JP2661749B2 - Method for producing fiber-reinforced resin long composite molded body - Google Patents

Method for producing fiber-reinforced resin long composite molded body

Info

Publication number
JP2661749B2
JP2661749B2 JP1205157A JP20515789A JP2661749B2 JP 2661749 B2 JP2661749 B2 JP 2661749B2 JP 1205157 A JP1205157 A JP 1205157A JP 20515789 A JP20515789 A JP 20515789A JP 2661749 B2 JP2661749 B2 JP 2661749B2
Authority
JP
Japan
Prior art keywords
resin
composite molded
impregnated
molded body
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1205157A
Other languages
Japanese (ja)
Other versions
JPH0367646A (en
Inventor
博則 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP1205157A priority Critical patent/JP2661749B2/en
Publication of JPH0367646A publication Critical patent/JPH0367646A/en
Application granted granted Critical
Publication of JP2661749B2 publication Critical patent/JP2661749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、連続した多数の長繊維により強化した繊維
強化樹脂長尺複合成形体の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a fiber-reinforced resin long composite molded article reinforced by a continuous number of long fibers.

(従来の技術) ガラス繊維などの織布、不織布、ロービングに、不飽
和ポリエステル樹脂などの合成樹脂液を含浸して形成し
たプリプレグシートを用いて、繊維強化樹脂長尺複合成
形体を製造する技術は広く知られている。
(Prior art) A technology for manufacturing a long composite fiber-reinforced resin molded article using a prepreg sheet formed by impregnating a woven fabric, nonwoven fabric, or roving such as glass fiber with a synthetic resin solution such as an unsaturated polyester resin. Is widely known.

かかる繊維強化樹脂長尺複合成形体の製造技術にあっ
て、織布や不織布を用いる場合は、強度バランスは良い
が、材料コストが高く、しかも合成樹脂液を均一且つ充
分に含浸し難いという問題がある。これに対し、ロービ
ングのような長繊維を用いる場合は、上記のような問題
は少ないという利点がある。
In the production technology of such a fiber-reinforced resin long composite molded article, when a woven fabric or a nonwoven fabric is used, the strength balance is good, but the material cost is high, and it is difficult to impregnate the synthetic resin liquid uniformly and sufficiently. There is. On the other hand, when long fibers such as roving are used, there is an advantage that the above-mentioned problems are small.

(発明が解決しようとする課題) ところが、ロービングのような長繊維を用いた繊維強
化樹脂長尺複合成形体は、長繊維が長手方向のみに配列
しており、幅方向の強度が低い。そのため、織布や不織
布を用いたものに比べ、耐衝撃性が充分に改善されない
という問題がある。
(Problems to be Solved by the Invention) However, in a fiber-reinforced resin long composite molded body using long fibers such as roving, the long fibers are arranged only in the longitudinal direction, and the strength in the width direction is low. For this reason, there is a problem that the impact resistance is not sufficiently improved as compared with those using a woven or nonwoven fabric.

また、かかる繊維強化樹脂長尺複合成形体は、これを
芯材として押出機のクロスヘッド金型に導入し、これに
熱可塑性樹脂を溶融押出被覆し一体化する場合、強度に
方向性があり耐熱性も充分でなく、そのためクロスヘッ
ド金型内で樹脂圧力により芯材が変形したり破れを生じ
たりして、均一な製品を得難いという問題もある。
In addition, when such a fiber-reinforced resin long composite molded body is introduced into a crosshead mold of an extruder using this as a core material, and the thermoplastic resin is melt-extruded and coated therewith, the strength has directionality. There is also a problem that the heat resistance is not sufficient and the core material is deformed or broken by the resin pressure in the crosshead mold, and it is difficult to obtain a uniform product.

本発明は、上記の問題を解決するものであり、その目
的とするところは、耐衝撃性が充分に改善され、また製
品の均一性が改善された繊維強化樹脂長尺複合成形体の
製造方法を提供することにある。
The present invention solves the above-mentioned problems, and an object of the present invention is to provide a method for producing a fiber-reinforced resin long composite molded article having sufficiently improved impact resistance and improved product uniformity. Is to provide.

(課題を解決するための手段) 本発明の繊維強化樹脂長尺複合成形体の製造方法は、
次の二つの発明からなる。
(Means for Solving the Problems) The method for producing a fiber-reinforced resin long composite molded article of the present invention comprises:
It consists of the following two inventions.

第一の発明は、連続した多数の長繊維を流動床に導入
し、これに粉末状の熱可塑性樹脂を含浸させて少なくと
も二枚の帯状の樹脂含浸繊維材を作り、これを積層一体
化するに際し、その中の少なくとも一枚の樹脂含浸繊維
材に緊張と弛緩とを繰り返し与え、次いでこの樹脂含浸
繊維材を長手方向に対して幅方向に繰り返し揺動させ、
その後全ての樹脂含浸繊維材を積層一体化することを特
徴とする。
The first invention introduces a continuous large number of long fibers into a fluidized bed, impregnates them with a thermoplastic resin in powder form to produce at least two strip-shaped resin-impregnated fiber materials, and laminates and integrates them. At this time, tension and relaxation are repeatedly applied to at least one sheet of the resin-impregnated fiber material, and then the resin-impregnated fiber material is repeatedly rocked in the width direction with respect to the longitudinal direction,
Thereafter, all the resin-impregnated fiber materials are laminated and integrated.

第二の発明は、上記の方法で製造された繊維強化樹脂
長尺複合成形体を押出機のクロスヘッド金型に導入し、
これに熱可塑性樹脂を溶融押出被覆し一体化することを
特徴とする。
The second invention introduces the fiber-reinforced resin long composite molded body produced by the above method into a crosshead mold of an extruder,
It is characterized in that a thermoplastic resin is melt-extruded and integrated therewith.

以上の構成により、本発明の目的が達成される。 With the above configuration, the object of the present invention is achieved.

以下、図面を参照しながら、本発明方法を説明する。 Hereinafter, the method of the present invention will be described with reference to the drawings.

第1図は第一の発明を説明するための概略図である。
第1図において、連続した多数の長繊維11は、ボビンか
ら繰り出され長手方向に帯状に配列されて、多孔質の底
板31を備えた流動床30に導入される。長繊維11は、通
常、流動床30に導入される前か、或いは流動床30の中で
解繊される。図においては、流動床30の中で解繊具32に
より解繊される。長繊維11としては、ガラス繊維、カー
ボン繊維、セラミック繊維などのロービングが好適に用
いられる。
FIG. 1 is a schematic diagram for explaining the first invention.
In FIG. 1, a large number of continuous long fibers 11 are unreeled from a bobbin, arranged in a strip shape in the longitudinal direction, and introduced into a fluidized bed 30 having a porous bottom plate 31. The long fibers 11 are usually defibrated before being introduced into the fluidized bed 30 or in the fluidized bed 30. In the figure, the fiber is defibrated by a defibrating device 32 in a fluidized bed 30. Roving such as glass fiber, carbon fiber, and ceramic fiber is preferably used as the long fiber 11.

上方と中間と下方の流動床30には、粉末状の熱可塑性
樹脂12が空気圧により多孔質の底板31の上方に吹き上げ
られて浮遊状態に保たれている。粉末状の熱可塑性樹脂
12の粒子径は、一般に10〜200μ程度とされる。そし
て、上方と中間と下方の流動床30にそれぞれ導入された
多数の長繊維11に、浮遊状態にある粉末状の熱可塑性樹
脂12がそれぞれ含浸され、上中下三枚の帯状の樹脂含浸
繊維材10′が作られる。
In the upper, middle and lower fluidized beds 30, the powdery thermoplastic resin 12 is blown up above the porous bottom plate 31 by air pressure and is kept in a floating state. Powdered thermoplastic resin
The particle size of 12 is generally about 10 to 200 μm. The powdery thermoplastic resin 12 in a floating state is impregnated into a number of long fibers 11 introduced into the upper, middle and lower fluidized beds 30, respectively. Material 10 'is made.

熱可塑性樹脂12としては、ポリ塩化ビニル、ポリエチ
レン、ポリプロピレン、ポリフェニレンサルファイドや
ポリエーテルスルフォンなどのエンジニアリング樹脂等
が用いられる。上記長繊維11は熱可塑性樹脂12に対して
90容量%まで含浸され得るが、60容量%以下の範囲で含
浸されるのが好ましい。
As the thermoplastic resin 12, an engineering resin such as polyvinyl chloride, polyethylene, polypropylene, polyphenylene sulfide or polyether sulfone is used. The long fibers 11 are
It can be impregnated up to 90% by volume, but is preferably impregnated in a range of 60% by volume or less.

そして、中間の樹脂含浸繊維材10′は張力制御バー又
はロール21に掛けられる。この張力制御バー又はロール
21は、点線で図示したように、上方及び下方へ比較的速
く、一定の振幅及び周期で上下方向に往復移動するよう
に構成されている。したがって、張力制御ロール21が上
方へ移動するときに、中間の樹脂含浸繊維材10′に緊張
が与えられ、張力制御ロール21が下方へ移動するとき
に、中間の樹脂含浸繊維材10′に弛緩が与えられる。こ
のようにして中間の樹脂含浸繊維材10′に緊張と弛緩と
が繰り返し与えられ、中間の樹脂含浸繊維材10′が上下
の樹脂含浸繊維材10′よりも余分に流動床30から引き出
される。
Then, the intermediate resin-impregnated fiber material 10 ′ is hung on a tension control bar or roll 21. This tension control bar or roll
Reference numeral 21 is configured to reciprocate up and down relatively quickly and at a constant amplitude and period in a vertical direction, as indicated by dotted lines. Therefore, when the tension control roll 21 moves upward, tension is applied to the intermediate resin-impregnated fiber material 10 ', and when the tension control roll 21 moves downward, the intermediate resin-impregnated fiber material 10' relaxes. Is given. In this way, tension and relaxation are repeatedly applied to the intermediate resin-impregnated fiber material 10 ', and the intermediate resin-impregnated fiber material 10' is drawn out of the fluidized bed 30 more than the upper and lower resin-impregnated fiber materials 10 '.

次いで、中間の樹脂含浸繊維材10′は揺動装置20に通
される。この揺動装置20はレール上に設置され、樹脂含
浸繊維材10′の長手方向(移送方向)に対して幅方向、
即ち紙面に対して垂直方向に、一定の振幅及び周期で往
復移動するように構成されている。したがって、この揺
動装置に通された中間の樹脂含浸繊維材10′は、幅方向
に繰り返し揺動しながら移送される。
Next, the intermediate resin-impregnated fiber material 10 ′ is passed through the rocking device 20. The swinging device 20 is installed on a rail, and has a width direction with respect to a longitudinal direction (transfer direction) of the resin-impregnated fiber material 10 ′.
That is, it is configured to reciprocate in a direction perpendicular to the paper surface at a constant amplitude and a constant cycle. Therefore, the intermediate resin-impregnated fibrous material 10 'passed through the rocking device is transported while repeatedly rocking in the width direction.

その直後、この中間の樹脂含浸繊維材10′に上方と下
方の樹脂含浸繊維材10′が重ねられ、一対の積層用の加
熱ピンチロール40に通され、ここで樹脂含浸繊維材10′
の全ての層が熱溶着され積層一体化される。ここで樹脂
含浸繊維材10′の樹脂12が完全に溶融していない場合も
あるので、引き続いて赤外線ヒーター等を備えた加熱炉
41に通されここで樹脂12が完全に溶融され、一対の厚み
調整用のピンチロール42で厚みが調整された後、一対の
引取ピンチロール50で引き取られる。このようにして、
繊維強化樹脂長尺複合成形体10が製造される。この長尺
複合成形体10は、図のように一旦巻き取ってもよいが、
巻き取ることなく次の工程へ連続させてもよい。
Immediately thereafter, the upper and lower resin-impregnated fiber materials 10 'are superimposed on the intermediate resin-impregnated fiber material 10' and passed through a pair of heating pinch rolls 40 for lamination, where the resin-impregnated fiber material 10 '
Are heat-welded and laminated and integrated. Here, since the resin 12 of the resin-impregnated fiber material 10 'may not be completely melted, a heating furnace equipped with an infrared heater or the like is subsequently provided.
After passing through 41, the resin 12 is completely melted, the thickness is adjusted by a pair of pinch rolls 42 for thickness adjustment, and then taken off by a pair of take-off pinch rolls 50. In this way,
The fiber-reinforced resin long composite molded body 10 is manufactured. This long composite molded body 10 may be wound up once as shown in the figure,
The process may be continued to the next step without winding.

第2図は第二の発明を説明するための概略図である。
第1図に示す方法で製造された長尺複合成形体10は、第
2図に示すように、加熱フォーミング装置60により加熱
軟化され、軒樋、波板、デッキ材などの所望の形状に賦
形され、引き続いて冷却フォーミング装置61により冷却
される。所望の形状に賦形された長尺複合成形体10は、
上記のように冷却フォーミング装置61により冷却した方
が次のクロスヘッド金型への導入が円滑になし得て好ま
しいが、賦形された複合芯材10は必ずしも冷却しないで
もよい。
FIG. 2 is a schematic diagram for explaining the second invention.
As shown in FIG. 2, the long composite molded article 10 manufactured by the method shown in FIG. 1 is softened by heating by a heating forming device 60, and is formed into a desired shape such as an eaves gutter, corrugated sheet, deck material or the like. It is shaped and subsequently cooled by a cooling forming device 61. The long composite molded body 10 shaped into a desired shape,
It is preferable that the cooling is performed by the cooling forming device 61 as described above, since it can be smoothly introduced into the next crosshead mold, but the shaped composite core material 10 may not necessarily be cooled.

このように賦形された長尺複合成形体10は、引き続い
て押出機71のクロスヘッド金型70に導入され、ここでク
ロスヘッド金型70から溶融押出される熱可塑性樹脂13
が、長尺複合成形体10の全面に融着し被覆一体化され
る。熱可塑性樹脂13としては、前記長繊維11に含浸され
る熱可塑性樹脂12と同様な樹脂が用いられる。また、ク
ロスヘッド金型70のランド部の長さは、押出温度、押出
速度、使用樹脂等により適宜定められ、その間隙は所望
の形状に設計され、軒樋、波板、デッキ材など所望の形
状に賦形される。その後、冷却金型等からなるサイジン
グ装置80により表面仕上げが行われ冷却後、カタピラ式
引張機等の引張装置90で引き取られ、熱可塑性樹脂13で
被覆された繊維強化樹脂長尺複合成形体14が製造され
る。
The long composite molded article 10 shaped in this manner is subsequently introduced into a crosshead mold 70 of an extruder 71, where a thermoplastic resin 13 melt-extruded from the crosshead mold 70.
Are fused and coated and integrated over the entire surface of the long composite molded body 10. As the thermoplastic resin 13, the same resin as the thermoplastic resin 12 impregnated in the long fibers 11 is used. The length of the land portion of the crosshead mold 70 is appropriately determined according to the extrusion temperature, the extrusion speed, the resin used, and the like, and the gap is designed to have a desired shape. Shaped into shape. Thereafter, surface finishing is performed by a sizing device 80 composed of a cooling mold or the like, and after cooling, the fiber-reinforced resin long composite molded body 14 is taken up by a tension device 90 such as a caterpillar type tension machine and coated with a thermoplastic resin 13. Is manufactured.

(作用) 第一発明の方法によれば、連続した多数の長繊維を流
動床に導入して粉末状の熱可塑性樹脂を含浸させるので
含浸が容易に行われる。また、少なくとも一枚の樹脂含
浸繊維材を長手方向に対して幅方向に繰り返し揺動さ
せ、全ての樹脂含浸繊維材と積層一体化するので、揺動
させた樹脂含浸繊維材を構成する長繊維は、長手方向に
対して交又するように斜めに配向し、異方向に対する強
度バランスが良くなる。
(Operation) According to the method of the first invention, since a large number of continuous long fibers are introduced into the fluidized bed and impregnated with the powdery thermoplastic resin, the impregnation is easily performed. Further, since at least one piece of the resin-impregnated fiber material is repeatedly rocked in the width direction with respect to the longitudinal direction, and laminated and integrated with all the resin-impregnated fiber materials, the long fibers constituting the rocked resin-impregnated fiber material Are obliquely oriented so as to intersect with the longitudinal direction, and the strength balance in different directions is improved.

しかも、揺動させる前の樹脂含浸繊維材には緊張と弛
緩とが繰り返し与えられるので、それによりこの樹脂含
浸繊維材は他の樹脂含浸繊維材よりも余分に流動床から
引き出され、この余分に引き出される樹脂含浸繊維材に
より、その後の幅方向への繰り返し揺動操作が抵抗なく
円滑に行われる。それゆえ、積層一体化の際に、揺動さ
せた樹脂含浸繊維材の揺動度合いが戻って減少すること
が確実に防止される。
Moreover, tension and relaxation are repeatedly applied to the resin-impregnated fiber material before rocking, so that this resin-impregnated fiber material is pulled out of the fluidized bed more than other resin-impregnated fiber materials, and this extra By the drawn resin-impregnated fiber material, the subsequent swinging operation in the width direction is smoothly performed without any resistance. Therefore, it is possible to reliably prevent the swinging degree of the swinging resin-impregnated fibrous material from decreasing and decreasing during lamination and integration.

また、第二発明の方法によれば、上記第一発明の方法
により製造された長尺複合成形体を芯材として使用する
ので、この芯材は異方向に対する強度バランスが良く、
これを押出機のクロスヘッド金型に導入しても、クロス
ヘッド金型から溶融押出される熱可塑性樹脂の熱と押出
圧力により長尺複合成形体の芯材が変形したり破れを生
じたりすることが防止される。
Further, according to the method of the second invention, since the long composite molded body produced by the method of the first invention is used as a core material, the core material has a good strength balance in different directions,
Even if this is introduced into the crosshead mold of the extruder, the core material of the long composite molded body is deformed or broken due to the heat and extrusion pressure of the thermoplastic resin melt-extruded from the crosshead mold. Is prevented.

そして、クロスヘッド金型から溶融押出される熱可塑
性樹脂の熱と押出圧力により、熱可塑性樹脂は長尺複合
成形体芯材に強く押しつけられて強固に接着し一体化さ
れる。
Then, the thermoplastic resin is pressed strongly against the core of the long composite molded body by the heat and the extrusion pressure of the thermoplastic resin melt-extruded from the crosshead mold, and is strongly bonded and integrated.

(実施例) 以下、本発明の実施例及び比較例を示す。(Examples) Hereinafter, Examples and Comparative Examples of the present invention will be described.

実施例 本実施例では、第1図及び第2図に示す方法で、軒樋
となる繊維強化樹脂長尺複合成形体を製造した。
Example In this example, a fiber-reinforced resin long composite molded body to be an eaves gutter was manufactured by the method shown in FIGS.

先ず、ガラスロービング(♯4400:日東紡製)11を長
手方向に多数条配列させて流動床30に導入し、そこで解
繊しながら圧力2.5kg/cm2の空気により吹き上げられて
浮遊状態にある粉末状の塩化ビニル樹脂配合物(平均粒
径100μ、融点180℃)(TK−400:信越化学製)12を含浸
させ、帯状の樹脂含浸繊維材10′を、上方、中間、下方
に三枚作成した。この時の速度は0.2m/分であった。こ
の三枚の樹脂含浸繊維材10′の厚さは約0.5mm、ガラス
ロービング含有量は30容量%であった。そして、中間の
樹脂含浸繊維材10′を、振幅が2cm、周期が3往復/秒
で上下方向に移動する張力制御ロール21に通した。
First, a large number of glass rovings (# 4400: manufactured by Nitto Boseki) 11 are arranged in the longitudinal direction and introduced into the fluidized bed 30, where they are blown up by air at a pressure of 2.5 kg / cm 2 while being defibrated, and are in a floating state. Impregnated with powdered vinyl chloride resin compound (average particle size 100μ, melting point 180 ° C) (TK-400: manufactured by Shin-Etsu Chemical Co., Ltd.) 12, three strips of resin impregnated fiber material 10 ' Created. The speed at this time was 0.2 m / min. The thickness of the three resin-impregnated fiber materials 10 'was about 0.5 mm, and the glass roving content was 30% by volume. Then, the intermediate resin-impregnated fibrous material 10 'was passed through a tension control roll 21 having an amplitude of 2 cm and a cycle of 3 reciprocations / second and moving vertically.

次いで、この中間の樹脂含浸繊維材10′を、振幅が10
cm、周期が1.5往復/分で幅方向に揺動する揺動装置20
に通した。その後、この中間の樹脂含浸繊維材10′に上
方と下方の樹脂含浸繊維材10′を重さね、200℃の溶着
用の加熱ピンチロール40に通し、全ての層を熱圧着して
積層一体化した。引き続いて加熱炉41に通して樹脂12を
200℃に加熱して完全に溶融し、さらに厚み調整用のピ
ンチロール42に通した後、引取ピンチロール50で引き取
り、繊維強化樹脂長尺複合成形体10を製造した。この場
合、中間の樹脂含浸繊維材10′を構成する長繊維11は、
長手方向に対して約13度斜めに配向していた。以上の方
法は第一発明に相当する。
Next, the intermediate resin-impregnated fiber material 10 'was
Oscillating device 20 that oscillates in the width direction at a rate of 1.5 reciprocations / minute with cm, cycle
Passed. Then, the upper and lower resin-impregnated fiber materials 10 'are weighed on the intermediate resin-impregnated fiber material 10', passed through a heating pinch roll 40 for welding at 200 ° C., and all the layers are thermocompressed and laminated to be integrated. It has become. Subsequently, the resin 12 is passed through the heating furnace 41 to
After heating to 200 ° C. to completely melt and pass through a pinch roll 42 for thickness adjustment, it was pulled off by a take-off pinch roll 50 to produce a fiber-reinforced resin long composite molded body 10. In this case, the long fibers 11 constituting the intermediate resin-impregnated fiber material 10 'are:
The orientation was about 13 degrees oblique to the longitudinal direction. The above method corresponds to the first invention.

この長尺複合成形体10を170℃の温度に保持されたフ
ォーミング装置60により加熱軟化させ角型の軒樋状に賦
形した後冷却した。続いて、賦形された長尺複合成形体
10を押出機のクロスヘッド金型70に導入し、この表面に
塩化ビニル樹脂配合物13を185℃で0.5mmの厚さに溶融押
出して被覆した。
The long composite molded body 10 was heated and softened by a forming apparatus 60 maintained at a temperature of 170 ° C., shaped into a square eave trough, and then cooled. Next, the formed long composite molded body
10 was introduced into a crosshead mold 70 of an extruder, and the surface thereof was melt-extruded at 185 ° C. to a thickness of 0.5 mm at 185 ° C. to cover the surface.

次いで、サイジング装置80により表面仕上げを行い冷
却して引張機90で引き取り、厚さ1.5mmの軒樋となる繊
維強化樹脂長尺複合成形体14を製造した。この時のライ
ン速度は3m/分であった。なお、上記のクロスヘッド金
型70は、ランド長さが200mmで、角型の軒樋状の間隙を
有するものを用いた。以上の方法は第二発明に相当す
る。
Next, the surface was finished by a sizing device 80, cooled, and taken off by a tensioning machine 90 to produce a fiber-reinforced resin long composite molded article 14 to be a 1.5 mm-thick eaves gutter. The line speed at this time was 3 m / min. The crosshead mold 70 used had a land length of 200 mm and a rectangular eave-gutter-shaped gap. The above method corresponds to the second invention.

この軒樋複合成形体14について、次の方法で熱伸縮
性、耐衝撃性、押出成形性を評価した。その結果、線膨
張係数は2×10-5/℃、衝撃強度は30kg・cm、押出成形
性の評価では、複合成形体10の変形や破れが認められ
ず、得られた軒樋複合成形体14の厚みは均一であった。
The eaves gutter composite molded body 14 was evaluated for thermal stretchability, impact resistance, and extrusion moldability by the following methods. As a result, the coefficient of linear expansion was 2 × 10 −5 / ° C., the impact strength was 30 kg · cm, and the evaluation of the extrusion moldability showed no deformation or breakage of the composite molded body 10, and the obtained eaves gutter composite molded body 14 had a uniform thickness.

(1)熱伸縮性 軒樋複合成形体14を4mの長さに裁断して試験片とし、
これを恒湿恒温室に入れ20℃での長さL20を測定し、次
に60℃に温度を上昇させて60℃での長さL60を測定し、
次式で線膨張係数αを算出した。α=(L60−L20)/
(40(℃)×L20)。
(1) Thermal stretchability The eaves gutter composite molded body 14 is cut into a length of 4 m to obtain a test piece.
Put this in a constant temperature and humidity room, measure the length L 20 at 20 ° C, then raise the temperature to 60 ° C, measure the length L 60 at 60 ° C,
The linear expansion coefficient α was calculated by the following equation. α = (L 60 −L 20 ) /
(40 (° C.) × L 20 ).

(2)耐衝撃性 軒樋複合成形体14から50mm×50mmに切断して試験片を
作成し、この試験片にデュポン衝撃試験機で1.5kgの錘
を落下させ、試験片が破損する落下距離から衝撃強度を
測定した。
(2) Impact resistance A test piece was prepared by cutting the eaves gutter composite body 14 into 50 mm x 50 mm, and a 1.5 kg weight was dropped on this test piece with a Dupont impact tester, and the drop distance at which the test piece was broken Was used to measure the impact strength.

(3)押出成形性 芯材となる複合成形体10を押出機のクロスヘッド金型
70に導入し、この表面に塩化ビニル樹脂配合物13を連続
して5時間溶融押出して被覆した際の、複合成形体10の
変形や破れの状態を観察した。
(3) Extrusion moldability The composite molded body 10 serving as the core material is cross-molded by an extruder.
The composite molded article 10 was introduced into the mold 70, and the surface of the composite molded article 10 was observed when the vinyl chloride resin composition 13 was melt-extruded and coated continuously for 5 hours.

比較例 実施例において、中間の樹脂含浸繊維材10′を、張力
制御ロール21及び揺動装置20に通さず、それ以外は実施
例と同様に行った。その結果、線膨張係数は2×10-5/
℃、衝撃強度は7.5kg・cm、押出成形性の評価では、押
出開始後約30分で複合成形体10に破れが発生し、得られ
た軒樋複合成形体14の厚みは、複合成形体10の破れ部分
で不均一であった。
Comparative Example In the example, the intermediate resin-impregnated fibrous material 10 'was not passed through the tension control roll 21 and the oscillating device 20, and the other conditions were the same as in the example. As a result, the coefficient of linear expansion is 2 × 10 -5 /
° C, the impact strength was 7.5 kgcm, and in the extrudability evaluation, about 30 minutes after the start of extrusion, the composite molded body 10 was torn, and the thickness of the obtained eaves gutter composite molded body 14 was It was uneven at 10 torn parts.

(発明の効果) 上述の通り、第一発明の方法においては、多数の長繊
維への熱可塑性樹脂の含浸性が良く、また複合成形体を
構成する長繊維が、長手方向に対して交又するように斜
めに確実且つ良好に配向し、異方向に対する強度バラン
スが良くなる。それゆえ、複合成形体の耐衝撃性が改善
される。
(Effects of the Invention) As described above, in the method of the first invention, many long fibers have good impregnating property of the thermoplastic resin, and the long fibers constituting the composite molded body are crossed in the longitudinal direction. As a result, the film is oriented obliquely and favorably, and the strength balance in different directions is improved. Therefore, the impact resistance of the composite molded body is improved.

また、第二発明の方法においては、溶融押出被覆の際
に芯材となる上記複合成形体が変形したり、破れを生じ
たりすることが防止され、しかも芯材となる複合成形体
とこれに被覆される熱可塑性樹脂とが強固に融着一体化
される。それゆえ、製品の均一性が改善され、耐久性の
優れた樹脂被覆の複合成形体が得られる。
Further, in the method of the second invention, the composite molded body serving as a core during melt extrusion coating is prevented from being deformed or torn, and the composite molded body serving as a core and The thermoplastic resin to be coated is firmly fused and integrated. Therefore, the uniformity of the product is improved, and a resin-coated composite molded article having excellent durability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は第一発明方法の一例を示す概略図、第2図は第
二発明方法の一例を示す概略図である。 10……長尺複合成形体、10′……樹脂含浸繊維材、11…
…長繊維、12……粉末状の熱可塑性樹脂、13……被覆さ
れた熱可塑性樹脂、14……樹脂被覆の長尺複合成形体、
20……揺動装置、21……張力制御バー又はロール、30…
…流動床、40……積層用の加熱ピンチロール、41……加
熱炉、42……厚み調整用のピンチロール、50……引取ピ
ンチロール、60……加熱フォーミング装置、70……押出
機のクロスヘッド金型、80……サイジング装置、90……
引張装置。
FIG. 1 is a schematic diagram showing an example of the first invention method, and FIG. 2 is a schematic diagram showing an example of the second invention method. 10 …… Long composite molded body, 10 ′ …… Resin impregnated fiber material, 11…
... long fiber, 12 ... powdery thermoplastic resin, 13 ... coated thermoplastic resin, 14 ... resin-coated long composite molded body,
20 ... rocking device, 21 ... tension control bar or roll, 30 ...
... fluidized bed, 40 ... heating pinch roll for lamination, 41 ... heating furnace, 42 ... pinch roll for thickness adjustment, 50 ... take-off pinch roll, 60 ... heating forming device, 70 ... extruder Crosshead mold, 80 …… Sizing device, 90 ……
Tension device.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】連続した多数の長繊維を流動床に導入し、
これに粉末状の熱可塑性樹脂を含浸させて少なくとも二
枚の帯状の樹脂含浸繊維材を作り、これを積層一体化す
るに際し、その中の少なくとも一枚の樹脂含浸繊維材に
緊張と弛緩とを繰り返し与え、次いでこの樹脂含浸繊維
材を長手方向に対して幅方向に繰り返し揺動させ、その
後全ての樹脂含浸繊維材を積層一体化することを特徴と
する繊維強化樹脂長尺複合成形体の製造方法。
1. A continuous long fiber is introduced into a fluidized bed,
This is impregnated with a powdery thermoplastic resin to produce at least two belt-shaped resin-impregnated fibrous materials, and when laminating and integrating them, tension and relaxation are applied to at least one of the resin-impregnated fibrous materials. Repeatedly producing, then repeatedly swinging the resin-impregnated fiber material in the width direction with respect to the longitudinal direction, and thereafter laminating and integrating all the resin-impregnated fiber materials, thereby producing a long fiber-reinforced resin composite article. Method.
【請求項2】請求項1記載の方法で製造された繊維強化
樹脂長尺複合成形体を押出機のクロスヘッド金型に導入
し、これに熱可塑性樹脂を溶融押出被覆し一体化するこ
とを特徴とする繊維強化樹脂長尺複合成形体の製造方
法。
2. The method according to claim 1, wherein the fiber-reinforced resin long composite molded article produced by the method according to claim 1 is introduced into a crosshead mold of an extruder, and a thermoplastic resin is melt-extruded and coated thereon to integrate the same. A method for producing a long fiber-reinforced resin composite molding.
JP1205157A 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body Expired - Fee Related JP2661749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1205157A JP2661749B2 (en) 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1205157A JP2661749B2 (en) 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body

Publications (2)

Publication Number Publication Date
JPH0367646A JPH0367646A (en) 1991-03-22
JP2661749B2 true JP2661749B2 (en) 1997-10-08

Family

ID=16502366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1205157A Expired - Fee Related JP2661749B2 (en) 1989-08-08 1989-08-08 Method for producing fiber-reinforced resin long composite molded body

Country Status (1)

Country Link
JP (1) JP2661749B2 (en)

Also Published As

Publication number Publication date
JPH0367646A (en) 1991-03-22

Similar Documents

Publication Publication Date Title
JP3821467B2 (en) Reinforcing fiber base material for composite materials
WO2003046057A1 (en) Fiber-reinforced thermoplastic resin sheet, structural material comprising the same, and process for producing fiber-reinforced thermoplastic resin sheet
JPH02209929A (en) Preform for forming fiber-reinforced plastics and production thereof
US5759927A (en) Glass-fiber-containing non-woven polymer web, and process for preparing same
JP2661749B2 (en) Method for producing fiber-reinforced resin long composite molded body
JP2661748B2 (en) Method for producing fiber-reinforced resin long composite molded body
JPS6054183B2 (en) Fiber-reinforced multilayer punched thermoplastic resin
JPH05278126A (en) Forming material of fiber reinforced thermoplastic resin
JPH02248212A (en) Production of fiber complex material
JPH1119998A (en) Composite molding
US5585455A (en) Reinforcement composites for thermosetting polymer systems
JP3027043B2 (en) Method for producing fiber composite sheet
JP2986560B2 (en) Method for producing plate-shaped composite material having foam core
JPH02217231A (en) Fiber reinforced synthetic resin molded form and production thereof
JPH02220841A (en) Composite formed body in continuous form and manufacture thereof
JP2000158571A (en) Manufacture of composite laminated molding and laminated mat used for it
JP2584880B2 (en) Manufacturing method of Kakuken gutter
JPH04272849A (en) Method and device for manufacturing fiber-reinforced thermoplastic-resin multilayer laminated board
JP2003071958A (en) Composite molding and its manufacturing method
JPH01308614A (en) Continuous manufacture and device of heating moldable thermoplastic sheet reinforced
KR100255003B1 (en) Structures and fabrication methods of constinuous fiber-reinforced extruded plastic articles
JPH02258255A (en) Long-sized composite molded body and manufacture thereof
JP2533662B2 (en) Manufacturing method of eaves gutter
JPH05147034A (en) Production of stamp molding sheet
JPH10296865A (en) Method and device for manufacture of fiber reinforced sheet

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees