinforced synthetic resin molded form and production thereof

Info

Publication number
JPH02217231A
JPH02217231A JP1038862A JP3886289A JPH02217231A JP H02217231 A JPH02217231 A JP H02217231A JP 1038862 A JP1038862 A JP 1038862A JP 3886289 A JP3886289 A JP 3886289A JP H02217231 A JPH02217231 A JP H02217231A
Authority
JP
Japan
Prior art keywords
resin
fiber
reinforced synthetic
thermoplastic resin
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1038862A
Other languages
Japanese (ja)
Inventor
Kouichi Karikaya
孝一 刈茅
Yasumasa Morikane
森鎌 保昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1038862A priority Critical patent/JPH02217231A/en
Publication of JPH02217231A publication Critical patent/JPH02217231A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To obtain a fiber reinforced synthetic resin molded form which is excellent in shaping properties and melt-sticking properties to thermoplastic resin and durability by impregnating reinforced fiber with the mixed resin liquid of thermosetting resin and thermoplastic resin. CONSTITUTION:Reinforced fiber 11 such as glass roving is arranged to the lengthwise direction and introduced into an impregnation tank 30. The reinforced fiber 11 is impregnated with the mixed resin liquid 14 of thermosetting resin 12 and thermoplastic resin 13 in the impregnation tank 30. This reinforced fiber 11 impregnated with the mixed resin liquid 14 is defoamed and regulated in thickness by a pair of pinch rolls 31. Thereafter it is passed through a heating and drying furnace 40 and therein curing reaction of thermosetting resin 12 contained in the mixed resin 14 is performed to obtain the fiber reinforced synthetic resin molded form 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、繊維強化合成樹脂成形体及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fiber-reinforced synthetic resin molded article and a method for producing the same.

(従来の技術) 軒樋などの建材は、塩化ビニル樹脂などの熱可塑性樹脂
で長尺に成形され、広く使用されている。しかし、かか
る熱可塑性樹脂の成形体は、熱伸縮が大きく剛性が小さ
いため、四季や昼夜の気温変化により変形し、またひび
割れが発生し易いという欠点がある。
(Prior Art) Building materials such as eaves gutters are molded into long lengths from thermoplastic resin such as vinyl chloride resin and are widely used. However, such molded bodies of thermoplastic resin have large thermal expansion and contraction and low rigidity, and therefore have the disadvantage that they deform due to seasonal changes and temperature changes between day and night, and are susceptible to cracking.

このような欠点を改良するために、例えば特開昭58−
209560号公報には、ガラス繊維マットのような繊
維マントに不飽和ポリエステル樹脂のような熱硬化性樹
脂液を含浸させこれを成形して芯材を形成し、この芯材
を押出機のクロスヘッド金型に導入して塩化ビニル樹脂
のような熱可塑性樹脂を溶融押出被覆して、軒樋などの
繊維強化合成樹脂成形体を製造する方法が開示されてい
る。
In order to improve such drawbacks, for example, Japanese Patent Application Laid-Open No. 1986-
Publication No. 209560 discloses that a fiber mantle such as a glass fiber mat is impregnated with a thermosetting resin liquid such as an unsaturated polyester resin and then molded to form a core material, and this core material is passed through the crosshead of an extruder. A method for producing a fiber-reinforced synthetic resin molded article such as an eave gutter by introducing it into a mold and melt-extruding a thermoplastic resin such as vinyl chloride resin is disclosed.

(発明が解決しようとする課題) ところが、かかる繊維強化合成樹脂成形体の製造方法に
あっては、芯材を軒樋などの形状に賦形・する際の加熱
により、繊維に含浸された熱硬化性樹脂の硬化が進行す
るため、所望の形状に正確に曲げにくく賦形性が充分で
ない、また、かかる芯材に熱可塑性樹脂を溶融押出被覆
する場合、芯材中の熱硬化性樹脂とこの芯材に被覆され
る熱可塑性樹脂とは充分に融着しにくく、長期に亘り使
用していると、衝撃で芯材の割れや眉間剥離が発生する
という問題がある。
(Problem to be Solved by the Invention) However, in the manufacturing method of such a fiber-reinforced synthetic resin molded article, the heat impregnated into the fibers is heated when the core material is shaped into the shape of an eaves gutter, etc. As the curing of the curable resin progresses, it is difficult to accurately bend it into the desired shape, and its formability is insufficient.Also, when coating such a core material with a thermoplastic resin by melt extrusion, the thermosetting resin in the core material and It is difficult to sufficiently fuse the thermoplastic resin coated on the core material, and when used for a long period of time, there is a problem that the core material cracks or peels between the eyebrows due to impact.

本発明は、上記の問題を解決するものであり、その目的
とするところは、賦形性及び熱可塑性樹脂との融着性に
優れた繊維強化合成樹脂成形体を提供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a fiber-reinforced synthetic resin molded article that has excellent shaping properties and fusion properties with thermoplastic resins.

また、本発明の他の目的は、熱伸縮による変形、耐衝撃
性及び眉間剥離が改善され、耐久性に優れた繊維強化合
成樹脂成形体及びその製造方法の製造方法を提供するこ
とにある。
Another object of the present invention is to provide a fiber-reinforced synthetic resin molded article with improved deformation due to heat expansion and contraction, impact resistance, and glabellar peeling, and excellent durability, and a method for manufacturing the same.

(課題を解決するための手段) 本発明の繊維強化合成樹脂成形体は、強化繊維に熱硬化
性樹脂と熱可塑性樹脂との混合樹脂液を含浸させこれを
成形してなる。また、本発明の繊維強化合成樹脂成形体
は、強化繊維に熱硬化性樹脂と熱可塑性樹脂との混合樹
脂液を含浸させこれを成形した芯材に、熱可塑性樹脂を
被覆一体化してなる。
(Means for Solving the Problems) The fiber-reinforced synthetic resin molded article of the present invention is obtained by impregnating reinforcing fibers with a mixed resin liquid of a thermosetting resin and a thermoplastic resin, and then molding the same. Further, the fiber-reinforced synthetic resin molded article of the present invention is formed by integrally covering a core material with a thermoplastic resin by impregnating reinforcing fibers with a mixed resin liquid of a thermosetting resin and a thermoplastic resin and molding the core material.

さらに、本発明の繊維強化合成樹脂成形体の製造方法は
、強化繊維に熱硬化性樹脂と熱可塑性樹脂との混合樹脂
液を含浸させこれを成形して芯材を形成し、この芯材を
押出機のクロスヘッド金型に導入して上記熱可塑性樹脂
を溶融させるとともに、熱可塑性樹脂を溶融押出被覆し
一体化することを特徴とする。
Furthermore, the method for manufacturing a fiber-reinforced synthetic resin molded article of the present invention includes impregnating reinforcing fibers with a mixed resin liquid of a thermosetting resin and a thermoplastic resin and molding the same to form a core material. It is characterized in that it is introduced into a crosshead mold of an extruder to melt the thermoplastic resin, and the thermoplastic resin is melt-extruded and coated and integrated.

以上の構成により、本発明の目的が達成される。With the above configuration, the object of the present invention is achieved.

以下、本発明を図面を参照しながら説明する。Hereinafter, the present invention will be explained with reference to the drawings.

第1図は、本発明の繊維強化合成樹脂成形体の一例を示
す一部切欠断面図である。第1図において、11は強化
繊維であって、この強化繊維11としては、ガラス繊維
をはじめ、カーボン繊維、アルミナ繊維、アラミド繊維
などのロービング、不織布、マット、織布、ネット等が
用いられる。
FIG. 1 is a partially cutaway sectional view showing an example of the fiber-reinforced synthetic resin molded article of the present invention. In FIG. 1, 11 is a reinforcing fiber, and as the reinforcing fiber 11, rovings, nonwoven fabrics, mats, woven fabrics, nets, etc., such as glass fibers, carbon fibers, alumina fibers, and aramid fibers are used.

本発明の成形体は一般に長尺に形成され、かかる長尺体
においては長手方向の熱伸縮が主として問題になり、特
に、強化繊維11としてロービングを使用し、これをロ
ービングを長手方向に多数条配設すると、得られる成形
体の線膨張係数が理論値と良く一致するので、図のよう
にロービングを長手方向に多数条配設するのが好ましい
The molded product of the present invention is generally formed into a long length, and thermal expansion and contraction in the longitudinal direction is a major problem in such a long product. When disposed, the linear expansion coefficient of the obtained molded body closely matches the theoretical value, so it is preferable to dispose a large number of rovings in the longitudinal direction as shown in the figure.

そして、かかる強化繊維11には、熱硬化性樹脂12と
熱可塑性樹脂13との混合樹脂14の液状物が含浸され
、強化繊1111は上記熱硬化性樹脂12と熱可塑性樹
脂13との混合樹脂14により固定され、本発明の繊維
強化合成樹脂成形体lOが形成されている。
The reinforcing fibers 11 are impregnated with a liquid mixed resin 14 of the thermosetting resin 12 and the thermoplastic resin 13, and the reinforcing fibers 1111 are made of the mixed resin 14 of the thermosetting resin 12 and the thermoplastic resin 13. 14 to form the fiber-reinforced synthetic resin molded article IO of the present invention.

上記の繊維強化合成樹脂成形体10は、第3図に示す方
法で製造される。
The fiber-reinforced synthetic resin molded body 10 described above is manufactured by the method shown in FIG.

第3図において、先ず、ガラスロービングのような強化
繊維11は長手方向に配列されて、含浸槽30に導入さ
れる。強化繊維11は、通常、含浸槽30に導入される
前か、或いは含浸槽30の中で解繊具により解繊される
In FIG. 3, reinforcing fibers 11 such as glass rovings are first arranged in the longitudinal direction and introduced into an impregnating tank 30. The reinforcing fibers 11 are usually defibrated by a defibrating tool before being introduced into the impregnating tank 30 or within the impregnating tank 30.

強化繊維11は含浸槽30で熱硬化性樹脂12と熱可塑
性樹脂13との混合樹脂液14が含浸される。
The reinforcing fibers 11 are impregnated with a mixed resin liquid 14 of a thermosetting resin 12 and a thermoplastic resin 13 in an impregnating bath 30 .

混合樹脂液14は、液状の熱硬化性樹脂12の中に熱可
塑性樹脂13が溶解していてもよ(、また液状の熱硬化
性樹脂12の中に熱可塑性樹脂13の粉末が分散してい
てもよい。
The mixed resin liquid 14 may include a thermoplastic resin 13 dissolved in a liquid thermosetting resin 12 (or a powder of the thermoplastic resin 13 dispersed in a liquid thermosetting resin 12). You can.

混合樹脂液14が含浸された強化繊維11は、−対のピ
ンチロール31で脱泡と厚み調整がなされ、その後加熱
乾燥炉40に通され、そこで混合樹脂14中の熱硬化性
樹脂12の硬化反応が行われる。
The reinforcing fiber 11 impregnated with the mixed resin liquid 14 is defoamed and its thickness adjusted by a pair of pinch rolls 31, and then passed through a heating drying oven 40, where the thermosetting resin 12 in the mixed resin 14 is cured. A reaction takes place.

熱硬化性樹脂12の硬化反応は、半硬化のプリプレグ成
形体を得るように行ってもよく、或いは完全硬化の成形
体を得るように行ってもよい。
The curing reaction of the thermosetting resin 12 may be carried out to obtain a semi-cured prepreg molded body, or may be carried out to obtain a completely cured molded body.

また、その形状はシート、軒樋、波板、デツキ材など所
望の形状に賦形成形される。
Moreover, the shape can be formed into a desired shape such as a sheet, eaves gutter, corrugated plate, decking material, etc.

かくして、第1図に示すような繊維強化合成樹脂成形体
10が得られる。
In this way, a fiber-reinforced synthetic resin molded body 10 as shown in FIG. 1 is obtained.

強化繊維11は、熱硬化性樹脂12と熱可塑性樹脂13
との混合樹脂14に対して理論上は90容量%まで含有
され得るが、通常、60容量%以下の範囲で使用するの
が好ましい。強化繊維11が混合樹脂14に対して60
容量%を越えると、衝撃で割れが発生し易くなる。
The reinforcing fiber 11 is made of thermosetting resin 12 and thermoplastic resin 13.
Theoretically, it can be contained up to 90% by volume with respect to the mixed resin 14, but it is usually preferably used in a range of 60% by volume or less. The reinforcing fiber 11 is 60% of the mixed resin 14.
If the capacity percentage is exceeded, cracks are likely to occur due to impact.

また、熱可塑性樹脂13は混合樹脂14中に2〜50重
量%の範囲で含をされるのが好ましい。熱可塑性樹脂1
3の含有量が2重量%より少ないと、賦形性及びこれに
被覆される熱可塑性樹脂との融着性が悪くなる。一方、
熱可塑性樹脂13の含有量が50重量%より多くなると
、混合樹脂液14の粘度が著しく上昇し含浸が困難とな
る。
Further, it is preferable that the thermoplastic resin 13 is included in the mixed resin 14 in a range of 2 to 50% by weight. Thermoplastic resin 1
If the content of 3 is less than 2% by weight, the shaping properties and the fusion properties with the thermoplastic resin coated thereon will deteriorate. on the other hand,
When the content of the thermoplastic resin 13 exceeds 50% by weight, the viscosity of the mixed resin liquid 14 increases significantly, making impregnation difficult.

熱硬化性樹脂12としては、不飽和ポリエステル樹脂、
ジアリルフタレート樹脂、エポキシ樹脂などが用いられ
る。このような熱硬化性樹脂12には、通常、有機過酸
化物のような熱硬化剤やベンゾイン誘導体のような光硬
化剤、その他促進剤が添加される。
As the thermosetting resin 12, unsaturated polyester resin,
Diaryl phthalate resin, epoxy resin, etc. are used. Such a thermosetting resin 12 usually contains a thermosetting agent such as an organic peroxide, a photocuring agent such as a benzoin derivative, and other accelerators.

また、熱可塑性樹脂13としては、塩化ビニル樹脂、塩
化ビニリデン樹脂、ポリエチレンやポリプロピレンなど
のオレフィン樹脂、アクリル樹脂、エチレン−酢酸ビニ
ル共重合樹脂、塩化ビニル−エチレン共重合樹脂、塩化
ビニル−酢酸ビニル共重合樹脂、塩化ビニル−酢酸ビニ
ル−マレイン酸共重合樹脂、塩化ビニル−アクリル共重
合樹脂、塩化ビニル−ウレタン共重合樹脂、エチレン−
酢酸ビニル共重合樹脂に塩化ビニルをグラフトしたグラ
フト樹脂、ポリアミド樹脂、ポリフェニレンサルファイ
ド樹脂やポリエーテルスルフォン樹脂などのエンジニア
リング樹脂等が用いられる。
Examples of the thermoplastic resin 13 include vinyl chloride resin, vinylidene chloride resin, olefin resin such as polyethylene and polypropylene, acrylic resin, ethylene-vinyl acetate copolymer resin, vinyl chloride-ethylene copolymer resin, and vinyl chloride-vinyl acetate copolymer resin. Polymer resin, vinyl chloride-vinyl acetate-maleic acid copolymer resin, vinyl chloride-acrylic copolymer resin, vinyl chloride-urethane copolymer resin, ethylene-
Graft resins in which vinyl chloride is grafted onto vinyl acetate copolymer resins, engineering resins such as polyamide resins, polyphenylene sulfide resins, and polyether sulfone resins are used.

第2図は、本発明の繊維強化合成樹脂成形体の他の例を
示す一部切欠断面図である。第2図において、10は芯
材であって、この芯材10は第1図に示す繊維強化合成
樹脂成形体10と同じ構成であり、同じ符号で示す。ま
た、この芯材10は第3図に示す方法で製造される。
FIG. 2 is a partially cutaway sectional view showing another example of the fiber-reinforced synthetic resin molded article of the present invention. In FIG. 2, 10 is a core material, and this core material 10 has the same structure as the fiber-reinforced synthetic resin molded body 10 shown in FIG. 1, and is indicated by the same reference numerals. Moreover, this core material 10 is manufactured by the method shown in FIG.

上記芯材10には熱可塑性樹脂21が被覆一体化され、
本発明の繊維強化合成樹脂成形体20が形成されている
。芯材10に被覆される熱可塑性樹脂21としては、前
記した混合樹脂14に用いられる熱可塑性樹脂13と同
様な樹脂であって、この熱可塑性樹脂13と熱融着する
組み合わせのものが用いられる。例えば、繊維強化合成
樹脂成形体20が軒樋の場合、両方の熱可塑性樹脂13
.21として耐候性のよい塩化ビニル系樹脂が好適に用
いられる。
The core material 10 is integrally coated with a thermoplastic resin 21,
A fiber-reinforced synthetic resin molded body 20 of the present invention is formed. As the thermoplastic resin 21 coated on the core material 10, a resin similar to the thermoplastic resin 13 used for the mixed resin 14 described above, and a combination that can be thermally fused with the thermoplastic resin 13, is used. . For example, when the fiber-reinforced synthetic resin molded body 20 is an eaves gutter, both thermoplastic resin 13
.. As 21, a vinyl chloride resin having good weather resistance is preferably used.

なお、被覆される熱可塑性樹脂21には、炭酸カルシウ
ムなどの無機塩、アルミニウムなどの金属粉、ガラス短
繊維、木粉等線膨張係数の小さい充填剤を含有させると
、芯材10との線膨張係数の差が小さ(なるので好まし
い。
Note that if the thermoplastic resin 21 to be coated contains fillers with a small coefficient of linear expansion such as inorganic salts such as calcium carbonate, metal powders such as aluminum, short glass fibers, and wood powder, the line with the core material 10 will be reduced. This is preferable because the difference in expansion coefficients is small.

上記の繊維強化合成樹脂成形体20は、第4図に示す方
法で製造される。
The fiber-reinforced synthetic resin molded body 20 described above is manufactured by the method shown in FIG. 4.

第4図において、先ず、第3図に示すような方法で製造
された半硬化のプリプレグ成形体、或いはほぼ完全に硬
化した成形体を芯材10とし、この芯材10がロールフ
ォーミングのような加熱フォーミング装置50により、
混合樹脂14中の熱可塑性樹脂13の軟化温度以上の温
度に加熱軟化され、軒樋、波板、デツキ材などの所望の
形状に賦形される。硬化が終了していない場合は、硬化
炉60で硬化反応を終了させる。
In FIG. 4, first, a semi-cured prepreg molded body manufactured by the method shown in FIG. By the heating forming device 50,
It is heated and softened to a temperature higher than the softening temperature of the thermoplastic resin 13 in the mixed resin 14, and shaped into a desired shape such as an eaves gutter, a corrugated plate, or a deck material. If the curing is not completed, the curing reaction is completed in the curing furnace 60.

引き続いて、賦形された芯材10゛は押出機71のクロ
スヘッド金型70に導入され、そこでクロスヘッド金型
70から溶融押出される熱可塑性樹脂21が、芯材10
゛の外面に被覆される。この際、芯材10°中の熱可塑
性樹脂13はクロスヘッド金型70の中で溶融され、こ
れに溶融押出被覆される熱可塑性樹脂21が融着し一体
化される。
Subsequently, the shaped core material 10'' is introduced into a crosshead mold 70 of an extruder 71, where the thermoplastic resin 21 melted and extruded from the crosshead mold 70 is applied to the core material 10''.
coated on the outer surface of the At this time, the thermoplastic resin 13 in the core material 10° is melted in the crosshead mold 70, and the thermoplastic resin 21 to be melt-extruded and coated is fused and integrated.

クロスヘッド金型70のランド部の長さは、押出温度、
押出速度、使用樹脂等により適宜定められ、その間隙は
所望の形状に設計され、軒樋、波板、デツキ材など所望
の形状に賦形される。
The length of the land portion of the crosshead mold 70 is determined by the extrusion temperature,
The gap is appropriately determined depending on the extrusion speed, the resin used, etc., and the gap is designed to have a desired shape, and is formed into a desired shape such as eaves troughs, corrugated plates, decking materials, etc.

その後、冷却金型等からなるサイジング装置80により
表面仕上げを行い冷却して、カタピラ代引張機等の引張
装置90で引き取る。
Thereafter, a sizing device 80 consisting of a cooling mold or the like performs surface finishing, is cooled, and is taken out by a tensioning device 90 such as a caterpillar tensioning machine.

かくして、第2図に示すような繊維強化合成樹脂成形体
20が製造される。
In this way, a fiber-reinforced synthetic resin molded body 20 as shown in FIG. 2 is manufactured.

なお、第4図においては、加熱フォーミング装置50に
より、加熱軟化させながら所望の形状に賦形した後に、
押出機のクロスヘッド金型70へ導入している。しかし
、加熱フォーミング装置50を使用することなく、芯材
lOを加熱軟化させこれを直ちに押出機のクロスヘッド
金型70へ導入してもよい。
In addition, in FIG. 4, after being heated and softened and shaped into a desired shape by a heating forming device 50,
It is introduced into the crosshead mold 70 of the extruder. However, without using the heating forming device 50, the core material IO may be heated and softened and immediately introduced into the crosshead mold 70 of the extruder.

(作用) 本発明おいて、強化繊維に熱硬化性樹脂と熱可塑性樹脂
との混合樹脂液を含浸しこれを成形してなる繊維強化合
成樹脂成形体は、強化繊維に熱硬化性樹脂液のみを含浸
して成形したものに比べ、加熱軟化時に熱可塑性樹脂が
良好に軟化するため、所望の形状に正確に曲げ易く賦形
性に優れ、またこの成形体に熱可塑性樹脂が被覆される
場合、この熱可塑性樹脂との融着性にも優れる。
(Function) In the present invention, a fiber-reinforced synthetic resin molded article obtained by impregnating reinforcing fibers with a mixed resin liquid of a thermosetting resin and a thermoplastic resin and molding the same is a fiber-reinforced synthetic resin molded article in which only a thermosetting resin liquid is added to the reinforcing fibers. The thermoplastic resin softens better when heated and softened than those impregnated and molded, so it is easier to bend into the desired shape and has excellent formability. , it also has excellent fusion properties with this thermoplastic resin.

また、上記の繊維強化合成樹脂成形体を芯材とし、この
芯材に熱可塑性樹脂を被覆一体化してなる繊維強化合成
樹脂成形体は、強化繊維により熱伸縮による変形が改善
され、しかも混合樹脂中の熱可塑性樹脂による延性作用
と、熱硬化性樹脂と熱可塑性樹脂とが均一に分散してミ
クロな海鳥構造をとることにより、耐衝撃性が改善され
る。
In addition, a fiber-reinforced synthetic resin molded product made by using the above-mentioned fiber-reinforced synthetic resin molded product as a core material and integrally covering this core material with a thermoplastic resin has improved deformation due to thermal expansion and contraction due to the reinforcing fibers, and the mixed resin The impact resistance is improved by the ductility effect of the thermoplastic resin inside and by uniformly dispersing the thermosetting resin and the thermoplastic resin to form a microscopic seabird structure.

さらに、強化繊維に熱硬化性樹脂と熱可塑性樹脂との混
合樹脂液を含浸して芯材を形成し、この芯材を押出機の
クロスヘッド金型に導入すると、芯材中の熱可塑性樹脂
は、クロスヘッド金型の熱とこの金型から溶融押出され
る熱可塑性樹脂の熱の両方の熱により良好に溶融し、強
化繊維と良好に接着する。しかも、クロスヘッド金型か
ら押出される熱可塑性樹脂は、押出圧力により芯材中の
熱可塑性樹脂に強く押しつけられて完全に融着し一体化
される。
Furthermore, the reinforcing fibers are impregnated with a mixed resin liquid of thermosetting resin and thermoplastic resin to form a core material, and when this core material is introduced into the crosshead mold of the extruder, the thermoplastic resin in the core material is well melted by the heat of both the crosshead mold and the heat of the thermoplastic resin melt-extruded from this mold, and adheres well to the reinforcing fibers. Moreover, the thermoplastic resin extruded from the crosshead mold is strongly pressed against the thermoplastic resin in the core material by extrusion pressure, and is completely fused and integrated.

(実施例) 以下、本発明の実施例及び比較例を示す。(Example) Examples and comparative examples of the present invention are shown below.

ス遣華」 先ず、ガラスロービング(14400: 日東紡製)l
Oを解繊し、これを長手方向に多数条配列させて含浸槽
30に導入し、そこで不飽和ポリエステル樹脂($75
10: 日本ユピカ製)12が80重量%と塩化ビニル
−酢酸ビニル−マレイン酸共重合樹脂(徳山積水製)1
3が20重量%の混合樹脂液14に過酸化ベンゾイルを
添加した溶液を含浸させ、一対のピンチロール31を通
過させた後、これを加熱乾燥炉40で120°Cに加熱
して硬化させて、繊維強化合成樹脂成形体10を製造し
た。
First, glass roving (14400: manufactured by Nittobo)
The O was defibrated and introduced into the impregnation tank 30 in a large number of strips arranged in the longitudinal direction, where unsaturated polyester resin ($75
10: 80% by weight of 12 (manufactured by Nippon Upica) and 1 of vinyl chloride-vinyl acetate-maleic acid copolymer resin (manufactured by Tokuyama Sekisui)
A mixed resin liquid 14 containing 20% by weight of 3 is impregnated with a solution in which benzoyl peroxide is added, and after passing through a pair of pinch rolls 31, this is heated to 120°C in a heating drying oven 40 to be cured. A fiber-reinforced synthetic resin molded article 10 was manufactured.

得られた繊維強化合成樹脂成形体1oは、厚さ0.5 
m、幅300InI11、ガラスロービング含有量6゜
容量%であった。
The obtained fiber-reinforced synthetic resin molded body 1o has a thickness of 0.5
m, width 300 InI11, glass roving content 6° volume %.

次いで、上記の繊維強化合成樹脂成形体1oを芯材10
とし、この芯材1oを加熱フォーミング装置50により
80〜100°Cで角型の軒樋状に賦形し硬化炉60を
通した後、引き続いて押出機71のクロスヘッド金型7
0に導入し、この表面に安定剤などを配合した塩化ビニ
ル樹脂を170″Cで0゜5IllII+の厚さに溶融
押出して被覆一体化した。
Next, the above fiber-reinforced synthetic resin molded body 1o is formed into a core material 10.
This core material 1o is formed into a rectangular eave gutter shape at 80 to 100°C using a heating forming device 50, passed through a curing furnace 60, and then passed through a crosshead mold 7 of an extruder 71.
A vinyl chloride resin containing a stabilizer and the like was melt-extruded on the surface at 170''C to a thickness of 0.5IllII+ to form an integral coating.

しかる後、サイジング装置8oにより表面仕上げを行い
、冷却して引張機9oで引き取り、厚さ1.51の長尺
軒樋状の繊維強化合成樹脂成形体20を製造した。
Thereafter, the surface was finished using a sizing device 8o, and the product was cooled and taken out using a tensioning machine 9o to produce a fiber-reinforced synthetic resin molded article 20 in the shape of a long eave gutter having a thickness of 1.51 cm.

この時のライン速度は3a+/分であった。また、上記
のクロスヘッド金型70は、ランド長さが2゜Oa+で
角型の軒樋状の間隙を有するものを使用した。
The line speed at this time was 3a+/min. Further, the above-mentioned crosshead mold 70 used had a land length of 2° Oa+ and a rectangular gutter-like gap.

この繊維強化合成樹脂成形体2oについて、次の方法で
熱伸縮性、耐衝撃性及び耐久性を評価した。その結果を
第1表に示す。
Thermal stretchability, impact resistance, and durability of this fiber-reinforced synthetic resin molded body 2o were evaluated by the following methods. The results are shown in Table 1.

(1)熱伸縮性 繊維強化合成樹脂成形体を4111の長さに裁断して試
験片とし、これを恒温恒温室に入れ、20”Cでの長さ
tzoを測定し、次に60”Cに温度を上昇させて60
°Cでの長さL6゜を測定し、次式で線膨張係数αを算
出した。α・(L6゜−L2゜)/(40’CXLzo
)・ (2)耐衝撃性 繊維強化合成樹脂成形体をを20wX20aw*に切断
して試験片を作成し、この試験片にデュポン衝撃試験機
で1.5 kgの錘を落下させ、試験片が破損する落下
距離から衝撃強度を測定した。
(1) A heat-stretchable fiber-reinforced synthetic resin molded body is cut into a length of 4111 to obtain a test piece, placed in a constant temperature constant temperature room, and the length tzo at 20"C is measured, and then at 60"C. Raise the temperature to 60
The length L6° at °C was measured, and the linear expansion coefficient α was calculated using the following formula. α・(L6゜-L2゜)/(40'CXLzo
)・(2) A test piece was created by cutting the impact-resistant fiber-reinforced synthetic resin molding into 20w x 20aw*, and a 1.5 kg weight was dropped onto this test piece using a DuPont impact tester, and the test piece was tested. The impact strength was measured from the falling distance at which the product broke.

(3)耐久性 繊維強化合成樹脂成形体を1mの長さに切断して試験片
とし、これを恒温恒温室で一10〜70°Cの冷熱繰り
返し試験を1000サイクル行った後、この試験片を切
断し、その断面状態を電子顕微鏡で観察した。
(3) Durability The fiber-reinforced synthetic resin molded body was cut into 1 m length to make a test piece, and after conducting 1000 cycles of heating and cooling tests at -10 to 70°C in a thermostatic room, the test piece was was cut, and its cross-sectional state was observed using an electron microscope.

また、上記の試験前及び試験後の試験片を幅20mm、
長さ200Mに切断し、片面の被覆層の端部を剥離させ
T型剥離強度を測定し、試験前の強度に対する試験後の
強度を接着保持率として示した。
In addition, the test piece before and after the above test was 20 mm wide,
It was cut into a length of 200M, and the end of the coating layer on one side was peeled off to measure the T-peel strength, and the strength after the test was expressed as the adhesion retention rate relative to the strength before the test.

スIILλ 実施例1において、塩化ビニル−酢酸ビニルマレイン酸
共重合樹脂20重量%を、ポリ塩化ビニル樹脂(TS−
1000R:徳山積水製)20重量%に替えたこと以外
は、実施例1と同様に行って、厚さ1.5−  〇長尺
軒樋状の繊維強化合成樹脂成形体20を製造した。
In Example 1, 20% by weight of vinyl chloride-vinyl acetate maleic acid copolymer resin was added to polyvinyl chloride resin (TS-
1000R (manufactured by Tokuyama Sekisui Co., Ltd.) was changed to 20% by weight, but in the same manner as in Example 1, a fiber-reinforced synthetic resin molded body 20 having a thickness of 1.5 mm and a long eave gutter shape was manufactured.

この繊維強化合成樹脂成形体20について、熱伸縮性、
耐衝撃性及び耐久性を評価した。その結果を第1表に示
す。
This fiber-reinforced synthetic resin molded body 20 has thermal elasticity,
Impact resistance and durability were evaluated. The results are shown in Table 1.

1崖貫l 実施例1において、加熱乾燥炉40で120°Cに加熱
するのを、80°Cに加熱して半硬化させて得られた芯
材11を用いたこと以外は、実施例1と同様に行って、
厚さ1.5m+wの長尺軒樋状の繊維強化合成樹脂成形
体20を製造した。
1 cliff penetration 1 Example 1 except that the core material 11 obtained by heating to 80°C and semi-curing was used instead of heating to 120°C in the heating drying oven 40 in Example 1. Go in the same way as
A fiber-reinforced synthetic resin molded body 20 in the shape of a long eave gutter having a thickness of 1.5 m+w was manufactured.

この繊維強化合成樹脂成形体20について、熱伸縮性、
耐衝撃性及び耐久性を評価した。その結果を第1表に示
す。
This fiber-reinforced synthetic resin molded body 20 has thermal elasticity,
Impact resistance and durability were evaluated. The results are shown in Table 1.

ル校医上 実施例1において、塩化ビニル−酢酸ビニルマレイン酸
共重合樹脂13を全く混合せず、不飽和ポリエステル樹
脂12のみを用いたこと、及び芯材10の厚みを0.9
 mmとしたこと以外は、実施例1と同様に行った。
In Example 1, the vinyl chloride-vinyl acetate maleic acid copolymer resin 13 was not mixed at all, and only the unsaturated polyester resin 12 was used, and the thickness of the core material 10 was 0.9.
The same procedure as in Example 1 was carried out except that the diameter was set to mm.

得られた長尺軒樋状の繊維強化合成樹脂成形体について
、熱伸縮性、耐衝撃性及び耐久性を評価した。その結果
を第1表に示す。
The obtained elongated eaves gutter-shaped fiber-reinforced synthetic resin molded article was evaluated for thermal elasticity, impact resistance, and durability. The results are shown in Table 1.

第1表 なお、冷熱試験前及び冷熱試験後の試験片のT型剥離強
度測定において、実施例1〜3の試験片は、何れも剥離
が不可能であった。また、比較例1の試験片は、冷熱試
験前のT型剥離強度が2 kg/ cmであった。
Table 1 In addition, in the T-peel strength measurement of the test pieces before and after the cold test, it was impossible to peel off any of the test pieces of Examples 1 to 3. Further, the test piece of Comparative Example 1 had a T-peel strength of 2 kg/cm before the cold/hot test.

(発明の効果) 上述の通り、強化繊維に熱硬化性樹脂と熱可塑性樹脂と
の混合樹脂液を含浸しこれを成形してなる本発明の繊維
強化合成樹脂成形体は、所望の形状に正確に曲げ易く賦
形性に優れ、また熱可塑性樹脂との融着性にも優れる。
(Effects of the Invention) As described above, the fiber-reinforced synthetic resin molded article of the present invention, which is obtained by impregnating reinforcing fibers with a mixed resin liquid of a thermosetting resin and a thermoplastic resin and molding the same, can be formed into a desired shape precisely. It is easy to bend, has excellent shapeability, and also has excellent fusion properties with thermoplastic resins.

また、上記の繊維強化合成樹脂成形体を芯材とし、この
芯材に熱可塑性樹脂を被覆一体化してなる本発明の繊維
強化合成樹脂成形体は、熱伸縮による変形及び耐衝撃性
が改善される。
In addition, the fiber-reinforced synthetic resin molded product of the present invention, which is formed by using the above-mentioned fiber-reinforced synthetic resin molded product as a core material and integrally covering this core material with a thermoplastic resin, has improved deformation and impact resistance due to thermal expansion and contraction. Ru.

さらに、本発明方法により得られる繊維強化合成樹脂成
形体は、芯材とこれに被覆される熱可塑性樹脂との融着
が強固で層間剥離が改善される。それゆえ、温度変化の
厳しい環境で長期に亘って使用しても、変形やひび割れ
や層間剥離が起こらず、耐久性に優れる。
Further, in the fiber-reinforced synthetic resin molded article obtained by the method of the present invention, the core material and the thermoplastic resin coated thereon are strongly fused, and delamination is improved. Therefore, even if it is used for a long time in an environment with severe temperature changes, it will not deform, crack, or peel between layers, and has excellent durability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の繊維強化合成樹脂成形体の一例を示す
一部切欠断面図、第2図は本発明の繊維強化合成樹脂成
形体の他の例を示す一部切欠断面図である。第3図は第
1図に示す繊維強化合成樹脂成形体の製造方法の一例を
示す概略図、第4図は第2図に示す繊維強化合成樹脂成
形体の製造方法の一例を示す概略図である。 10・・・繊維強化合成樹脂成形体(芯材)、11・・
・強化繊維、14・・・含浸された熱硬化性樹脂と熱可
塑性樹脂との混合樹脂、20・・・繊維強化合成樹脂成
形体、21・・・被覆された熱可塑性樹脂、30・・・
含浸槽、40・・・加熱乾燥炉、50・・・フォーミン
グ装置、60・・・硬化炉、70・・・押出機のクロス
ヘッド金型、80・・・サイジング装置、90・・・引
張装置。
FIG. 1 is a partially cutaway sectional view showing an example of the fiber-reinforced synthetic resin molded article of the present invention, and FIG. 2 is a partially cutaway sectional view showing another example of the fiber-reinforced synthetic resin molded article of the present invention. FIG. 3 is a schematic diagram showing an example of a method for manufacturing the fiber-reinforced synthetic resin molded product shown in FIG. 1, and FIG. 4 is a schematic diagram showing an example of the manufacturing method for the fiber-reinforced synthetic resin molded product shown in FIG. be. 10...Fiber-reinforced synthetic resin molded body (core material), 11...
- Reinforcing fiber, 14... Mixed resin of impregnated thermosetting resin and thermoplastic resin, 20... Fiber-reinforced synthetic resin molded body, 21... Covered thermoplastic resin, 30...
Impregnation tank, 40... Heating drying oven, 50... Forming device, 60... Curing oven, 70... Crosshead mold of extruder, 80... Sizing device, 90... Tensioning device .

Claims (1)

【特許請求の範囲】 1、強化繊維に熱硬化性樹脂と熱可塑性樹脂との混合樹
脂液を含浸させこれを成形してなる繊維強化合成樹脂成
形体。 2、強化繊維に熱硬化性樹脂と熱可塑性樹脂との混合樹
脂液を含浸させこれを成形した芯材に、熱可塑性樹脂を
被覆一体化してなる繊維強化合成樹脂成形体。 3、強化繊維に熱硬化性樹脂と熱可塑性樹脂との混合樹
脂液を含浸させこれを成形して芯材を形成し、この芯材
を押出機のクロスヘッド金型に導入して上記熱可塑性樹
脂を溶融させるとともに、熱可塑性樹脂を溶融押出被覆
し一体化することを特徴とする繊維強化合成樹脂成形体
の製造方法。
[Claims] 1. A fiber-reinforced synthetic resin molded article obtained by impregnating reinforcing fibers with a mixed resin liquid of a thermosetting resin and a thermoplastic resin and molding the same. 2. A fiber-reinforced synthetic resin molded article made by integrally covering a core material with a thermoplastic resin by impregnating reinforcing fibers with a mixed resin liquid of a thermosetting resin and a thermoplastic resin and molding the same. 3. Impregnate the reinforcing fibers with a mixed resin liquid of thermosetting resin and thermoplastic resin, mold this to form a core material, introduce this core material into the crosshead mold of the extruder, and mold the above thermoplastic resin. A method for producing a fiber-reinforced synthetic resin molded article, which comprises melting a resin and melting and extruding a thermoplastic resin to coat and integrate the resin.
JP1038862A 1989-02-17 1989-02-17 Fiber reinforced synthetic resin molded form and production thereof Pending JPH02217231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038862A JPH02217231A (en) 1989-02-17 1989-02-17 Fiber reinforced synthetic resin molded form and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038862A JPH02217231A (en) 1989-02-17 1989-02-17 Fiber reinforced synthetic resin molded form and production thereof

Publications (1)

Publication Number Publication Date
JPH02217231A true JPH02217231A (en) 1990-08-30

Family

ID=12537015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038862A Pending JPH02217231A (en) 1989-02-17 1989-02-17 Fiber reinforced synthetic resin molded form and production thereof

Country Status (1)

Country Link
JP (1) JPH02217231A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285942A (en) * 1991-09-25 1994-10-11 Kurabo Ind Ltd Reinforced extrusion molded object
CN1087684C (en) * 1997-07-09 2002-07-17 财团法人工业技术研究院 Structure of extruded material with continuous fibre reinforcement and method for manufacturing thereof
JP2020137454A (en) * 2019-02-28 2020-09-03 グローブライド株式会社 Fishing line guide and its manufacturing method
JP2020162421A (en) * 2019-03-28 2020-10-08 宇部エクシモ株式会社 Seaweed farming prop and producing method thereof
WO2021246465A1 (en) * 2020-06-03 2021-12-09 東レ株式会社 Fiber-reinforced plastic and method for producing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06285942A (en) * 1991-09-25 1994-10-11 Kurabo Ind Ltd Reinforced extrusion molded object
CN1087684C (en) * 1997-07-09 2002-07-17 财团法人工业技术研究院 Structure of extruded material with continuous fibre reinforcement and method for manufacturing thereof
JP2020137454A (en) * 2019-02-28 2020-09-03 グローブライド株式会社 Fishing line guide and its manufacturing method
JP2020162421A (en) * 2019-03-28 2020-10-08 宇部エクシモ株式会社 Seaweed farming prop and producing method thereof
WO2021246465A1 (en) * 2020-06-03 2021-12-09 東レ株式会社 Fiber-reinforced plastic and method for producing same

Similar Documents

Publication Publication Date Title
JPH02217231A (en) Fiber reinforced synthetic resin molded form and production thereof
JPH07164462A (en) Extruded impregnated article having metal surface and its production
JP3396401B2 (en) Composite molded products
EP0847845A1 (en) Thermoformable sheets having core layer with unmatted, oriented fibers and fiber-free cap layer
JPH02258255A (en) Long-sized composite molded body and manufacture thereof
JPH02220841A (en) Composite formed body in continuous form and manufacture thereof
JP3884524B2 (en) Laminated molded product and manufacturing method thereof
JPH02184428A (en) Long composite molded object
JPH02214639A (en) Manufacture of continuous composite molded material
JP2904608B2 (en) Fiber composite rain gutter and method of manufacturing the same
JPH02184435A (en) Manufacture of long composite molded object
JPH02220842A (en) Composite formed body in continuous form and manufacture thereof
JP3048337B2 (en) Method for producing continuous fiber reinforced extruded plastic composite
JPH0740481A (en) Long composite building material and its manufacture
JPH02185437A (en) Manufacture of continuous composite molded material
JPH02188242A (en) Long composite molded form
JPH02175147A (en) Long-sized composite molded form
JP2533662B2 (en) Manufacturing method of eaves gutter
JP3169493B2 (en) Rain gutter made of fiber composite resin and manufacturing method thereof
JPH02172731A (en) Long sized composite molding
JPH02276625A (en) Composite formed body in continuous form and manufacture thereof
JP2000108190A (en) Fiber composite molding and its manufacture
JP2874951B2 (en) Eaves gutter manufacturing method
JP2000290384A (en) Composite molding, production thereof and production of fiber-reinforced thermoplastic sheet used therefor
KR100255003B1 (en) Structures and fabrication methods of constinuous fiber-reinforced extruded plastic articles