JPH0366254B2 - - Google Patents

Info

Publication number
JPH0366254B2
JPH0366254B2 JP62075730A JP7573087A JPH0366254B2 JP H0366254 B2 JPH0366254 B2 JP H0366254B2 JP 62075730 A JP62075730 A JP 62075730A JP 7573087 A JP7573087 A JP 7573087A JP H0366254 B2 JPH0366254 B2 JP H0366254B2
Authority
JP
Japan
Prior art keywords
oxide
mol
core
zinc
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62075730A
Other languages
Japanese (ja)
Other versions
JPS63242931A (en
Inventor
Hideki Matsui
Takeo Maeda
Takemitsu Morikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP62075730A priority Critical patent/JPS63242931A/en
Publication of JPS63242931A publication Critical patent/JPS63242931A/en
Publication of JPH0366254B2 publication Critical patent/JPH0366254B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、少量の酸化マンガンと酸化銅を含
み、微量の酸化ビスマスを添加したマグネシウム
−亜鉛系フエライト材に関するものである。本発
明は例えば偏向ヨークコア等に好適な低損失のフ
エライト材である。 [従来の技術] CRTに装着される偏向ヨークのコア材料とし
ては、マグネシウム−亜鉛系やマンガン−亜鉛
系、ニツケル−亜鉛系等の各種フエライト材が使
用されている。これらの材質系列はそれぞれ異な
る特性を有するため用途に応じて使い分けられて
いる。 偏向ヨークコアは一般的な他のフエライトコア
と同様、各原料を配合し混合して焼成し、適当な
バインダーと共に混練してペレツトに造粒し、金
型を用いて所定の形状にプレス成形した後、焼結
することによつて製造される。 [発明が解決しようとする問題点] CRTデイスプレイの高解像度化および民生用
テレビジヨンにおける倍速化の傾向は、近年ます
ます進んできている。何れにしても偏向走査周波
数が従来よりも増加するため、偏向ヨークコア材
料にも更に高度の性能が要求されている。偏向ヨ
ークの水平走査周波数を高周波化した場合、偏向
ヨークコアの発熱が大きいと熱暴走現象が生じ、
正常に機能しなくなる虞れがある。そのため特に
高い周波数の下で使用する場合には低損失の材料
が要求される。 偏向ヨークコアに用いられている材質系列のう
ちマンガン−亜鉛系やニツケル−亜鉛系フエライ
トはマグネシウム−亜鉛系よりも低損失である。
しかしマンガン−亜鉛系フエライトは焼成コスト
が高く、また固有抵抗が低いので線材とレア・シ
ヨートを起こすためエポキシ樹脂等でコーテイン
グする必要があるし、一般的な巻線方式であるセ
ミトロイダル型にした場合リンギングが発生し易
い。またニツケル−亜鉛系フエライトは原料費が
高く、歪率が大きいため高周波帯では「うなり」
の問題が生じる。 これらのことからコストが低いマグネシウム−
亜鉛系フエライトにおいて低損失の材料の開発が
強く望まれている。 本発明の目的は、比抵抗が高くコストが低いマ
グネシウム−亜鉛系フエライト材の利点を生か
し、しかも既存の同系列の材料よりもはるかに損
失が少なく、特に高周波用偏向ヨークコアとして
最適のフエライト材を提供することにある。 [問題点を解決するための手段] 上記のような目的を達成することのできる本発
明は、主成分として 酸化鉄… 46〜49モル% 酸化マグネシウム… 24〜27モル% 酸化亜鉛… 18〜21モル% 酸化マンガン… 4〜7モル% 酸化銅… 1〜4モル% なる組成を有し、それに 酸化ピスマス… 0.3〜0.6重量% を添加したマグネシウム−亜鉛系フエライト材で
ある。 主成分を上記のような組成領域に限定した理由
は、それを外れると抗磁力の増大と共に損失が大
きくなるし、キユリー点の低下、飽和磁束密度の
低下、比抵抗の低下といつたその他の要因にも悪
影響を及ぼすからである。例えば酸化鉄が規定し
た量よりも多いと比抵抗が低下するし、少ないと
飽和磁束の低下が見られる。また酸化亜鉛量が上
記組成範囲より多くなるとキユリー点の低下をき
たし、少なくなると抗磁力の増大によりコアロス
が大きくなる。更に他の3要素についても、規定
組成領域外ではコアロスが増大し、結果として発
熱が大きくなる。 添加する酸化ビスマスを0.3〜0.6重量%とした
のは、0.3重量%未満では添加の効果が現れずコ
アロスが悪いし、0.6重量%を超えると添加効果
の増大が認められず逆に焼結性が促進され過ぎて
物理的特性に悪影響を及ぼすためである。 [実施例] 種々の組成となるように各原料粉末を配合し混
合して仮焼きする。これらの仮焼品を粉砕した
後、バインダー(1〜2重量%のPVAおよび水)
と混練しペレツトを造粒した。そしてこのペレツ
トを用いてプレス成形し、1250〜1350℃の温度で
1〜2時間焼成してフエライトコアを得た。 試作したフエライトコアの組成と、その電磁電
気的特性を第1表に示す。
[Industrial Application Field] The present invention relates to a magnesium-zinc ferrite material containing small amounts of manganese oxide and copper oxide, and to which a small amount of bismuth oxide is added. The present invention is a low-loss ferrite material suitable for, for example, a deflection yoke core. [Prior Art] Various ferrite materials such as magnesium-zinc, manganese-zinc, and nickel-zinc are used as the core material of the deflection yoke mounted on a CRT. Each of these material series has different characteristics and is therefore used depending on the application. Similar to other general ferrite cores, deflection yoke cores are made by blending raw materials, mixing them, firing them, kneading them with an appropriate binder, granulating them into pellets, and press-molding them into a predetermined shape using a mold. , manufactured by sintering. [Problems to be Solved by the Invention] In recent years, there has been a trend toward higher resolution in CRT displays and double speed in consumer televisions. In any case, since the deflection scanning frequency is increased compared to the conventional one, even higher performance is required of the deflection yoke core material. When the horizontal scanning frequency of the deflection yoke is increased to a high frequency, thermal runaway occurs if the deflection yoke core generates a large amount of heat.
There is a risk that it may not function properly. Therefore, materials with low loss are required, especially when used under high frequencies. Among the material series used for the deflection yoke core, manganese-zinc ferrite and nickel-zinc ferrite have lower loss than magnesium-zinc ferrite.
However, manganese-zinc ferrite has a high firing cost and has a low specific resistance, so it needs to be coated with epoxy resin to avoid rare shoots with the wire. ringing is likely to occur. In addition, nickel-zinc ferrite has high raw material costs and a high distortion rate, so it produces "beating" in high frequency bands.
The problem arises. Due to these reasons, magnesium is low in cost.
There is a strong desire to develop low-loss zinc-based ferrite materials. The purpose of the present invention is to utilize the advantages of magnesium-zinc ferrite material, which has high resistivity and low cost, and which also has much lower loss than existing similar materials, making it particularly suitable for high-frequency deflection yoke cores. It is about providing. [Means for Solving the Problems] The present invention, which can achieve the above objects, contains iron oxide...46 to 49 mol%, magnesium oxide...24 to 27 mol%, and zinc oxide...18 to 21 as main components. It is a magnesium-zinc ferrite material having a composition of mol% manganese oxide...4 to 7 mol%, copper oxide...1 to 4 mol%, and pismuth oxide...0.3 to 0.6% by weight added thereto. The reason why we limited the main components to the above-mentioned composition range is that if it deviates from this range, the loss increases as the coercive force increases, and other factors such as a decrease in the Curie point, a decrease in saturation magnetic flux density, and a decrease in specific resistance occur. This is because it also has a negative effect on factors. For example, if the amount of iron oxide is more than the specified amount, the specific resistance will decrease, and if it is less than the specified amount, the saturation magnetic flux will decrease. Moreover, if the amount of zinc oxide exceeds the above composition range, the Curie point will decrease, and if it decreases, the core loss will increase due to an increase in coercive force. Furthermore, regarding the other three elements, core loss increases outside the specified composition range, resulting in increased heat generation. The reason for adding bismuth oxide to 0.3 to 0.6% by weight is that if it is less than 0.3% by weight, the effect of addition will not be seen and core loss will be bad. This is because it promotes too much and has an adverse effect on physical properties. [Example] Raw material powders are blended and mixed to give various compositions, and then calcined. After grinding these calcined products, binder (1-2% by weight PVA and water)
The mixture was kneaded to form pellets. Then, the pellets were press-molded and fired at a temperature of 1250 to 1350°C for 1 to 2 hours to obtain a ferrite core. Table 1 shows the composition of the prototype ferrite core and its electromagnetic and electrical properties.

【表】 なおこれらの測定値はキユリー点Tcの測定を
除いて23℃での値である。またコアロスの測定値
はBm−100mTでの値である。 この第1表において*印を付した試料H,I,
Jの3種類が本発明範囲に含まれるものである。
これらはコアロス並びに初透磁率μiac、飽和磁束
密度Bm、保磁力Hc、キユリー温度Tc、比抵抗
ρの何れの面でも優れた特性を呈していることが
判る。特にコアロスは従来品に比べて約30〜60%
も低減されている。従つて例えば水平走査周波数
が32kHzの場合、巻線方式を同じにして偏向ヨー
クコアを製作した時、従来製品よりもコアの発熱
を3〜8℃程度も低くすることができた。 それに対してその他の各種の組成試料は、何れ
もそれぞれ問題がある。試料A,BはMgO量が
多く、全ての磁気特性の面で本発明のものよりも
かなり低い。試料C,Dは主成分は本発明領域内
にあるがBi2O3の量が少ない。この組成では初透
磁率並びに飽和磁束密度が低い。試料EはZnO量
が多くFe2O3量が少なくCuOが入つていない組成
である。この組成ではコアロスは良好であるがキ
ユリー点が非常に低く実用化不可能である。試料
FはCuOが入つていない組成であり、コアロスが
大きい。試料Gは主成分の組成範囲は本発明と同
じであるが添加物であるBi2O3量が少ないもので
ある。この組成だと前記試料C,Dと同様、初透
磁率並びに飽和磁束密度が低い。 試料KはFe2O3量が少なくMgO量が多くCuO
を含んでいない。試料LはCuO量が少ない。試料
MはFe2O3量が少なくMnO量が多くCuOを含ん
でいない。試料NはMnO量並びにMgO量が少な
くCuOが多く、またNiOを含んでいる。何れにし
てもこれら試料K〜Nはコアロス並びに磁気特性
全体にわたつて本発明のものよりもかなり落ち
る。 試料OはFe2O3量が非常に多い。このように
Fe2O3量が多いと比抵抗が急激に下がつてしま
う。試料Pは添加物であるBi2O3量が多い。この
組成だと全体的にコアロスが大きくなる。 また第1表には記載していないが、本発明のよ
うにBi2O3を3重量%以上添加すると研削性が向
上することも認められた。特に高解像度の偏向ヨ
ークコアでは非常に厳しい寸法精度が要求され、
真円度をだすため内径側を研削することがある。
研削性の高い本発明品は、このような場合に極め
て有効であり、研削工程で不良が生じることは殆
ど無い。 [発明の効果] 本発明は上記のように少量の酸化マンガンおよ
び酸化銅を含み、酸化ビスマスを微量添加したマ
グネシウム−亜鉛系フエライト材であるから、既
存の同系列材料に比べておよそ30〜60%ものコア
ロスの低減が達成され、それによりコアの発熱を
大幅に少なくできる効果が生じる。 しかも初透磁率、残留磁束密度、保磁力、キユ
リー点、比抵抗などといつた基本的な電磁気的特
性も十分すぐれており、研削性も良好なため特に
高周波用偏向ヨークコア材として最適である。
[Table] These measured values are at 23°C, except for the measurement of the Kyrie point Tc. Moreover, the measured value of core loss is the value at Bm-100mT. Samples H, I, marked with * in this Table 1,
Three types of J are included in the scope of the present invention.
It can be seen that these exhibit excellent characteristics in terms of core loss, initial magnetic permeability μiac, saturation magnetic flux density Bm, coercive force Hc, Curie temperature Tc, and resistivity ρ. In particular, core loss is approximately 30 to 60% compared to conventional products.
has also been reduced. Therefore, for example, when the horizontal scanning frequency is 32 kHz, when a deflection yoke core is manufactured using the same winding method, the heat generation of the core can be reduced by about 3 to 8 degrees Celsius compared to conventional products. On the other hand, all of the other various composition samples have their own problems. Samples A and B have a large amount of MgO and are considerably lower in all magnetic properties than those of the present invention. Samples C and D have main components within the range of the present invention, but the amount of Bi 2 O 3 is small. This composition has low initial permeability and low saturation magnetic flux density. Sample E has a composition with a large amount of ZnO and a small amount of Fe 2 O 3 and no CuO. This composition has good core loss, but the Curie point is extremely low and cannot be put to practical use. Sample F has a composition that does not contain CuO and has a large core loss. Sample G has the same composition range of the main components as the present invention, but has a small amount of Bi 2 O 3 as an additive. With this composition, the initial magnetic permeability and saturation magnetic flux density are low, similar to the samples C and D described above. Sample K has a small amount of Fe 2 O 3 and a large amount of MgO and CuO
does not contain. Sample L has a small amount of CuO. Sample M has a small amount of Fe 2 O 3 , a large amount of MnO, and does not contain CuO. Sample N has a small amount of MnO and MgO, a large amount of CuO, and also contains NiO. In any case, these samples K to N are considerably inferior to those of the present invention in terms of core loss and overall magnetic properties. Sample O has a very large amount of Fe 2 O 3 . in this way
If the amount of Fe 2 O 3 is large, the specific resistance will drop rapidly. Sample P has a large amount of Bi 2 O 3 as an additive. With this composition, core loss increases overall. Although not shown in Table 1, it was also observed that grindability was improved when 3% by weight or more of Bi 2 O 3 was added as in the present invention. In particular, high-resolution deflection yoke cores require extremely strict dimensional accuracy.
The inner diameter side may be ground to achieve roundness.
The product of the present invention, which has high grindability, is extremely effective in such cases, and almost no defects occur during the grinding process. [Effects of the Invention] As described above, the present invention is a magnesium-zinc ferrite material that contains small amounts of manganese oxide and copper oxide, and has a trace amount of bismuth oxide added, so it has a lower % reduction in core loss has been achieved, which has the effect of significantly reducing heat generation in the core. Furthermore, it has sufficiently excellent basic electromagnetic properties such as initial magnetic permeability, residual magnetic flux density, coercive force, Curie point, and resistivity, and has good grindability, making it particularly suitable as a deflection yoke core material for high frequencies.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化鉄46〜49モル%、酸化マグネシウム24〜
27モル%、酸化亜鉛18〜21モル%、酸化マンガン
4〜7モル%、酸化銅1〜4モル%なる組成を主
成分とし、それに酸化ビスマスを0.3〜0.6重量%
添加したマグネシウム−亜鉛系フエライト材。
1 Iron oxide 46-49 mol%, magnesium oxide 24-49 mol%
The main components are 27 mol%, zinc oxide 18-21 mol%, manganese oxide 4-7 mol%, copper oxide 1-4 mol%, and bismuth oxide 0.3-0.6% by weight.
Added magnesium-zinc ferrite material.
JP62075730A 1987-03-28 1987-03-28 Magnesium-zinc ferrite material Granted JPS63242931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62075730A JPS63242931A (en) 1987-03-28 1987-03-28 Magnesium-zinc ferrite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62075730A JPS63242931A (en) 1987-03-28 1987-03-28 Magnesium-zinc ferrite material

Publications (2)

Publication Number Publication Date
JPS63242931A JPS63242931A (en) 1988-10-07
JPH0366254B2 true JPH0366254B2 (en) 1991-10-16

Family

ID=13584678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62075730A Granted JPS63242931A (en) 1987-03-28 1987-03-28 Magnesium-zinc ferrite material

Country Status (1)

Country Link
JP (1) JPS63242931A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042500A1 (en) 2012-09-13 2014-03-20 Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) Method for producing novel hybrid ferrite-oxide nanomaterials from non-standard precursors

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63319253A (en) * 1987-06-19 1988-12-27 Mitsubishi Electric Corp Oxide magnetic material generating low magnetic loss
JPH0774098B2 (en) * 1989-06-02 1995-08-09 富士電気化学株式会社 Magnesium-zinc ferrite material
JP3385505B2 (en) * 1998-05-27 2003-03-10 ティーディーケイ株式会社 Manufacturing method of oxide magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042500A1 (en) 2012-09-13 2014-03-20 Moroccan Foundation For Advanced Science, Innovation & Research (Mascir) Method for producing novel hybrid ferrite-oxide nanomaterials from non-standard precursors

Also Published As

Publication number Publication date
JPS63242931A (en) 1988-10-07

Similar Documents

Publication Publication Date Title
US2723239A (en) Ferrospinel compositions
JPH10208926A (en) Ferrite material, production thereof and deflection yoke core employing ferrite material
JP3492802B2 (en) Low loss ferrite material
US2565058A (en) Ceramic magnetic materials with high saturation-flux density
JPH0366254B2 (en)
JPH08325056A (en) Ferrite material
US2961407A (en) Mixed ferrite composition
KR100468082B1 (en) MnMgCuZn Ferrite Material
JP2006206420A (en) Ferritic sintered compact, its production method and coil component
JP3487552B2 (en) Ferrite material
JP3739849B2 (en) Low-loss oxide magnetic material
JPH0812335A (en) Magnesium-zinc ferrite material
JP2010215453A (en) NiCuZn FERRITE
JPH0457620B2 (en)
JPH11307336A (en) Manufacture of soft magnetic ferrite
JP3426780B2 (en) Ferrite material
JPH0661033A (en) Low-loss oxide magnetic material
JP3856722B2 (en) Manufacturing method of spinel type ferrite core
JP7426818B2 (en) Manufacturing method of magnetic material and coil parts including magnetic material
JP2004153196A (en) Magnetic material and its producing process
JPH0391209A (en) Chip inductor
JPH06333719A (en) Ni-zn soft ferrite
JPS6131601B2 (en)
JP3692057B2 (en) Ferrite material
JP3843150B2 (en) Mg-Zn ferrite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees