JPH0366781B2 - - Google Patents

Info

Publication number
JPH0366781B2
JPH0366781B2 JP57159506A JP15950682A JPH0366781B2 JP H0366781 B2 JPH0366781 B2 JP H0366781B2 JP 57159506 A JP57159506 A JP 57159506A JP 15950682 A JP15950682 A JP 15950682A JP H0366781 B2 JPH0366781 B2 JP H0366781B2
Authority
JP
Japan
Prior art keywords
alkaline
active material
cathode active
alkali
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57159506A
Other languages
Japanese (ja)
Other versions
JPS5951476A (en
Inventor
Kenichi Shinoda
Tomoya Murata
Takashi Fukuhara
Kyohide Tsutsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP15950682A priority Critical patent/JPS5951476A/en
Publication of JPS5951476A publication Critical patent/JPS5951476A/en
Publication of JPH0366781B2 publication Critical patent/JPH0366781B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid

Description

【発明の詳細な説明】 この発明はアルカリ電池、特にアルカリ電解液
と耐アルカリ性のゲル化剤とによりゲル状化され
た陰極活物質を用いてなるものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an alkaline battery, particularly one using a cathode active material gelled with an alkaline electrolyte and an alkali-resistant gelling agent.

アルカリ電池は、例えば亜鉛等を主剤とする陰
極活物質とセパレータと陽極とによつて構成され
るが、その陰極活物質は、アルカリ電解液と耐ア
ルカリ性のゲル化剤とによりゲル状化された状態
で使用されるのが普通である。これにより、例え
ば陰極中の電解液が外部へ漏液したりすることが
防止されるようになる。従つて、陰極活物質は十
分にゲル化されることが望まれる。この陰極活物
質のゲル化度を高めるためには、該陰極活物質中
に注液されるアルカリ電解液のアルカリ濃度を高
めるか、あるいはゲル化剤の使用量を多くすれば
良いことが従来において知られていた。ゲル化剤
には耐アルカリ性のもの(例えばカルボキシメチ
ルセルロースのナトリウム塩:Na−CMC)が使
用される。
An alkaline battery is composed of a cathode active material mainly made of zinc, a separator, and an anode, but the cathode active material is gelled with an alkaline electrolyte and an alkali-resistant gelling agent It is usually used in the state. This prevents, for example, the electrolyte in the cathode from leaking to the outside. Therefore, it is desired that the cathode active material be sufficiently gelled. Conventionally, in order to increase the degree of gelation of this cathode active material, it is sufficient to increase the alkaline concentration of the alkaline electrolyte injected into the cathode active material, or to increase the amount of gelling agent used. It was known. As the gelling agent, an alkali-resistant one (for example, sodium salt of carboxymethyl cellulose: Na-CMC) is used.

ところで、アルカリ電池に用いられるアルカリ
電解液は、そのアルカリ濃度がある値よりも高く
なるとその比電導度が低下してくる。例えば、水
酸化カリウム水溶液の場合は、そのアルカリ濃度
が約36重量%のときに最も高い比電導度が得られ
る。それ以下のアルカリ濃度でも、あるいはそれ
以下のアルカリ濃度でも比電導度は低下してく
る。従つて、アルカリ電池に用いられるアルカリ
電解液は、その比電導度が最も高くなるようにそ
のアルカリ濃度を定めることが放電特性上最適で
ある。しかし、このように比電導度を最も高くで
きるアルカリ濃度付近では、陰極活物質中の耐ア
ルカリ性のゲル化剤(例えばNa−CMC)が十分
にゲル化することができず、このために電池組立
後に陰極中の電解液が外部へ逃げ出し、電池ケー
スのシール界面をクリープして漏液を生じさせる
ようになる。つまり、放電特性上最適なアルカリ
濃度と陰極活物質をゲル状化するための最適なア
ルカリ濃度とは、互いに両立し得ないものであつ
た。ここで、ゲル化剤の使用量を増やすことも考
えられるが、しかし上述したように、そのゲル化
剤のゲル化度はアルカリ電解液のアルカリ濃度に
依存するものであるから、ゲル化剤の使用量を増
やすだけでは十分な効果が得られない。そこで、
従来においては、放電特性を犠牲にしてゲル化度
を高めるか、あるいはその反対にするかのいずれ
かを選択せざるを得なかつた。つまり、放電性能
を向上させようとすれば耐漏液性能が低下し、反
対に耐漏液性能を向上させようとすれば放電性能
が低下してしまうという背反があつたのである。
By the way, when the alkaline concentration of the alkaline electrolyte used in alkaline batteries becomes higher than a certain value, its specific conductivity decreases. For example, in the case of an aqueous potassium hydroxide solution, the highest specific conductivity is obtained when the alkali concentration is about 36% by weight. The specific conductivity decreases even at a lower alkaline concentration than that, or even at a lower alkaline concentration than that. Therefore, it is optimal in terms of discharge characteristics to determine the alkaline concentration of the alkaline electrolyte used in alkaline batteries so that its specific conductivity is the highest. However, near the alkaline concentration where the specific conductivity can be maximized, the alkali-resistant gelling agent (e.g. Na-CMC) in the cathode active material cannot be sufficiently gelled, which makes it difficult to assemble the battery. Later, the electrolyte in the cathode escapes to the outside and creeps over the sealing interface of the battery case, causing leakage. In other words, the optimum alkali concentration for discharge characteristics and the optimum alkali concentration for gelatinizing the cathode active material are incompatible with each other. Here, it is possible to increase the amount of gelling agent used, but as mentioned above, the degree of gelling of the gelling agent depends on the alkaline concentration of the alkaline electrolyte. Merely increasing the amount used will not produce sufficient effects. Therefore,
In the past, one had to choose between increasing the degree of gelation at the expense of discharge characteristics, or vice versa. In other words, there was a trade-off that if an attempt was made to improve the discharge performance, the leakage resistance would be reduced, and on the other hand, if an attempt was made to improve the leakage resistance, the discharge performance would be reduced.

この発明は以上のような従来の問題に鑑みてな
されたもので、その目的とするところは、電池の
構造的な構成には何等手を加えることなく、きわ
めて簡単な付加的構成だけでもつて、従来におい
ては両立させるのが困難であつた放電性能の向上
と耐漏液性能の向上を同時に達成できるようにし
たアルカリ電池を提供することにある。
This invention was made in view of the above-mentioned conventional problems, and its purpose is to provide a battery with only an extremely simple additional structure without making any changes to the structural configuration of the battery. The object of the present invention is to provide an alkaline battery that can simultaneously achieve improved discharge performance and improved leakage resistance, which have been difficult to achieve in the past.

上記の目的を達成するために、この発明は、ア
ルカリ濃度が30〜40重量%の水酸化カリウム水溶
液からなるアルカリ電解液とカルボキシメチルセ
ルロースのナトリウム塩(Na−CMC)からなる
耐アルカリ性のゲル化剤とによりゲル状化された
陰極活物質を用いてなるアルカリ電池であつて、
上記アルカリ電解液中にクロム酸塩をあらかじめ
溶解したことを特徴とする。
In order to achieve the above object, the present invention has developed an alkaline electrolyte consisting of an aqueous potassium hydroxide solution with an alkali concentration of 30 to 40% by weight, and an alkali-resistant gelling agent consisting of a sodium salt of carboxymethyl cellulose (Na-CMC). An alkaline battery using a cathode active material gelled by
It is characterized in that chromate is dissolved in advance in the alkaline electrolyte.

以下、この発明の実施例について説明する。 Examples of the present invention will be described below.

実施例 アルカリ濃度が36重量%の水酸化カリウム水溶
液中にクロム酸カリ(K2CrO4)を0.2〜3.0重量%
溶解し、これをアルカリ電解液として、耐アルカ
リ性のゲル化剤(Na−CMC)とともに用いて粒
状亜鉛からなる陰極活物質をゲル状化させた。こ
のようにしてゲル状化された陰極活物質を用いて
ボタン型の密閉式アルカリ電池(LR44タイプ)
を組立てた。
Example 0.2 to 3.0% by weight of potassium chromate (K 2 CrO 4 ) in a potassium hydroxide aqueous solution with an alkali concentration of 36% by weight
This was dissolved and used as an alkaline electrolyte together with an alkali-resistant gelling agent (Na-CMC) to gel a cathode active material consisting of particulate zinc. A button-type sealed alkaline battery (LR44 type) using the cathode active material gelled in this way
Assembled.

比較例 上記の実施例と同じアルカリ濃度(36重量%)
をそのまま耐アルカリ性ゲル化剤(上記実施例の
ものと同じ)とともに用いて粒状亜鉛を主剤とす
る陰極活物質をゲル状化した。そして、このゲル
状化された陰極活物質を用いてボタン型密閉式ア
ルカリ電池(上記実施例のものと同タイプのも
の)を組立てた。
Comparative example Same alkali concentration as the above example (36% by weight)
was used as it was together with an alkali-resistant gelling agent (same as that in the above example) to gel a cathode active material containing granular zinc as a main ingredient. Then, a button-type sealed alkaline battery (of the same type as that of the above example) was assembled using this gelled cathode active material.

ここで、上記実施例のアルカリ電池および上記
比較例のアルカリ電池をそれぞれ100個ずつ用い
て耐漏液性能の試験を行なつたところ、次のよう
な試験結果を得た。漏液発生個数(n=100) 初 度 90日保存後 実施例の電池 0 0 比較例の電池 0 9 なお、保存条件は60℃、90%RHとした。
Here, a leakage resistance test was conducted using 100 alkaline batteries of the above example and 100 alkaline batteries of the above comparative example, and the following test results were obtained. Number of leaking cells (n=100) Initial After storage for 90 days Example battery 0 0 Comparative example battery 0 9 Storage conditions were 60° C. and 90% RH.

上記実施例のアルカリ電池および上記比較例の
アルカリ電池は、いずれもそのアルカリ電解液の
アルカリ濃度を最も高い比電導度が得られる濃度
(36重量%)に設定したが、上記実施例のアルカ
リ電池は、そのようなアルカリ濃度のアルカリ電
解液を用いても、上記比較例のアルカリ電池に比
べると大幅に優れた耐漏液性能を示すことができ
た。
In both the alkaline battery of the above example and the alkaline battery of the above comparative example, the alkaline concentration of the alkaline electrolyte was set to the concentration (36% by weight) that provided the highest specific conductivity. Even when using an alkaline electrolyte with such an alkaline concentration, the battery was able to exhibit significantly superior leakage resistance performance compared to the alkaline battery of the comparative example.

なお、耐漏液性能の試験と平行して放電性能の
試験も併せて行なつたが、初度における放電性
能、特に短絡電流値については両者に差を見出す
ことができなかつた。
Although a discharge performance test was also conducted in parallel with the leakage resistance test, no difference could be found between the two in terms of the initial discharge performance, particularly the short-circuit current value.

以上のように、この発明によるアルカリ電池で
は、陰極活物質中に含ませられるアルカリ電解液
中にあらかじめクロム酸塩を溶解させるだけとい
うきわめて簡単な付加的構成を与えるだけでもつ
て、最も比電導度の高いアルカリ濃度でもつて十
分な耐漏液性能を得ることができるようになつて
いる。これは、そのようなアルカリ濃度において
も陰極活物質のゲル化度を十分に高めることがで
きるからに他ならない。従つて、この発明は、ア
ルカリ電解液の比電導度を最も高くできる範囲の
アルカリ濃度、具体的には30〜40重量%のアルカ
リ濃度のアルカリ電解液を用いる場合に最も有効
なものとなる。
As described above, the alkaline battery according to the present invention has the highest specific conductivity by providing an extremely simple additional configuration of dissolving chromate in advance in the alkaline electrolyte contained in the cathode active material. It is now possible to obtain sufficient leakage resistance even at high alkali concentrations. This is because the degree of gelation of the cathode active material can be sufficiently increased even at such an alkali concentration. Therefore, the present invention is most effective when using an alkaline electrolyte having an alkaline concentration within a range that can maximize the specific conductivity of the alkaline electrolyte, specifically, from 30 to 40% by weight.

ところで、上記クロム酸塩は、陰極活物質中に
含ませられるアルカリ電解液中にあらかじめ十分
に溶解させておくことが必要である。もし、その
クロム酸塩が結晶のまま陰極活物質中に混入する
と、ゲル化がその結晶の周囲のみに集中的に進行
し、この結果その結晶をゲル化剤が覆つてしま
い、それ以上のゲル化の進行を妨げるようにな
る。また、クロム酸塩としては、上述したクロム
酸カリに限定されないことはもちろんであり、例
えばクロム酸カルシウムを使用することもでき
る。
By the way, the above-mentioned chromate salt needs to be sufficiently dissolved in advance in the alkaline electrolyte contained in the cathode active material. If the chromate is mixed into the cathode active material as a crystal, gelation will proceed intensively only around the crystal, and as a result, the crystal will be covered with the gelling agent, causing further gelation. This will impede the progress of development. Further, the chromate is not limited to the above-mentioned potassium chromate, and for example, calcium chromate can also be used.

以上のように、この発明によるアルカリ電池
は、その構造的な構成には何らの変更を加える必
要もなく、きわめて簡単な付加的構成を与えるだ
けでもつて、従来においては両立がきわめて困難
であつた放電性能の向上と耐漏液性能の向上を同
時に達成することができる。
As described above, the alkaline battery according to the present invention does not require any changes to its structural configuration, and merely provides an extremely simple additional configuration, which was extremely difficult to achieve in the past. It is possible to simultaneously achieve improved discharge performance and improved leakage resistance.

Claims (1)

【特許請求の範囲】[Claims] 1 アルカリ濃度が30〜40重量%の水酸化カリウ
ム水溶液からなるアルカリ電解液と、カルボキシ
メチルセルロースのナトリウム塩(Na−CMC)
からなる耐アルカリ性のゲル化剤とによりゲル状
化された陰極活物質を用いてなるアルカリ電池で
あつて、上記アルカリ電解液中にクロム酸塩をあ
らかじめ溶解したことを特徴とするアルカリ電
池。
1. An alkaline electrolyte consisting of an aqueous potassium hydroxide solution with an alkali concentration of 30 to 40% by weight and sodium salt of carboxymethyl cellulose (Na-CMC)
1. An alkaline battery comprising a cathode active material gelled with an alkali-resistant gelling agent comprising: an alkaline electrolyte having a chromate dissolved therein in advance.
JP15950682A 1982-09-16 1982-09-16 Alkaline cell Granted JPS5951476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15950682A JPS5951476A (en) 1982-09-16 1982-09-16 Alkaline cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15950682A JPS5951476A (en) 1982-09-16 1982-09-16 Alkaline cell

Publications (2)

Publication Number Publication Date
JPS5951476A JPS5951476A (en) 1984-03-24
JPH0366781B2 true JPH0366781B2 (en) 1991-10-18

Family

ID=15695255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15950682A Granted JPS5951476A (en) 1982-09-16 1982-09-16 Alkaline cell

Country Status (1)

Country Link
JP (1) JPS5951476A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826489A (en) * 1971-08-10 1973-04-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4826489A (en) * 1971-08-10 1973-04-07

Also Published As

Publication number Publication date
JPS5951476A (en) 1984-03-24

Similar Documents

Publication Publication Date Title
US1863791A (en) Electric cell
JPS5931573A (en) Negative electrode for lithium battery
JPH0366781B2 (en)
US3887397A (en) Highly conductive stable electrolyte for lithium batteries
US5192628A (en) Alkaline electrolyte for galvanic elements
US3040114A (en) Primary battery cell
JPS62186470A (en) Non-aqueous electrolytic solution cell
JPS6113580A (en) Air cell
JPS61165961A (en) Organic electrolytic solution battery
JPH0317181B2 (en)
JPS62160671A (en) Nonaqueous solvent secondary battery
JP2754864B2 (en) Manufacturing method of zinc alkaline battery
JPS60136182A (en) Air cell
JP2964802B2 (en) Glue-type manganese dry battery
JP2568590B2 (en) Alkaline battery
JPS636985B2 (en)
JPS5925169A (en) Manufacture of negative pole for alkaline primary battery
JPS60131770A (en) Zinc alkaline battery
JPH02216760A (en) Zinc alkaline battery
JPS5866269A (en) Alkaline battery
JPS62136770A (en) Alkaline battery
JPS59171470A (en) Nonaqueous solvent battery
JPH0410708B2 (en)
JP2000260425A (en) Positive electrode mix for alkaline battery and alkaline battery using it
JPS58206069A (en) Organic electrolyte battery