JPH02276625A - Composite formed body in continuous form and manufacture thereof - Google Patents

Composite formed body in continuous form and manufacture thereof

Info

Publication number
JPH02276625A
JPH02276625A JP1098378A JP9837889A JPH02276625A JP H02276625 A JPH02276625 A JP H02276625A JP 1098378 A JP1098378 A JP 1098378A JP 9837889 A JP9837889 A JP 9837889A JP H02276625 A JPH02276625 A JP H02276625A
Authority
JP
Japan
Prior art keywords
base material
resin
thermoplastic resin
composite molded
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1098378A
Other languages
Japanese (ja)
Inventor
Kozo Yoshida
耕三 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1098378A priority Critical patent/JPH02276625A/en
Publication of JPH02276625A publication Critical patent/JPH02276625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To obtain composite formed body, which has no defect such as deformation due to thermal expansion and contraction, insufficient rigidity and ply separation, and is excellent in durability, by a method wherein base material, which is produced by fixing a large number of continuous log fiber with thermoplastic resin, is integrally bonded onto both sides of base materials, which has the same constitution as said base material and the content of the long fiber in which is higher than that in said base material. CONSTITUTION:Core material 10 is constituted by integrally bonding base material 10', which is produced by fixing a large number of continuous long fiber 11 with thermoplastic resin 12, on both sides of another base material 10'', which is produced similarly in the base material 10' by fixing a large number of continuous long fiber 11 with thermoplastic resin 13 and the content of the long fiber 11 in which is higher than that in the base material 10'. As the long fiber 11, roving of glass fiber or the like is favorably used. The content of the long fiber 11 in the base material 10'' is preferably set within the range of 30 - 60% by volume on the basis of the base material 10'' from the view point for improving thermal expansion and contraction and rigidity. Further, the content of the long fiber 11 in the base material 10' is preferably set with in the range of 5 - 10% by volume on the basis of the base material 10' from the view point for preventing adhesion, weatherability and surface flatness from lowering.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐久性の優れた長尺複合成形体及びその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a long composite molded article with excellent durability and a method for producing the same.

(従来の技術) 雨樋などの建材は、塩化ビニル樹脂などの熱可塑性樹脂
で長尺に成形され、広く使用されている。しかし、かか
る熱可塑性樹脂の成形体は熱伸縮が大きく剛性が小さい
ため、四季や昼夜の気温変化により変形し、またひび割
れが発生し易いという欠点がある。
(Prior Art) Building materials such as rain gutters are molded into long lengths from thermoplastic resin such as vinyl chloride resin and are widely used. However, such thermoplastic resin molded articles have large thermal expansion and contraction and low rigidity, and therefore have the disadvantage that they are easily deformed due to the seasons and changes in temperature between day and night, and are prone to cracking.

このような欠点を改良した成形体として、ガラスロービ
ングのような連続した多数の長繊維が熱可塑性樹脂で固
定された基材の両面に、熱可塑性樹脂が被覆されてなる
長尺の軒樋複合成形体が提案されている(例えば、実公
昭63−43309号公報参照)。
As a molded product that has improved these drawbacks, we have developed a long eave gutter composite that is made by coating a base material with thermoplastic resin on both sides of a base material in which a large number of continuous long fibers, such as glass roving, are fixed with thermoplastic resin. A molded body has been proposed (for example, see Japanese Utility Model Publication No. 43309/1983).

かかる長尺の軒樋複合成形体にあって、基材中の長繊維
の含有率が低すぎると熱伸縮や剛性が充分に改良されず
、逆に基材中の長繊維の含有率が高すぎると、熱可塑性
樹脂との接着性が低下し、眉間剥離が起こりひび割れし
やす(なる。そのため、基材中の長繊維の含有率は、−
般に、30〜60容量%程度と高く設定される。
In such a long eave gutter composite molded product, if the content of long fibers in the base material is too low, thermal expansion and contraction and rigidity will not be sufficiently improved; If the content is too high, the adhesion with the thermoplastic resin will decrease, resulting in peeling between the eyebrows and cracking. Therefore, the content of long fibers in the base material should be -
Generally, it is set as high as about 30 to 60% by volume.

(発明が解決しようとする課題) ところが、基材中の長繊維の含有率が上記のように高く
なると、相当の改良は認められるものの、温度変化の厳
しい環境で長期に亘って使用していると、基材とこれに
被覆された熱可塑性樹脂とが部分的に眉間剥離を起こす
場合があり、耐久性の点でさらに改良すべき問題がある
(Problem to be solved by the invention) However, when the content of long fibers in the base material increases as described above, although considerable improvement is recognized, it is difficult to use the material for a long period of time in an environment with severe temperature changes. However, the base material and the thermoplastic resin coated thereon may partially peel off between the eyebrows, and there is a problem in terms of durability that should be further improved.

本発明は、上記の問題を解決するものであり、その目的
とするところは、熱伸縮による変形や剛性や眉間剥離の
問題がなく、耐久性に優れた長尺複合成形体及びその製
造方法を提供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a long composite molded article with excellent durability without problems of deformation, rigidity, or glabellar peeling due to thermal expansion and contraction, and a method for manufacturing the same. It is about providing.

(課題を解決するための手段) 第1発明の長尺複合成形体は、連続した多数の長繊維が
熱可塑性樹脂で固定された基材の両面に、この基材と同
様な構成で長繊維の含有率が上記基材よりも低い他の基
材が接着一体化されてなる。また、第2発明の長尺複合
成形体は、上記の長尺複合成形体を芯材とし、この芯材
に熱可塑性樹脂が被覆一体化されてなる。
(Means for Solving the Problems) The long composite molded article of the first invention has long fibers formed on both sides of a base material in which a large number of continuous long fibers are fixed with a thermoplastic resin. Another base material having a content lower than that of the above-mentioned base material is bonded and integrated. Further, the elongated composite molded article of the second invention uses the above-mentioned elongated composite molded article as a core material, and this core material is integrally coated with a thermoplastic resin.

また、第3発明の長尺複合成形体の製造方法は、連続し
た多数の長繊維を流動床に導入して粉末状の熱可塑性樹
脂を含浸させて作られた樹脂含浸繊維材の両面に、この
樹脂含浸繊維材と同様にして作られ長繊維の含有率が上
記樹脂含浸繊維材よりも低い他の樹脂含浸繊維材を熱圧
着し樹脂を溶融させ一体化することを特徴とする。また
、第4発明の長尺複合成形体の製造方法は、上記の方法
で得られた長尺複合成形体を芯材とし、この芯材を押出
機のクロスヘッド金型に導入し、これに熱可塑性樹脂を
溶融押出被覆し一体化することを特徴とする。
Further, in the method for producing a long composite molded article according to the third invention, on both sides of a resin-impregnated fiber material made by introducing a large number of continuous long fibers into a fluidized bed and impregnating them with a powdered thermoplastic resin, The present invention is characterized in that another resin-impregnated fiber material made in the same manner as this resin-impregnated fiber material and having a lower long fiber content than the resin-impregnated fiber material is thermocompression bonded, and the resin is melted and integrated. Further, in the method for producing a long composite molded body according to the fourth aspect of the invention, the long composite molded body obtained by the above method is used as a core material, the core material is introduced into a crosshead mold of an extruder, and It is characterized by melt-extrusion coating and integration of thermoplastic resin.

以下、図面を参照しながら、本発明を説明する。The present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の長尺複合成形体の一例を示
す。
FIGS. 1 and 2 show an example of the elongated composite molded article of the present invention.

第1図において、Aは軒樋状に成形された第2発明に相
当する長尺複合成形体であって、10は芯材、20は芯
材10に被覆一体化された熱可塑性樹脂である。上記の
芯材lOは、第1発明の長尺複合成形体に相当する。
In FIG. 1, A is a long composite molded body corresponding to the second invention molded in the shape of an eaves gutter, 10 is a core material, and 20 is a thermoplastic resin integrally coated with the core material 10. . The above-mentioned core material IO corresponds to the elongated composite molded body of the first invention.

上記の芯材lOは、第2図に示すように、連続した多数
の長繊維11が熱可塑性樹脂13で固定された基材10
”の両面に、この基材10″と同様に連続した多数の長
繊維11が熱可塑性樹脂12で固定され、長繊維11の
含有率が上記基材10”よりも低い他の基材10°、1
0゛ が接着一体化されて構成されている。
As shown in FIG.
A large number of continuous long fibers 11 are fixed with a thermoplastic resin 12 on both sides of the substrate 10'', and the content of long fibers 11 is lower than that of the substrate 10''. ,1
0゛ is integrated with adhesive.

長繊維11としては、ガラス繊維をはじめ、カーボン繊
維、アルミナ繊維、アラミド繊維などのロービングが好
適に用いられる0本発明の複合成形体は長尺に成形され
、かかる長尺体においては長手方向の熱伸縮が主として
問題になり、上記のロービングを長手方向に連続して多
数条配設すると、得られる複合成形体の線膨張係数が理
論値と良(一致する。
As the long fibers 11, rovings such as glass fibers, carbon fibers, alumina fibers, and aramid fibers are suitably used. Thermal expansion and contraction are the main problem, and when a large number of the above-mentioned rovings are arranged continuously in the longitudinal direction, the coefficient of linear expansion of the resulting composite molded article is good (in agreement) with the theoretical value.

上記基材10″における長繊維11の含有率は、熱伸縮
と剛性を改善する観点から、基材10”に対して30〜
60容量%の範囲とするのが好ましい。
The content rate of the long fibers 11 in the base material 10" is 30 to 30% with respect to the base material 10" from the viewpoint of improving thermal expansion/contraction and rigidity.
It is preferably in the range of 60% by volume.

また、上記基材10°における長繊維11の含有率は、
接着性と耐候性と表面平滑性の低下を防止する観点から
基材10′に対して5〜10容量%の範囲とするのが好
ましい。
In addition, the content of long fibers 11 in the base material 10° is as follows:
From the viewpoint of preventing deterioration of adhesion, weather resistance, and surface smoothness, the amount is preferably in the range of 5 to 10% by volume based on the base material 10'.

多数の長繊維11を固定している熱可塑性樹脂12及び
13としては、ポリ塩化ビニル、塩化ビニル−エチレン
共重合体、塩化ビニル−アクリル共重合体、塩化ビニル
−ウレタン共重合体などの塩化ビニル系樹脂、塩素化塩
化ビニル系樹脂、アクリル系樹脂、アクリル−ブタジェ
ン−スチレン共重合体、ポリエチレンやポリプロピレン
などのオレフィン系樹脂、エチレン−酢酸ビニル共重合
体、ポリアミド樹脂、ポリカーボネート樹脂1、ポリフ
ェニレンサルファイドやポリエーテルスルフォンなどの
エンジニアリング樹脂等が用いられる。
The thermoplastic resins 12 and 13 fixing the large number of long fibers 11 include vinyl chloride such as polyvinyl chloride, vinyl chloride-ethylene copolymer, vinyl chloride-acrylic copolymer, vinyl chloride-urethane copolymer, etc. based resins, chlorinated vinyl chloride resins, acrylic resins, acrylic-butadiene-styrene copolymers, olefin resins such as polyethylene and polypropylene, ethylene-vinyl acetate copolymers, polyamide resins, polycarbonate resins 1, polyphenylene sulfide, etc. Engineering resins such as polyether sulfone are used.

そして、熱可塑性樹脂12と熱可塑性樹脂13との組み
合わせは、通常、両者の相溶性が太き(熱融着する組み
合わせのものが用いられる。
The combination of the thermoplastic resin 12 and the thermoplastic resin 13 is usually a combination in which the two have high compatibility (thermal fusion).

また、芯材10に被覆される熱可塑性樹脂20としては
、通常、前記した熱可塑性樹脂12と同様な樹脂であっ
て、熱可塑性樹脂12と熱融着する組み合わせのものが
用いられる0例えば、長尺複合成形体Aが軒樋の場合は
、熱可塑性樹脂12.13.20として耐候性のよい塩
化ビニル系樹脂が好適に用いられる。
Further, as the thermoplastic resin 20 coated on the core material 10, a resin similar to the above-mentioned thermoplastic resin 12 and a combination that can be thermally fused with the thermoplastic resin 12 is usually used. For example, When the elongated composite molded body A is an eaves gutter, a vinyl chloride resin with good weather resistance is suitably used as the thermoplastic resin 12, 13, 20.

なお、熱可塑性樹脂20には、炭酸カルシウムなどの無
機塩、アルミニウムなどの金属粉、ガラス短繊維、木粉
のような線膨張係数の小さい充填剤を含有させると、芯
材10との線膨張係数の差が小さくなるので好ましい。
Note that if the thermoplastic resin 20 contains a filler with a small coefficient of linear expansion such as an inorganic salt such as calcium carbonate, a metal powder such as aluminum, short glass fibers, or wood flour, the linear expansion with the core material 10 will increase. This is preferable because the difference in coefficients becomes smaller.

本発明の長尺複合成形体は、軒樋のほか、波板、デツキ
材として好適に使用される。
The elongated composite molded article of the present invention is suitably used for eaves gutters, corrugated plates, and decking materials.

第3図及び第4図は本発明の長尺複合成形体の製造方法
の一例を示す概略図である。
FIGS. 3 and 4 are schematic diagrams showing an example of the method for manufacturing the elongated composite molded body of the present invention.

第3図において、ガラスロービングのような連続した多
数の長繊維11は、ボビンから繰り出され長手方向に配
列されて、多孔質の底板31を備えた流動床30に導入
される。長繊維11は、通常、流動床30に導入される
前か或いは流動床30の中で解繊具32により解繊され
る。
In FIG. 3, a large number of continuous long fibers 11 such as glass rovings are unwound from a bobbin, arranged in the longitudinal direction, and introduced into a fluidized bed 30 having a porous bottom plate 31. The long fibers 11 are usually defibrated by a defibrator 32 before being introduced into the fluidized bed 30 or within the fluidized bed 30 .

中段の流動床30には、粉末状の熱可塑性樹脂13が空
気圧により多孔質の底板31の上方に吹き上げられて浮
遊状態に保たれている。粉末状の熱可塑性樹脂13の粒
子径は、一般に10〜200μ程度とされる。そして、
中段の流動床30に導入された多数の長繊維11に、浮
遊状態にある粉末状の熱可塑性樹脂13が含浸され一枚
の樹脂含浸繊維材(10”)が作られる。この樹脂含浸
繊維材(10”)は、最終的には複合成形体の基材10
”を構成する。
In the middle fluidized bed 30, a powdered thermoplastic resin 13 is blown up by air pressure above a porous bottom plate 31 and kept in a floating state. The particle size of the powdered thermoplastic resin 13 is generally about 10 to 200 microns. and,
A large number of long fibers 11 introduced into the middle fluidized bed 30 are impregnated with powdered thermoplastic resin 13 in a floating state to produce a single sheet of resin-impregnated fiber material (10"). This resin-impregnated fiber material (10”) is the base material 10 of the composite molded body.
”.

また、上記と同様な長繊維11が上記と同様な上段及び
下段の流動床30にそれぞれ導入され、これに粉末状の
熱可塑性樹脂I2が含浸され二枚の他の樹脂含浸繊維材
(10°) 、(10”)が作られる。粉末状の熱可塑
性樹脂12の粒子径も、一般に10〜100μ程度とさ
れる。上記他の樹脂含浸繊維材(10’) 、(10″
)は、最終的には複合成形体の基材10’ 、10°を
構成する。
Furthermore, long fibers 11 similar to those described above are introduced into the upper and lower fluidized beds 30 similar to those described above, and are impregnated with powdered thermoplastic resin I2. ), (10") are made. The particle size of the powdered thermoplastic resin 12 is also generally about 10 to 100μ. The other resin-impregnated fiber materials (10'), (10") are made.
) finally constitutes the base material 10', 10° of the composite molded body.

前記樹脂含浸繊維材(10”)の両面に、上記他の樹脂
含浸繊維材(10″) 、(10”)が重ねられ、案内
ロールを経て加熱炉40に通されそこで適温に加熱され
た後、適温に加熱された一対の加熱ピンチロール41に
通されそこで中央の樹脂含浸繊維材(10”)とその両
面に重ねられた樹脂含浸繊維材(10”) 、(10°
)とが熱圧着され、熱可塑性樹脂12及び13が溶融合
着され一体化される。
The other resin-impregnated fiber materials (10") and (10") are layered on both sides of the resin-impregnated fiber material (10"), passed through a heating furnace 40 via guide rolls, and heated there to an appropriate temperature. , passed through a pair of heated pinch rolls 41 heated to an appropriate temperature, where the resin-impregnated fiber material (10") in the center and the resin-impregnated fiber materials (10") stacked on both sides of the resin-impregnated fiber material (10"), (10°
) are bonded by thermocompression, and the thermoplastic resins 12 and 13 are melted and bonded to be integrated.

この場合、中央の樹脂含浸繊維材(10″)の熱可塑性
樹脂13は加熱され難いので、重ね合わせる前に予め加
熱しておくのが好ましい。
In this case, since the thermoplastic resin 13 of the resin-impregnated fiber material (10'') in the center is difficult to heat, it is preferable to heat them in advance before stacking them together.

このようにして、基材10”の両面に他の基材10゛が
接着された芯材10が形成される。この芯材10は引取
ピンチロール50で引き取り、図のように一旦巻き取っ
てもよいが、巻き取ることなく次の工程へ連続させても
よい。
In this way, a core material 10 is formed in which the other base materials 10'' are adhered to both sides of the base material 10''. This core material 10 is taken up by the take-up pinch rolls 50, and once rolled up as shown in the figure. Alternatively, it may be continued to the next step without being wound up.

次いで、芯材10は、第4図に示すように、加熱フォー
ミング装置60により加熱軟化され、軒樋、その他波板
、デツキ材などの所望の形状に賦形され、引き続いて冷
却フォーミング装置61により冷却される。このように
して、賦形された芯材10を製造し以後の工程を行わな
い場合は、この方法は第3発明に相当する。そして、こ
の芯材10は、第1発明に相当する長尺複合成形体とな
る。
Next, as shown in FIG. 4, the core material 10 is heated and softened by a heating forming device 60, and shaped into a desired shape such as eaves gutters, other corrugated plates, decking materials, etc., and then is heated and softened by a cooling forming device 61. cooled down. In this way, when the shaped core material 10 is manufactured and the subsequent steps are not performed, this method corresponds to the third invention. This core material 10 becomes a long composite molded body corresponding to the first invention.

上記の様に賦形された芯材工0は、引き続いて押出機7
1のクロスヘッド金型70に導入され、ここでクロスヘ
ッド金型70から溶融押出される熱可塑性樹脂20が、
芯材10の全面に被覆される。
The core material 0 shaped as described above is then passed through an extruder 7.
The thermoplastic resin 20 is introduced into the crosshead mold 70 of No. 1 and is melt-extruded from the crosshead mold 70 here.
The entire surface of the core material 10 is coated.

この際、芯材10中の熱可塑性樹脂12及び13はクロ
スヘッド金型70の中で軟化又は溶融される。
At this time, the thermoplastic resins 12 and 13 in the core material 10 are softened or melted in the crosshead mold 70.

このような芯材10の全面に熱可塑性樹脂20が融着し
一体化される。
The thermoplastic resin 20 is fused and integrated over the entire surface of the core material 10.

クロスヘッド金型70のランド部の長さは、押出温度、
押出速度、使用樹脂等により適宜定められ、その間隙は
所望の形状に設計され、軒樋、波板、デツキ材など所望
の形状に賦形される。
The length of the land portion of the crosshead mold 70 is determined by the extrusion temperature,
The gap is appropriately determined depending on the extrusion speed, the resin used, etc., and the gap is designed to have a desired shape, and is formed into a desired shape such as eaves troughs, corrugated plates, decking materials, etc.

その後、冷却金型等からなるサイジング装置8゜により
表面仕上げを行い冷却して、カタピラ式引張機等の引張
装置90で引き取り、第1図及び第2図に示すような第
2発明に相当する長尺複合成形体Aが製造される。
Thereafter, the surface is finished by a sizing device 8° consisting of a cooling mold, cooled, and taken out by a tensioning device 90 such as a caterpillar tensioning machine, which corresponds to the second invention as shown in FIGS. 1 and 2. A long composite molded body A is manufactured.

(作用) 本発明の長尺複合成形体においては、連続した多数の長
繊維が熱可塑性樹脂で固定されて中央の基材とその両面
の芯材とが形成されており、この連続した多数の長繊維
により線膨張係数が小さく、剛性も高くなる。
(Function) In the long composite molded article of the present invention, a large number of continuous long fibers are fixed with a thermoplastic resin to form a central base material and core materials on both sides. Long fibers have a small linear expansion coefficient and high rigidity.

しかも、上記両面の基材は、長繊維の含有率が中央の基
材よりも低いので、中央の基材と両面の基材とからなる
長尺複合成形体は表面部分に樹脂分が多く存在し、これ
に新たに熱可塑性樹脂を被覆せずとも耐候性や表面平滑
性が良くなる。また、熱可塑性樹脂が被覆された場合で
あっても上記両面の基材の表面部分に樹脂分が多く存在
するので、その接着性が良好である。
Moreover, since the long fiber content of the base materials on both sides is lower than that of the center base material, a long composite molded article consisting of the center base material and both side base materials has a large resin content on the surface portion. However, weather resistance and surface smoothness can be improved without additionally coating with thermoplastic resin. Further, even when the thermoplastic resin is coated, since a large amount of resin exists on the surface portions of the base material on both sides, the adhesion thereof is good.

また、本発明の長尺複合成形体の製造方法においては、
連続した多数の長繊維を流動床に導入して粉末状の熱可
塑性樹脂を含浸させるので含浸が均−且つ容易に行われ
る。
In addition, in the method for manufacturing a long composite molded body of the present invention,
Since a large number of continuous long fibers are introduced into a fluidized bed and impregnated with a powdered thermoplastic resin, impregnation is carried out evenly and easily.

しかも、このようにして形成された中央の基材とその両
面の基材とからなる長尺複合成形体を芯材とし、これを
押出機のクロスヘッド金型に導入すると、クロスヘッド
金型から溶融押出される熱可塑性樹脂の熱と押出圧力に
より、熱可塑性樹脂は芯材に強く押しつけられて強固に
接着し一体化される。
Moreover, when the long composite molded body formed in this way consisting of the central base material and the base materials on both sides is used as a core material and introduced into the crosshead mold of the extruder, the crosshead mold Due to the heat and extrusion pressure of the thermoplastic resin being melted and extruded, the thermoplastic resin is strongly pressed against the core material and is firmly bonded and integrated.

(実施例) 以下、本発明の実施例及び比較例を示す。(Example) Examples and comparative examples of the present invention are shown below.

ス差]ユ 本実施例では、第3図及び第4図に示す方法で、第1図
及び第2図に示す長尺の軒樋複合成形体を製造した。
In this example, the elongated eaves/gutter composite molded body shown in FIGS. 1 and 2 was manufactured by the method shown in FIGS. 3 and 4.

先ずガラスロービング(#4400: 日東紡製)11
を長手方向に多数条配列させて流動床30に導入し、そ
こで解繊しながら圧力2.5 kg/ cdの空気によ
り吹き上げられて浮遊状態にある粉末状の塩化ビニル樹
脂配合物(平均粒径100μ、融点180℃)(TK−
400:信越化学型)13を含浸させ、厚さ約0.5閣
、幅300 m、ガラスロービング含有率35容量%の
シート状樹脂含浸繊維材(10“)を−枚作成した。
First, glass roving (#4400: manufactured by Nittobo) 11
The polyvinyl chloride resin compound (with average particle size 100μ, melting point 180℃) (TK-
A sheet-like resin-impregnated fiber material (10") having a thickness of about 0.5 m, a width of 300 m, and a glass roving content of 35% by volume was prepared by impregnating it with Shin-Etsu Chemical Type 13.

また、同様にして、上記と同じガラスロービング11に
上記と同じ粉末状の塩化ビニル樹脂配合物状12を含浸
させ、厚さ約0.5 wa、幅300 am、ガラスス
ローピング含有率7容量%の他のシート状樹脂含浸繊維
材(10”)を二枚作成した。
In addition, in the same manner, the same glass roving 11 as above was impregnated with the same powdered vinyl chloride resin compound 12 as above to form a fabric with a thickness of about 0.5 wa, a width of 300 am, and a glass sloping content of 7% by volume. Two other sheets of resin-impregnated fiber material (10") were prepared.

上記シート状樹脂含浸繊維材(10″)の両面に上記他
のシート状樹脂含浸繊維材(10°)を重ねてこれを加
熱炉40に通して200°Cに加熱し、引き続いて20
0℃の加熱ピンチロール41に通し、樹脂12及び13
を完全に溶融させて熱圧着し、引取ピンチロール50で
引き取り、シート状の複合成形体10を製造した。
The above-mentioned other sheet-like resin-impregnated fiber material (10°) is overlapped on both sides of the above-mentioned sheet-like resin-impregnated fiber material (10″), and this is passed through a heating furnace 40 and heated to 200°C.
Resins 12 and 13 are passed through heated pinch rolls 41 at 0°C.
was completely melted, thermocompression bonded, and taken off with take-up pinch rolls 50 to produce a sheet-like composite molded body 10.

この複合成形体10を170°Cの温度に保持されたフ
ォーミング装置60により加熱軟化させ角型の軒樋状に
賦形した後冷却し軒樋状に賦形された複合成形体10を
製造した。引き続いて、賦形された複合成形体10を芯
材として、この芯材10を押出機のクロスヘッド金型7
0に導入し、この表面に塩化ビニル樹脂配合物20を、
185°Cで約0.5nv+の厚さに溶融押出して被覆
した。
This composite molded body 10 was heated and softened using a forming device 60 maintained at a temperature of 170° C., shaped into a square eaves gutter shape, and then cooled to produce a composite molded body 10 shaped into an eave gutter shape. . Subsequently, using the shaped composite molded body 10 as a core material, this core material 10 is passed through a crosshead mold 7 of an extruder.
0, and a vinyl chloride resin formulation 20 is applied to this surface.
The coating was melt extruded to a thickness of about 0.5 nv+ at 185°C.

次いで、サイジング装置80により表面仕上げを行い、
冷却して引張機90で引き取り、厚さが1.5 mmの
長尺の軒樋複合成形体Aを製造した。
Next, a sizing device 80 performs surface finishing,
It was cooled and taken out by a tensile machine 90 to produce a long eave gutter composite molded body A having a thickness of 1.5 mm.

この時のライン速度は3IIIZ分であった。なお、上
記のクロスヘッド金型70は、ランドの長さが200 
mで、角型の軒樋状の間隙を有するものを用いた。この
軒樋複合成形体について、次の方法で熱伸縮性、剛性、
耐久性を評価した。その結果を第1表に示す。
The line speed at this time was 3IIIZ. Note that the crosshead mold 70 described above has a land length of 200 mm.
m, with square eaves gutter-like gaps was used. The heat stretchability, rigidity, and
Durability was evaluated. The results are shown in Table 1.

(1)熱伸縮性 軒樋成形体を4mの長さに裁断して試験片とし、これを
恒温恒温室に入れ、20°Cでの長さL2゜を測定し、
次に60°Cに温度を上昇させて60°Cでの長さし、
。を測定し、次式で線膨張係数αを算出した。α=(し
、。−Lz@)/(40(”C) XLt。)。
(1) A heat-stretchable eaves gutter molded body was cut into a length of 4 m to make a test piece, and this was placed in a constant temperature constant temperature room and the length L2° was measured at 20°C.
Next, increase the temperature to 60°C and lengthen at 60°C,
. was measured, and the linear expansion coefficient α was calculated using the following formula. α=(shi,.−Lz@)/(40(“C)XLt.).

(2)剛性 軒樋成形体から長手方向へ150 tm、幅方向へ20
mmに切断して試験片を作成し、JIS K 6911
に準じて試験片の長手方向の曲げ強度を測定した。
(2) 150 tm in the longitudinal direction and 20 tm in the width direction from the rigid eaves gutter molded body
Create a test piece by cutting it into mm and comply with JIS K 6911.
The bending strength in the longitudinal direction of the test piece was measured according to .

(3)耐久性 軒樋成形体を1mの長さに切断して試験片とし、これを
恒温室で一10″CX2時間〜70℃×2時間の冷熱繰
り返し試験を1000サイクル行った後、この試験片を
切断し、その断面状態を電子顕微鏡で観察した。
(3) Durability The eaves gutter molded body was cut into 1m length test pieces, which were subjected to 1000 cycles of heating and cooling tests from 110"C x 2 hours to 70℃ x 2 hours in a constant temperature room. A test piece was cut, and its cross-sectional state was observed using an electron microscope.

ス崖■l 実施例Iにおいて、複合成形体10に塩化ビニル樹脂配
合物20を被覆せず、また、シート状樹脂含浸繊維材(
10’)及びシート状樹脂含浸繊維材(10′″)の厚
さをいずれも約0.5mm+とじたこと以外は、実施例
1と同様にして厚さ約1.5 mの長尺の軒樋複合成形
体を製造した。得られた軒樋複合成形体について、熱伸
縮性、剛性、耐久性を評価した。その結果を第1表に示
す。
Cliff ■l In Example I, the composite molded body 10 was not coated with the vinyl chloride resin compound 20, and the sheet-like resin-impregnated fiber material (
A long eave with a thickness of about 1.5 m was prepared in the same manner as in Example 1, except that the thickness of both the sheet-like resin-impregnated fiber material (10') and the sheet-like resin-impregnated fiber material (10''') was about 0.5 mm+. A gutter composite molded body was manufactured.The obtained eave gutter composite molded body was evaluated for thermal stretchability, rigidity, and durability.The results are shown in Table 1.

土較■上 実施例1において、シート状樹脂含浸繊維材(10”)
及びシート状樹脂含浸繊維材(10″)のガラスロービ
ング含有率をいずれも均一に30容量%としたこと以外
は、実施例1と同様に行った。
Soil comparison ■ In Example 1 above, sheet-shaped resin-impregnated fiber material (10”)
The same procedure as in Example 1 was conducted except that the glass roving content of the resin-impregnated fiber material sheet (10'') was uniformly set to 30% by volume.

得られた軒樋複合成形体について、熱伸縮性、剛性、耐
久性を評価した。その結果を第1表に示す。
The obtained eaves gutter composite molded body was evaluated for thermal stretchability, rigidity, and durability. The results are shown in Table 1.

第1表 (発明の効果) 上述の通り、本発明の長尺複合成形体は、熱伸縮が小さ
く変形や剛性が改善され、さらに眉間剥離の問題が解消
し、温度変化の厳しい環境で長期に亘って使用しても、
変形やひび割れや眉間剥離が起こらず、耐久性に優れる
Table 1 (Effects of the Invention) As mentioned above, the long composite molded article of the present invention has low thermal expansion and contraction, has improved deformation and rigidity, has solved the problem of glabellar peeling, and can be used for long periods in environments with severe temperature changes. Even if you use it for a long time,
It has excellent durability and does not cause deformation, cracking, or peeling between the eyebrows.

また、本発明の長尺複合成形体の製造方法は、多数の長
繊維への熱可塑性樹脂の含浸性が良く、品質の良い長尺
複合成形体が得られる。さらに溶融押出被覆の際に芯材
とこれに被覆される熱可塑性樹脂とが強固に融着一体化
され、耐久性に優れた長尺複合成形体を得ることができ
る。
Further, the method for producing a long composite molded body of the present invention has good impregnation of a large number of long fibers with a thermoplastic resin, and a high quality long composite molded body can be obtained. Furthermore, during melt extrusion coating, the core material and the thermoplastic resin coated thereon are firmly fused and integrated, making it possible to obtain a long composite molded article with excellent durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明長尺複合成形体の一例を示す一部切欠斜
視図、第2図は第1図の(イ)部分の拡大図である。第
3図及び第4図は本発明長尺複合成形体の製造方法の一
例を示す概略図である。 A・・・長尺複合成形体、10・・・芯材(複合成形体
)、10−・・基材、10″・・・他の基材、(10″
)・・・樹脂含浸繊維材、(10°)・・・他の樹脂含
浸繊維材、11・・・長繊維、12.13・・・長繊維
を固定している熱可塑性樹脂、20・・・芯材に被覆さ
れた熱可塑性樹脂、30・・・流動床、40・・・加熱
炉加熱ピンチロール、41・・・加熱ピンチロール、5
0・・・引取ピンチロール、60・・・加熱フォーミン
グ装置、70・・・押出機のクロスヘッド金型、80・
・・サイジング装置、90・・・引張装置。
FIG. 1 is a partially cutaway perspective view showing an example of the elongated composite molded article of the present invention, and FIG. 2 is an enlarged view of the portion (A) in FIG. 1. FIGS. 3 and 4 are schematic diagrams showing an example of the method for manufacturing the elongated composite molded body of the present invention. A... Long composite molded body, 10... Core material (composite molded body), 10-... Base material, 10''... Other base material, (10''
)... Resin-impregnated fiber material, (10°)... Other resin-impregnated fiber material, 11... Long fiber, 12.13... Thermoplastic resin fixing the long fiber, 20...・Thermoplastic resin coated on core material, 30...Fluidized bed, 40...Heating furnace heating pinch roll, 41...Heating pinch roll, 5
0...Take-off pinch roll, 60...Heating forming device, 70...Extruder crosshead mold, 80...
...Sizing device, 90...Tension device.

Claims (1)

【特許請求の範囲】 1、連続した多数の長繊維が熱可塑性樹脂で固定された
基材の両面に、この基材と同様な構成で長繊維の含有率
が上記基材よりも低い他の基材が接着一体化されてなる
長尺複合成形体。 2、請求項1記載の長尺複合成形体を芯材とし、この芯
材に熱可塑性樹脂が被覆一体化されてなる長尺複合成形
体。 3、連続した多数の長繊維を流動床に導入して粉末状の
熱可塑性樹脂を含浸させて作られた樹脂含浸繊維材の両
面に、この樹脂含浸繊維材と同様にして作られ長繊維の
含有率が上記樹脂含浸繊維材よりも低い他の樹脂含浸繊
維材を熱圧着し樹脂を溶融させ一体化することを特徴と
する長尺複合成形体の製造方法。 4、請求項3記載の方法で得られた長尺複合成形体を芯
材とし、この芯材を押出機のクロスヘッド金型に導入し
、これに熱可塑性樹脂を溶融押出被覆し一体化すること
を特徴とする長尺複合成形体の製造方法。
[Scope of Claims] 1. On both sides of a base material in which a large number of continuous long fibers are fixed with a thermoplastic resin, other materials having the same structure as this base material and having a lower content of long fibers than the above base material are provided. A long composite molded product made by bonding base materials together. 2. A long composite molded article, which uses the long composite molded article according to claim 1 as a core material, and the core material is integrally coated with a thermoplastic resin. 3. A resin-impregnated fiber material made by introducing a large number of continuous long fibers into a fluidized bed and impregnating them with a powdered thermoplastic resin is coated with a resin-impregnated fiber material made in the same manner as this resin-impregnated fiber material. A method for producing a long composite molded article, which comprises thermo-compression bonding another resin-impregnated fiber material having a content lower than that of the resin-impregnated fiber material, and melting the resin to integrate the resin-impregnated fiber material. 4. The long composite molded body obtained by the method according to claim 3 is used as a core material, this core material is introduced into a crosshead mold of an extruder, and a thermoplastic resin is melt-extruded and coated thereon and integrated. A method for producing a long composite molded body, characterized by:
JP1098378A 1989-04-18 1989-04-18 Composite formed body in continuous form and manufacture thereof Pending JPH02276625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1098378A JPH02276625A (en) 1989-04-18 1989-04-18 Composite formed body in continuous form and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1098378A JPH02276625A (en) 1989-04-18 1989-04-18 Composite formed body in continuous form and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02276625A true JPH02276625A (en) 1990-11-13

Family

ID=14218214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1098378A Pending JPH02276625A (en) 1989-04-18 1989-04-18 Composite formed body in continuous form and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02276625A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605213A1 (en) * 1992-12-28 1994-07-06 MITSUI TOATSU CHEMICALS, Inc. Fiber-reinforced resin molded articles and production process thereof
JP2013531717A (en) * 2010-06-22 2013-08-08 ティコナ・エルエルシー Thermoplastic prepreg containing continuous and long fibers
JP2018533514A (en) * 2015-11-17 2018-11-15 マーハイグ エルエルシー Composition and method for structures

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0605213A1 (en) * 1992-12-28 1994-07-06 MITSUI TOATSU CHEMICALS, Inc. Fiber-reinforced resin molded articles and production process thereof
JP2013531717A (en) * 2010-06-22 2013-08-08 ティコナ・エルエルシー Thermoplastic prepreg containing continuous and long fibers
US9096000B2 (en) 2010-06-22 2015-08-04 Ticona Llc Thermoplastic prepreg containing continuous and long fibers
JP2018533514A (en) * 2015-11-17 2018-11-15 マーハイグ エルエルシー Composition and method for structures

Similar Documents

Publication Publication Date Title
US4788088A (en) Apparatus and method of making a reinforced plastic laminate structure and products resulting therefrom
RU2380230C2 (en) Flat structure, which consists of bound set of contacting meshes in form of cells
JPH02276625A (en) Composite formed body in continuous form and manufacture thereof
JP4992675B2 (en) Method and apparatus for manufacturing plastic hollow plate
JP3396401B2 (en) Composite molded products
JP2006281571A (en) Laminated molded product
JP2702546B2 (en) Long composite molded article and method for producing the same
JPH02217231A (en) Fiber reinforced synthetic resin molded form and production thereof
JPH02265744A (en) Continuous composite molding and manufacture thereof
JPH02220842A (en) Composite formed body in continuous form and manufacture thereof
JP3884524B2 (en) Laminated molded product and manufacturing method thereof
JP2661748B2 (en) Method for producing fiber-reinforced resin long composite molded body
JPH02266935A (en) Long composite molded product and preparation thereof
JPH02214639A (en) Manufacture of continuous composite molded material
JPH04142923A (en) Base material for forming automotive ceiling and preparation of the same
JP2533662B2 (en) Manufacturing method of eaves gutter
JP2874951B2 (en) Eaves gutter manufacturing method
JP2661749B2 (en) Method for producing fiber-reinforced resin long composite molded body
JPH0521064B2 (en)
JP2904608B2 (en) Fiber composite rain gutter and method of manufacturing the same
JPH07310408A (en) Rain gutter and its manufacture
JPH03247844A (en) Fiber reinforcing resin eaves gutter and its manufacture
JP2531127Y2 (en) Eaves gutter
JP2584880B2 (en) Manufacturing method of Kakuken gutter
JP2000328733A (en) Fiber composite eaves gutter