JPH0365570A - Fiber-reinforced, ceramic matrix composite member and its manufacture - Google Patents

Fiber-reinforced, ceramic matrix composite member and its manufacture

Info

Publication number
JPH0365570A
JPH0365570A JP2093258A JP9325890A JPH0365570A JP H0365570 A JPH0365570 A JP H0365570A JP 2093258 A JP2093258 A JP 2093258A JP 9325890 A JP9325890 A JP 9325890A JP H0365570 A JPH0365570 A JP H0365570A
Authority
JP
Japan
Prior art keywords
ceramic
weight
precursor
matrix
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2093258A
Other languages
Japanese (ja)
Other versions
JP2991738B2 (en
Inventor
Michael George Harrison
ミッシェル・ジョージ・ハリソン
Michael L Millard
ミッシェル・リー・ミラード
Andrew Szweda
アンドリュー・ヅェダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH0365570A publication Critical patent/JPH0365570A/en
Application granted granted Critical
Publication of JP2991738B2 publication Critical patent/JP2991738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE: To obtain a fiber reinforced ceramic composite member having stability to the environment and high strength by changing ceramic particles from a specific slurry into ceramic phase combined in ceramic matrix around the fibers.
CONSTITUTION: A ceramic precursor changed into the ceramic phase by heating, liquid having compatibility with this precusor and a discontinuous material composed of the ceramic particles, are mixed to make matrix mixed material slurry uniformly distributing the ceramic particles and the precursor. Successively, this slurry is spread around plural reinforcing fibers stabilized to oxidation to make a preprag preform. This preform is heated to working temp. necessary to change into the ceramic phase but at the lower than the temp. causing the deterioration of the ceramic phase in the preform in the oxidizing atmosphere. By this heating, the above precursor is changed, and the ceramic particles from the slurry are changed into the ceramic phase combined in the matrix around the fibers and the projective composite member is obtd.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 本発明は、セラミック段合部材およびその製JFR方法
に係り、さらに詳しくは、ひとつの態様で、セラミック
繊維で強化され六、セラミックマトリックス複合部材に
係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a ceramic tiered member and a JFR method of making the same, and more particularly, in one aspect, to a ceramic matrix composite member reinforced with ceramic fibers.

発明の前景 自動車用エンジン、ガスタ・−ビンなどを始め、ヒする
動力発生装置用部品fIJ、/−′のよ5な高温作動前
の形態でセラミックスを41!用することは、ある種の
セラミックス□□□もつ軽風性、bよび高温強度のゆえ
に興味深い。代表的な部品の一例はガスタービンエンジ
ンストラット 含まない単調なセラミック構造体は脆い。このような部
材は追加・混入1,た強化用構造体の補助がなければ、
」;記のように苛酷な用途で要求きれる信頼性の要件に
合致できない。
Foreground of the Invention Ceramics are manufactured in the form before high-temperature operation, such as automobile engines, gas turbines, etc., as well as parts for power generation devices, such as fIJ, /-'. The use of certain ceramics is interesting because of their light resistance, b, and high temperature strength. An example of a typical component is a gas turbine engine strut, which is a monotonous ceramic structure that is brittle. Such members cannot be added or mixed in without the assistance of reinforcing structures.
” cannot meet the reliability requirements required in severe applications such as those described above.

そのような欠点を克服する目的で、破壊に対し5で耐性
のあるセラミックマトリックス複合体がいくりか報告さ
れている。ごれらにはサイズとタフイブがきまざまな繊
維、たとえば長繊維またはフィラメント、短繊維または
チ1ツブトファイバーウィスカーなどが配含,\れてい
る。話を簡111にするために本明細書中で1よ4“、
のような繊維ずべてを単に「繊維」占称すること2二す
る。繊維によっては、強化材とマトリックスとの間で激
しい反応が起こるのを避けるi:a6にある種の物質が
被覆されていることがある。1,か1,、、そのような
コーティングの中には、所定の高い作動温度の空気にさ
らされると酸化する各秤形態向炭素やその他の物質から
なるf)のがある。7二のような繊組tをセラミ・ソク
マトリックス内に含まぜたのは脆性破壊挙動に対抗する
ためであった。
In an effort to overcome such drawbacks, several ceramic matrix composites that are resistant to fracture have been reported. They contain fibers of varying size and toughness, such as long fibers or filaments, short fibers or small fiber whiskers. In order to simplify the discussion, in this specification, 1 to 4",
All fibers such as ``fibers'' are simply referred to as ``fibers''. Some fibers may be coated with some substance at i:a6 which avoids violent reactions between the reinforcement and the matrix. Among such coatings are f) carbon or other materials that oxidize when exposed to air at a given high operating temperature. The purpose of including fibers such as No. 72 in the ceramic matrix was to counter brittle fracture behavior.

炭素などのように酸化性の繊維を七うミック複合体巾の
強化(4としτ使用する際の0とっの問題は、その系が
使用環境に対し5て不安定(こなる可能性があることで
ある。すなわち、セラミックマトリックス中に亀裂が存
在すると、たとえそれが微小亀裂であっても、動力発生
用エンジンの高温部でみられる高い作動温度の空気中的
酸素と酸化性の繊維が接触する可能性が生じるのである
。強化用繊維のそのような酸化は繊維構造またはその機
能を弱めたり破壊したりし、その横這部材を許容できな
い程度にまで弱くすることになる。
The problem with 0 when using oxidizing fibers such as carbon (4 and τ) is that the system is unstable (there is a possibility of becoming In other words, the presence of cracks in the ceramic matrix, even minute cracks, can cause oxidizing fibers to come into contact with atmospheric oxygen at high operating temperatures found in the high-temperature parts of power-generating engines. Such oxidation of reinforcing fibers weakens or destroys the fiber structure or its function, rendering the transverse member unacceptably weak.

もうひとつ別の問題は、強化用0ti維の目りのセラミ
ック粒子を焼結きぜる際の高温のため(:二、使用する
ことができる繊維の種類が限られるというylj実に関
連する。たεえば、多(の繊維はおよそ1000℃以上
で劣化するが、この温度はセラミック粒子の焼結に必要
な温度よりずっと低い。
Another problem is related to the fact that the high temperatures involved in sintering the reinforcing fiber-open ceramic particles limit the types of fibers that can be used. For example, polyolefin fibers degrade above approximately 1000°C, which is much lower than the temperature required for sintering ceramic particles.

発明の概要 簡単に覧ハうε、本発明はそのひとつの態様において、
酸化に対して安定な強化用tJtlt(たとえばセラミ
ック繊維)とその繊維の回りに’ag散らされた7トリ
ツクスとからなる、環境に対1、て安定な繊維強化セラ
ミック粒I・リックス複合部祠を提供する。本明細書中
で繊維に関し5て「酸化に対して安定」という表現を使
用する場合、それは温度と雰囲気(たとえば空気など)
の予定された作動条件で実質的な酸化および/または環
境(ごよる劣化をほとんど受けることのない繊維を意味
するものとする。マトリックスはセラミック相によって
互いに結合されたセラミック零赤子を含む混合物である
Summary of the Invention In one aspect, the present invention includes:
An environment-stable fiber-reinforced ceramic grain I-Rix composite structure consisting of oxidation-stable reinforcing tJtlt (for example, ceramic fibers) and 7 trics dispersed around the fibers. provide. When we use the expression "stable to oxidation" in this specification with respect to fibers, it refers to the temperature and atmosphere (such as air).
shall mean a fiber that is subject to virtually no substantial oxidative and/or environmental degradation under the intended operating conditions of the matrix. .

この方法の態様において、本発明は、加熱によりセラミ
ック相に変化するセラミック粒F・リックス前駆体と相
溶什のある液体中にセラミック粒子を含む不連続な材料
の7トリツクス混合物スラリーの中にほぼ均一な分布で
混合されているセラミックマトリックスIY1駆体を折
倒する。このスラリーは酸化に対して安定な繊維の回り
にマトリックス混合物として撒き散らさ41てプリプレ
グプリフォームを形成する。このプリフォームは空気な
どのような酸化性雰囲気中で加工温度に加熱される。
In this embodiment of the method, the present invention provides a method for dispersing an approximately The ceramic matrix IY1 precursor mixed in a uniform distribution is folded. This slurry is spread 41 as a matrix mixture around oxidatively stable fibers to form a prepreg preform. The preform is heated to processing temperature in an oxidizing atmosphere such as air.

その温度は、少なくとも前記前駆体がセラミック相に変
化するのに必要とされる温度以上であり、プリフォーム
中のセラミックスの劣化を起こすことになる温度よりは
低い。本発明によるとそのような温度は約600〜10
00℃の範囲とすることができる。このような加熱の際
、セラミック前駆体はたとえば分解などによってたとえ
ば非晶質形態か結晶質形態のセラミック相に変化する。
The temperature is at least above the temperature required for the precursor to transform into the ceramic phase and below the temperature that would cause degradation of the ceramic in the preform. According to the invention, such temperature is about 600-10
It can be in the range of 00°C. During such heating, the ceramic precursor changes, for example by decomposition, into a ceramic phase, for example in amorphous or crystalline form.

このセラミック相により、前記スラリーからのセラミッ
ク粒子が繊維の回りでセラミックマトリックス中に結合
される。この強化されたセラミックマトリックス複合部
材は、好ましくはほとんど全部が互いに結合されたセラ
ミック酸化物であるが、酸化性雰囲気中で安定化されて
いるので、環境に対して安定であり、高強度で、しかも
破壊に対する耐性が高い。
This ceramic phase binds the ceramic particles from the slurry into the ceramic matrix around the fibers. This reinforced ceramic matrix composite component, preferably almost entirely ceramic oxides bonded together, is stabilized in an oxidizing atmosphere, so it is environmentally stable, has high strength, Moreover, it is highly resistant to destruction.

好ましい具体例の説明 破壊耐性を有する繊維強化セラミックマトリックス複合
体のおかげで、自動車のエンジン、タービンエンジンな
どの部品のごとき動力発生用エンジンの高温用部品の設
計技術者は強くて軽量の部材を指定することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENT Thanks to the fracture-resistant fiber-reinforced ceramic matrix composite, engineers designing high-temperature components of power-generating engines, such as components of automobile engines, turbine engines, etc., can specify strong and lightweight components. can do.

しかし、そのような公知の複合材のいくつかは、酸化可
能な部分を空気にさらすことになる亀裂が発生した際環
境に対して不安定である。加えて、公知の加工処理のい
くつかでは望ましくない程度の気孔が製品中に残ること
がある。また、必要とされるかなり高い焼結温度とこの
必要な焼結温度より低い繊維の劣化温度のために、焼結
したセラミック強化複合材中に含ませることができる繊
維の種類は限られている。
However, some of such known composites are environmentally unstable when cracking occurs which exposes the oxidizable portion to air. Additionally, some of the known processing processes may leave an undesirable degree of porosity in the product. Additionally, the types of fibers that can be included in sintered ceramic reinforced composites are limited due to the fairly high sintering temperatures required and fiber degradation temperatures below this required sintering temperature. .

本発明は、上記のような公知の問題を回避すると共に、
低めの加工温度で高い強度と高い破壊耐性をもち環境に
対して安定な、強化されたセラミックマトリックス複合
部材を作成するための改良された方法を提供する。本発
明の重要な基礎は低めの温度で安定化することができる
成分を使用することであり、安定化のために加熱した後
、のひとつの製品は、好ましくはほとんど全部のセラミ
ック酸化物が互いに結合している部材である。そのよう
な成分を使用すると、部材の使用中の酸化による劣化の
可能性が除かれる。
The present invention avoids the known problems as described above, and
An improved method for making reinforced ceramic matrix composite parts that are environmentally stable with high strength and high fracture resistance at lower processing temperatures is provided. An important basis of the invention is the use of components that can be stabilized at lower temperatures, so that after heating for stabilization, one product preferably has almost all the ceramic oxides intertwined with each other. It is a connected member. The use of such components eliminates the possibility of oxidative deterioration during use of the component.

セラミック材料として使用するセラミック粒子の典型例
はAl5St、Cas Hf、B、Ti。
Typical examples of ceramic particles used as ceramic materials are Al5St, Cas Hf, B, and Ti.

YおよびZrなどのような元素の酸化物ならびにこれら
の混合物および組合せである。このような材料で市販の
ものとしてはA1゜03、SiO2、Ca O1Z r
 OHf 02 、B N 1T iO2,2′ 3 A l  O争 2 S i O2、Y203 C
aO・3 A1゜03ならびに各種の粘土およびガラス繊維がある
。本発明の評価時、直径が約75ミクロンから0.2ミ
クロンまでの範囲のセラミック粒子サイズをマトリック
ス成分として試験した。本発明のひとつの態様は、この
ようなセラミックスがそれぞれ、構造体として使用した
場合高い圧密化温度に焼成されると収縮するという事実
に関する。
oxides of elements such as Y and Zr, and mixtures and combinations thereof. Commercially available materials such as A1゜03, SiO2, CaO1Z r
OHf 02 , B N 1T iO2, 2' 3 A l O conflict 2 S i O2, Y203 C
aO.3 A1°03 and various clay and glass fibers. During evaluation of the present invention, ceramic particle sizes ranging from about 75 microns to 0.2 microns in diameter were tested as matrix components. One aspect of the invention relates to the fact that each such ceramic shrinks when fired to high consolidation temperatures when used as a structure.

たとえば、あるひとつの形態のアルミナは1400℃で
約3〜4%の範囲の線収縮を示す。
For example, one form of alumina exhibits linear shrinkage in the range of about 3-4% at 1400°C.

本発明に関連して、後述するように、マトリックス前駆
体および溶浸材として使用することができる各種のセラ
ミック前駆体を評価した。このような前駆体を結合材と
してセラミック粒子と共に組合せて使用すると、かなり
低めの加工温度で安定な複合体を生成することが可能で
ある。たとえば加熱の際分解によりセラミック相に変化
するそのような前駆体は、本発明の一部を実施するため
に固体もしくは液体またはそれらの混合物の形態とする
ことができる。通常これらは有機金属化合物、ゾルゲル
または金属塩として分類される。この評価で使用したも
のとしては、ポリカルボシラン、シリコーン、金属塩(
それぞれ、ビニルポリシラン、ジメチルシロキサン、オ
キシ塩化ハフニウムなど)、シリカおよびアルミナゾル
、アルミニウムイソプロポキシド、リン酸モノアルミニ
ウムその他のリン酸塩などのようなセラミック前駆体が
ある。次の表Iにこれらの前駆体の特定の形態を示す。
In connection with the present invention, various ceramic precursors that can be used as matrix precursors and infiltrants have been evaluated, as described below. When such precursors are used in combination with ceramic particles as binders, it is possible to produce stable composites at significantly lower processing temperatures. Such precursors, which transform into a ceramic phase by decomposition upon heating, for example, can be in the form of solids or liquids or mixtures thereof for carrying out parts of the invention. Usually these are classified as organometallic compounds, sol-gels or metal salts. The materials used in this evaluation included polycarbosilane, silicone, and metal salts (
silica and alumina sols, aluminum isopropoxide, monoaluminium phosphate and other phosphates, respectively). Table I below shows specific forms of these precursors.

表   ! セラミツク1Iij駆体 本発明の方法によると、セラミック粒子、セラミック前
駆体、そ12て場合により結合材からなる不連続な材料
をある液体中に分散きせてマLリックス混合物スラリー
とする。本明細書中で使用する「不連続な材料」という
用語は粉末、粒子、小断片、材料の71ノーり、ウィス
カーなどを意味するものとする。このスラリーの液体の
特徴は、これがセラミック前駆体と、そ1.て結合材を
使用する場合には結合祠、!:I11溶性のあるもので
あること、好ま11.(はそれに対する溶剤であること
である。
table ! Ceramic 1Iij Precursor According to the method of the present invention, a discontinuous material consisting of ceramic particles, a ceramic precursor, and optionally a binder is dispersed in a liquid to form a matrix mixture slurry. As used herein, the term "discontinuous material" shall mean powders, particles, small pieces, nodules of material, whiskers, and the like. The characteristics of this slurry liquid are that it contains a ceramic precursor and a. When using a binding material, a binding shrine,! : I11 soluble, preferably 11. (is that it is a solvent for it.

このため、前駆体がセラミック粒子および場合により存
在する結合材と共にスラリー中に実質的に均一に分布し
た7トリツクス混合物が得られる。
This results in a 7-trix mixture in which the precursor is substantially uniformly distributed in the slurry together with the ceramic particles and the optional binder.

この液体は、前駆体またはその混合物および存在する場
合には結合Hに応じて、たとえば水性であることもでき
る17有機質のものεするこεちできる。すでに述べた
ように前駆体はこの液体に溶解するのが好ましく、その
場合この液体は溶剤として働く。溶剤として使用する典
型的な有機の液体と17では、結合材、ポリマーおよび
/または溶浸材を溶液状態に保つことができるエチルア
ルコル、トリクロロエタン、メチルアルコール、トルエ
ンおよびメチルエチルケI・ンがある。溶剤の必要量は
結合相/ポリマーの溶解度および飽和限界ならびにスラ
1ルーの所望の粘度に依存する。好ましくは溶剤が20
〜30重量%の範囲である。これ以上に溶剤の鑓を増や
すε余分な溶剤を蒸発させるのに必要な乾燥時間が長く
なるだけである。
This liquid can be organic, which can also be aqueous, for example, depending on the precursor or its mixture and the bonds H, if present. As already mentioned, the precursor is preferably dissolved in this liquid, in which case this liquid acts as a solvent. Typical organic liquids used as solvents17 include ethyl alcohol, trichloroethane, methyl alcohol, toluene, and methyl ethyl alcohol, which can keep the binder, polymer, and/or infiltrant in solution. The amount of solvent required depends on the solubility and saturation limit of the binder phase/polymer and the desired viscosity of the slurry. Preferably the solvent is 20
-30% by weight. Any further increase in solvent content ε will only increase the drying time required to evaporate the excess solvent.

スラリー中のセラミック粒子に関していうた、このよう
な粒子はセラミック粒子と前駆体の合計に対1.て40
重量%より多くて約90重量%までの範囲で含まれるべ
きであることが認められている。40重量%以下では複
合部H中の強化用繊維の回りに7トリツクスを作るには
セラミックスが不充分で気孔が大きくなり過ぎる。約9
0重量%を越える色、変化した後の前駆体のセラミック
相による、強化用繊維の回りのセラミック粒子の結合が
不充分になる。粒子た前駆体の会計に対するセラミック
粒子の好ま1.い範囲は50=80重瓜%、特に約70
−80重量%である。
With respect to the ceramic particles in the slurry, such particles are present at a ratio of 1:1 to the sum of the ceramic particles and precursor. te 40
It is recognized that it should be included in a range of greater than 90% by weight. If it is less than 40% by weight, there will be insufficient ceramics to form a 7 trix around the reinforcing fibers in the composite part H, and the pores will become too large. about 9
If the color exceeds 0% by weight, the ceramic phase of the precursor after the change results in insufficient bonding of the ceramic particles around the reinforcing fibers. Preference of Ceramic Particles for Accounting of Particle Precursors 1. The range is 50 = 80%, especially about 70%
-80% by weight.

適切な流動性と結合を得るために、セラミック前駆体は
マトリックス混合物スラリー中にこの前駆体とセラミッ
ク粒子との合計の約10〜40重量%の範囲で含ませる
べきであり、10〜30重量%が好ましいこεが認めら
れている。約・10重量%未満であると、セラミック相
の流動、お上び前駆体的分解を生じる加熱の後山セラミ
ック粒子との結合が不充分になる。約40重量%を越え
ると、前駆体の分解によりマトリックス相内に生じる気
孔が多くなり過ぎる。
To obtain proper flowability and bonding, the ceramic precursor should be included in the matrix mixture slurry in a range of about 10-40% by weight of the precursor and ceramic particles, with 10-30% by weight. It is recognized that ε is preferred. If the amount is less than about 10% by weight, there will be insufficient bonding with the ceramic particles after heating which causes fluidization of the ceramic phase and precursor decomposition. Above about 40% by weight, too many pores will be created within the matrix phase due to decomposition of the precursor.

このスラリーの残部はほとんと液体である。しかし、未
硬化の7トリツクスをTiいに保持するのに一峙的に使
用される結合材(バインダー)や可塑剤などのような他
の物質(本明細書中では一般に「結合材」という)がス
ラリー中に含まれていることもできる。加工温度に加熱
する前ブリフォムを亙いに保1〜♀するための結合材は
、セラミック粒子、前駆体および結合材の合計の約20
市量%まで含ませることができる。これより多くすると
気孔が多くなり過ぎる。評価した(市販の)結合材およ
び可塑剤の例は、プレストラインマスターミックス[P
r5stollne Master MIK、ピーOビ
・ニス・ケミカル(P、B、S、 ChelIlica
l)]、セルロスエーテル[ダウ・ケミカル(Dow 
Chemical)]、ポリビニルブチラールおよびフ
タル酸ブチルベンジル[いずれもセンザント(Mons
anto)] 、ならびに、ポリアルキレングリコール
およびポリエチレングリコール[ユニオン・カーバイド
 (Union Carbida)]である。同様に使
用した結合系は、エポキシ樹脂、たとえばチバーガイギ
ー(C1ba−Gelgy)製の汎用エポキシ樹脂、シ
リコーン、たとえばポリシロキサン[ジー・イー(GE
)] 、’ RTV [ジー・イー(GE)]およびポ
リカルボシラン[ユニオン・カーバイド(Unfon 
Carbfde)]である。所要により、グリセロール
トリオレエート、魚油、アジピン酸ポリエステル、ポリ
アクリル酸ナトリウムおよびリン酸エステルなどのよう
な分散剤を含ませた。上記した好ましい範囲の前駆体お
よびセラミックスと共にエポキシ樹脂を結合系として使
用した場合エポキシは前駆体とセラミック粒子との混合
物に対して約1〜10重量%とじた。
The remainder of this slurry is mostly liquid. However, other substances such as binders, plasticizers, etc. (generally referred to herein as ``binders'') are used to hold the uncured 7trix in place. may also be included in the slurry. The binder to keep the foam above 1-♀ before heating to processing temperature is about 20% of the total of ceramic particles, precursor and binder.
It can contain up to % of market weight. If the amount is more than this, there will be too many pores. Examples of (commercially available) binders and plasticizers evaluated include Prestoline Master Mix [P
r5stallne Master MIK, P, B, S, ChelIlica
l)], cellulose ether [Dow Chemical
Chemical)], polyvinyl butyral and butylbenzyl phthalate [both Senzant (Mons
anto)], and polyalkylene glycols and polyethylene glycols [Union Carbida]. Similarly, the bonding systems used were epoxy resins, such as general purpose epoxy resins from C1ba-Gelgy, silicones, such as polysiloxanes [GE
)],' RTV [GE] and polycarbosilane [Union Carbide
Carbfde]. Optionally, dispersants such as glycerol trioleate, fish oil, adipic polyester, sodium polyacrylate, phosphate ester, and the like were included. When an epoxy resin was used as a bonding system with the preferred range of precursors and ceramics described above, the epoxy amounted to about 1-10% by weight of the mixture of precursor and ceramic particles.

本発明に関連して、次の表■に熱膨張係数(CTE)と
共に示すセラミック強化用繊維を含めて各種の繊維を評
価した。
In connection with the present invention, various fibers were evaluated, including ceramic reinforcing fibers shown together with their coefficients of thermal expansion (CTE) in Table 1 below.

表   ■ 強化用繊維 本発明に関連して評価した実施例1では、マトリックス
混合物スラリーは、セラミック粒子としては約0.2〜
50ミクロンのサイズ範囲のAl2O3粒子を、セラミ
ック前駆体としてはRTVとして市販されているシリコ
ーンを、そして結合材としてはビスフェノールとして上
布されているエポキシ樹脂を含んでいた。この代表的な
混合物では、Al2O3、シリコーンおよび結合材の合
計を基準にして、A 120 aが70〜80重量%、
シリコーンが10〜30重量%、そしてエポキシが1〜
10重量%であった。この混合物を、液体として約20
〜30重量%の量のトリクロロエタンとエタノールの混
合溶媒と組合せてマトリックス混合物スラリーとした。
Table ■ Reinforcing Fibers In Example 1 evaluated in connection with the present invention, the matrix mixture slurry contained ceramic particles of about 0.2 to
It contained Al2O3 particles in the 50 micron size range, a silicone commercially available as RTV as the ceramic precursor, and an epoxy resin coated as bisphenol as the binder. This typical mixture contains 70-80% by weight A 120 a, based on the sum of Al2O3, silicone and binder;
Silicone is 10-30% by weight and epoxy is 1-30% by weight.
It was 10% by weight. This mixture, as a liquid,
The matrix mixture slurry was combined with a mixed solvent of trichloroethane and ethanol in an amount of ~30% by weight.

このスラリーの残部にあたる70〜80重量%はセラミ
ック、前駆体および結合材からなる上記の混合物であっ
た。
The remainder of the slurry, 70-80% by weight, was the above mixture of ceramic, precursor and binder.

実施例2ではセラミック前駆体を組合せて含ませた。そ
のような混合物は、セラミック粒子、前駆体および結合
材の合計を基準にして、70〜80重量%のAl2O3
をセラミック粒子として、5〜15重量%のシリコーン
と5〜15重量%のアルミニウムイソプロポキシドをセ
ラミック前駆体として、そして1〜10重量%の量のエ
ポキシ、を結合材として含んでいた。この混合物を、液
体として約20〜30重量%の量のトリクロロエタンと
エタノールの混合溶媒と組合せてマトリックス混合物ス
ラリーとした。このスラリーの残部にあたる70〜80
重量%はセラミック、前駆体および結合材からなる上記
の混合物であった。
Example 2 included a combination of ceramic precursors. Such a mixture contains 70-80% by weight Al2O3 based on the sum of ceramic particles, precursor and binder.
as ceramic particles, 5-15% by weight of silicone, 5-15% by weight of aluminum isopropoxide as a ceramic precursor, and an amount of 1-10% by weight of epoxy as a binder. This mixture was combined with a mixed solvent of trichloroethane and ethanol in an amount of about 20-30% by weight as a liquid to form a matrix mixture slurry. 70 to 80, which is the remainder of this slurry.
The weight percent was the above mixture of ceramic, precursor and binder.

本発明の方法のひとつの態様では、上記実施例1と2の
マトリックス混合物スラリーの各々を織物の形態の強化
用セラミック繊維の回りに巻き散らした。これらの実施
例では、強化用繊維は上で特定した住友(Sumjto
IIlo)のヤーンまたはロービングから作成し、部材
の20〜40容量%の範囲で含ませた。他の態様と実施
例では強化用セラミック繊維は巻上げたフィラメントで
あった。本発明においては、強化用繊維は部材の約10
〜50容量%の範囲で含ませるべきであり、30〜40
容量%が好ましいことが認められている。10容量%未
満だと補強強度が不充分であり、約50容量%より多い
と繊維が密になり過ぎてマトリックスをその間に適切に
配分できなくなる。
In one embodiment of the method of the present invention, each of the matrix mixture slurries of Examples 1 and 2 above was spooled around reinforcing ceramic fibers in the form of a woven fabric. In these examples, the reinforcing fibers are Sumjto fibers identified above.
IIlo) yarns or rovings and included in the range of 20-40% by volume of the part. In other embodiments and examples, the reinforcing ceramic fibers were wound filaments. In the present invention, the reinforcing fibers are about 10% of the material.
It should be included in the range of ~50% by volume, and 30-40%
It has been found that % by volume is preferred. If it is less than 10% by volume, the reinforcing strength will be insufficient, and if it is more than about 50% by volume, the fibers will become too dense and the matrix will not be properly distributed between them.

このプリプレグを乾燥し、大部分の溶剤を蒸発させた後
、そうしてできたプリプレグ層を業界で周知であり実施
されてt、いるようにL■:縮金Jiすま六−はオート
クレーブなどを使用1.て温度と圧カイ゛・かけて賦形
・成形して部材1.″【また。その後この部材を固体の
プリフォーム形状に冷却(2だ。
After drying this prepreg and evaporating most of the solvent, the resulting prepreg layer is subjected to a process known and practiced in the industry, such as an autoclave. Use 1. Part 1 is shaped and molded by applying temperature and pressure. ``[Also. After that, this member is cooled into a solid preform shape (2).

次にこのプリノォームを6 O0−= 10 O0℃の
範囲の加工温度に加熱!、、、、 7−0この温膣は、
公知山方法で使用される一般にずっと高い焼結2,1λ
疫(たとえば約1300〜1650°Cの範囲)より「
っと低い。、二の加熱は、−・晴的な結合材などのよう
な有機物を除去し、かつ分解に−、リセラミック前駆体
を変化させてセラミック結合材用にするために行なうち
のである。セラミック粒子を含む結合材前駆体を使用す
る本発明を実施すると、加「温度を、強化用繊維の回り
のセラミック粒子を亙いに焼結させるのに必要な加工温
庁よりずっと低い範囲にW持することができる。また、
本発明以外の場合には公知の高い焼結温度で劣化【、た
り熱化学的に損傷を受けたりする繊維0使川も可能にな
る。
Next, this puri-no-form is heated to a processing temperature in the range of 6 O0-=10 O0℃! ,,,, 7-0 This warm vagina is,
The generally much higher sintering 2,1λ used in the known method
(for example, in the range of about 1300 to 1650°C)
Very low. The second heating is performed to remove and decompose organic materials such as organic binders and to transform the receramic precursor into a ceramic binder. Practicing the present invention using a binder precursor containing ceramic particles reduces the heating temperature to a range well below the processing temperature required to sinter the ceramic particles around the reinforcing fibers. can be held.Also,
In cases other than the present invention, it is possible to use fibers that deteriorate or are thermochemically damaged at known high sintering temperatures.

上記実施例1と2では、加工温度での加熱は約600−
・800℃の範囲で行なった。このような加、J、!1
により、セラミック粒子がセラミック相を介1.5て亙
いに結合計.、、、7:セラミツクマトリツクスが得ら
れる。一般に、このマトリックスは開放気孔率が約5〜
30容瓜%の範囲であゐ。
In Examples 1 and 2 above, the heating at the processing temperature was approximately 600-
- Testing was carried out at a temperature of 800°C. This kind of addition, J,! 1
As a result, the ceramic particles are bonded to each other through the ceramic phase. , , 7: A ceramic matrix is obtained. Generally, this matrix has an open porosity of about 5 to
It's in the range of 30%.

本発明はもうひ2一つ別の態様において、上記のような
気孔を代減または除去する付加的なステップを含む。そ
のよ・)な態様においては、液体形態、または通常高濃
gtで液体に分散させた形態の別のセf> E、ツク前
駆体を使用11.て上記セラミックマトリックスの気孔
中に溶浸させる。た乏えば、液体のセラミック前駆体溶
浸柵中にマトリックスを浸/j21.、減正にl−て溶
′F5/相が細孔内に浸透し易くすることができる。乾
燥後、溶浸されたマトリックスを1紀と同様に17、て
加熱I、て溶浸材セラミック前駆体をセラミック相に変
化させることにより、いくらかの気孔を除去する。この
ような細孔の溶浸と変換のための加熱とは所望により繰
返してマトリックスの気孔(率)を所望程度まで低下ま
たは除去することができる。
In yet another aspect, the present invention includes the additional step of reducing or eliminating porosity as described above. In such embodiments, another precursor in liquid form or dispersed in a liquid, usually at high concentration, is used.11. to infiltrate into the pores of the ceramic matrix. If necessary, immerse the matrix in a liquid ceramic precursor infiltration barrier/j21. , it is possible to make it easier for the molten F5/phase to permeate into the pores. After drying, the infiltrated matrix is heated 17 to remove some porosity by converting the infiltrant ceramic precursor into a ceramic phase. Such pore infiltration and transforming heating can be repeated as desired to reduce or eliminate the porosity of the matrix to a desired degree.

第1図の比較用グラフは、本発明にiff:って作成し
た部材の破壊耐性と靭性を示す応カー歪み曲線である。
The comparison graph in FIG. 1 is a stress strain curve showing the fracture resistance and toughness of a member prepared according to the present invention.

第1図のデータは室温での試験で得たものである。使用
した試片は0.5’ X6’ XQ。
The data in Figure 1 was obtained from tests at room temperature. The specimen used was 0.5'X6'XQ.

1′の矩形試験枠であった。It was a 1' rectangular test frame.

曲線IT示したデータは、上記実施例1の混合物から上
に記載のようにり、て作成1.た試片の試験結果である
。ただし2、この場合スラリーは強化用繊維の回りに分
散きぜなかった。曲線1の物質はセラミック粒子、セラ
ミック前駆体およびJボキシ結合材からなる単、凋なマ
トリックスであって、強度が低く急激に脆性破壊を起こ
す。このタイプのtit aなセラミックスは、欠陥に
対して耐性がなくてその結果靭性が低いため、横這用途
における重要な形状のものに対する候補とならない。
The data shown for curve IT was prepared as described above from the mixture of Example 1 above. These are the test results for the sample. However, in this case, the slurry was not dispersed around the reinforcing fibers. The material of curve 1 is a simple, stiff matrix of ceramic particles, ceramic precursors and J-boxy binders, which has low strength and rapidly undergoes brittle fracture. This type of tit a ceramic is not a candidate for critical geometries in flat applications due to its lack of tolerance to defects and resulting low toughness.

第1図の曲線2で表わされているデータは、曲線1のデ
ータをとるのに使用した試片と同じ混合物から作成した
サイズε形状が同じ試片の試験でjqられたものである
。しか(7、この場合混合物は部材に対1.て約30容
量%の量で、住友(Su+++jtom0)のヤー ン
製強化用縄羅織物上に撒き散らして分散させた。曲線2
で示す物質は、曲線1のもの乙同じ単調なマトリックス
材料が繊維強化材の間および回りに配合されているセラ
ミック複合材である。この物質は負荷が高強度の繊維に
移されるため強度が高く、都合のにい破壊様相と靭性を
示す。
The data represented by curve 2 in FIG. 1 was obtained by testing a specimen of the same size ε and shape made from the same mixture as the specimen used to obtain the data of curve 1. In this case, the mixture was sprinkled and dispersed in an amount of about 30% by volume based on the component on a reinforcing rope fabric made of Sumitomo (Su+++jtom0) yarn.Curve 2
The material shown is a ceramic composite in which the same monotonic matrix material as in curve 1 is incorporated between and around the fiber reinforcement. This material has high strength because the load is transferred to high-strength fibers and exhibits favorable fracture behavior and toughness.

このような複合材挙動により、それから作成1.た部品
は破壊が発生l、た後にも長い寿命を示すここが可能で
ある。
Due to this composite behavior, it is possible to create 1. It is possible for these parts to exhibit a long service life even after failure occurs.

第1図から明らかなように、曲線2の強化されたセラミ
ックマトリックス複合部材は強度と靭性が曲線1の部材
よりかなり高い。
As is apparent from FIG. 1, the reinforced ceramic matrix composite member of curve 2 has significantly higher strength and toughness than the member of curve 1.

第1図には、比較のために、Al2O3の7トリツクス
中にサファイア強化用繊維を使用し、およそ1450−
1500℃(表■で特定した繊維の使用可能温膣:範囲
をずっと」二回っている)で焼結した部材を示す曲線3
も挙げである。゛アルミノケイ酸塩55容量%とサファ
イア繊維45容量%のこのような複合材中には前駆体を
まったく入れなかった。このため、この混合物は、本発
明の方法で使用した加工温度(一般におよそ600〜1
000℃)よりかなり高い焼結圧密化温度を使用する必
要があった。曲線3の物質は靭性挙動をもつ曲線2の物
質より強度が高い。このような改良された特性は、強度
がより高い強化用繊維を熱的に適合性のあるマトリック
スと共に使用して、負荷をマトリックスから繊維に有効
に移すことを可能にした結果である。
For comparison, FIG.
Curve 3 showing a part sintered at 1500°C (twice over the usable temperature range of the fibers specified in Table ■)
This is also a list. No precursors were included in such a composite of 55% by volume aluminosilicate and 45% by volume sapphire fibers. For this reason, this mixture is at the processing temperature used in the process of the invention (generally around 600-1
It was necessary to use a sintering consolidation temperature significantly higher than 0.000°C. The curve 3 material is stronger than the curve 2 material with toughness behavior. These improved properties are the result of the use of higher strength reinforcing fibers in conjunction with a thermally compatible matrix, allowing for effective transfer of load from the matrix to the fibers.

本発明を代表する曲線2と異なる方法で作成した部材を
代表する曲線3とを比較すると分かるように、本発明は
極めて高い温度で圧密化する工程をとることなく高い強
度と靭性をもつ強化されたセラミック複合材を提供する
。これは、本発明においてセラミック前駆体を使用した
結果であり、このようなセラミック前駆体は低めの温度
で分解して、セラミック粒子と強化用繊維とを複合部材
中に共に結合するセラミック相となるのである。
As can be seen by comparing curve 2, which represents the present invention, with curve 3, which represents a member made using a different method, the present invention provides a reinforced material with high strength and toughness without the need for a consolidation process at extremely high temperatures. We provide ceramic composite materials that This is a result of the use of ceramic precursors in the present invention, which decompose at lower temperatures into a ceramic phase that binds the ceramic particles and reinforcing fibers together in the composite component. It is.

本発明に従って作成することができる部材の典型例は、
ガスタービンエンジンの高温部に有用な翼形のストラッ
トである。このようなストラットの一例を第2図の部分
断面透視図に示す。一般に10で示したストラットは前
縁14と後縁16を有するストラット本体12を含んで
いる。ストラット10は、リブ20によって分離された
複数個のキャビティー18が存在するため中空ストラッ
トといわれることがある。
Typical examples of members that can be made according to the invention include:
Airfoil-shaped struts useful in the high temperature section of gas turbine engines. An example of such a strut is shown in a partially sectional perspective view in FIG. The strut, indicated generally at 10, includes a strut body 12 having a leading edge 14 and a trailing edge 16. Strut 10 is sometimes referred to as a hollow strut due to the presence of multiple cavities 18 separated by ribs 20.

ストラット10は上記のようにして作成したラミネーシ
ョン、シート、テープなどのような複数個の層から作成
することができる。第3図の部分断面図はそのような層
の配置を概略的に示す代表例である。この層はアルミニ
ウムなどのようなフォーミングブロック24の回りに2
2として示されている。この図は、最終製品のストラッ
トの形状に関連して最初に形成された第2図のストラッ
トの一部のプリフォーム形状を示している。実際には、
この部材の各層は業界で周知のように繊維と形態に応じ
た厚みをもっている。たとえば、典型的な厚みは約0.
008〜0.020インチの範囲である。しかし、業界
でよく知られているように、このような積層構造体を得
るのに現実に必要な層の数は第3図に簡略化して示した
ものより多くなるであろう。ボイドを減少させるために
、ブロック24の縁の曲線領域の層間に生じ得る空間内
部に層間に追加の個別繊維25が分配されている。
Struts 10 can be made from multiple layers, such as laminations, sheets, tapes, etc. made as described above. The partial cross-sectional view of FIG. 3 is representative of schematically illustrating the arrangement of such layers. This layer consists of two layers around a forming block 24, such as aluminum.
2. This figure shows the preform shape of a portion of the strut of FIG. 2 as initially formed in relation to the shape of the final product strut. in fact,
Each layer of the member has a thickness depending on the fibers and morphology, as is well known in the industry. For example, a typical thickness is about 0.
The range is 0.008 to 0.020 inches. However, as is well known in the industry, the actual number of layers required to obtain such a laminated structure will likely be greater than that shown schematically in FIG. To reduce voids, additional individual fibers 25 are distributed between the layers within the spaces that may occur between the layers in the curved areas of the edges of the blocks 24.

フォーミングブロック24の回りで組立てて第3図の部
材を形成した後このアセンブリを、部材を積層して物品
のプリフォームを作成するために、第4図に示した適切
な形状の噛合せフォーミングダイ26Aおよび26Bの
中に入れる。通常、適切な積層が起こるのに適した時間
の間、矢印28で表わした約150〜1000ポンド/
平方インチの範囲の圧力を部材にかけながら、たとえば
150〜400下の範囲に部材を加熱する。このような
温度はこれらの構築材料の圧密化を起こすようなことは
ない。
After assembly around the forming block 24 to form the member of FIG. 3, this assembly is placed in a suitably shaped interlocking forming die as shown in FIG. 4 for laminating the members to form an article preform. 26A and 26B. Typically, approximately 150 to 1000 lbs.
The part is heated, for example, to a range of 150 to 400 m², while applying pressure to the part in the range of 150 to 400 m². Such temperatures do not cause compaction of these construction materials.

積層後得られたプリフォームをフォーミングダイから取
出し、フォーミングブロックを除く。次にこのプリフォ
ームを炉に入れ、調節しながら1000℃未満の温度に
加熱して結合材と可塑剤を除去した後、1000℃以上
のような繊維の劣化が起こらない加工温度に加熱してプ
リフォームを焼結して第2図の実質的に緻密なセラミッ
クマトリックス複合物品にする。
The preform obtained after lamination is taken out from the forming die, and the forming block is removed. This preform is then placed in a furnace and heated under controlled conditions to a temperature below 1000°C to remove binders and plasticizers, and then heated to a processing temperature above 1000°C that does not cause fiber deterioration. The preform is sintered into the substantially dense ceramic matrix composite article of FIG.

本出願と同時に出願された相互に関連する1989年米
国特許出願第341,001号(その開示内容はここで
援用したことにより本明細書中に含まれているものとす
る)は、圧密化されたセラミック粒子の収縮およびその
結果の気孔の問題に関するものである。その関連出願の
発明によると、このような収縮は、圧密化の前にセラミ
ック粒子を無機質充填材粒子と混合することによって打
消される。そのような充填材は圧密化温度に加熱される
間セラミック粒子に対して正味の膨張を示す。
Interrelated 1989 U.S. Patent Application No. 341,001, filed concurrently with this application, the disclosure of which is hereby incorporated by reference, related to the shrinkage of ceramic particles and the resulting porosity problem. According to the invention of that related application, such shrinkage is counteracted by mixing the ceramic particles with mineral filler particles prior to consolidation. Such fillers exhibit a net expansion relative to the ceramic particles while being heated to the consolidation temperature.

その発明の評価時に試験されたのは、次の表■で特定す
るラスタイプの結晶形の無機充填材である。
Tested during the evaluation of the invention were inorganic fillers in the form of lath-type crystals specified in Table 1 below.

表    ■ &−坤−u 」1記のような充填材は、本発明のひとつの態様におい
て、加圧温度に加熱する間に生じた気孔を打消すために
使用することができる。この充填材の」1記混合物中の
割合は、この充填材の膨張により、発生した気孔が打消
されるように選択される。
Fillers such as those described in Table 1 above can be used in one embodiment of the present invention to counteract porosity that occurs during heating to pressurizing temperatures. The proportion of the filler in the mixture is selected such that the expansion of the filler cancels out the pores generated.

セラミック粒子と前駆体を急みそして場合により結合材
を含む本発明のマトリックス混合物中に上記関連出願の
無機充填材を含ませる場合、そのような充積(Aはセラ
ミックス、前駆体、場合により便用イる結合材、および
充填材の合計のたεえば約50市=?gまでのj、+1
で含ませることができる。
When including the inorganic fillers of the above-mentioned related applications in the matrix mixture of the present invention containing ceramic particles and precursors and optionally binders, such filling (A is the ceramic, precursor, optionally expedient) is included. For example, the total amount of binder and filler used is approximately 50 = ?g, +1
It can be included in

ざの割合は、充填材の膨張により気孔が相殺されるよう
に選択される。そのような気孔はセラミックtri子の
収縮の結果生じる可能性があるが、ずでに往べたように
、酸化性雰囲気中で本発明のプリフォームを加熱する間
材料の変換または容積変化がト8たる原因となって低め
の加工温度で起こる。
The proportion of porosity is selected such that porosity is compensated for by expansion of the filler material. Such porosity may result from shrinkage of the ceramic trigonum, but as previously noted, material transformation or volume change during heating of the preforms of the present invention in an oxidizing atmosphere is likely to occur. This occurs at lower processing temperatures due to barreling.

典型的な場合、セラミック粒子と充填材からなる気孔、
関節用混合物はセラミック粒子が50〜93重量%で無
機充填材が7〜50重量%であり、その気孔調節用混合
物は粒子、前駆体および場合によりb在する結合材から
なる7トリツクス混合物の40重1m%より大きくて約
90重量%までである。
Pores, typically composed of ceramic particles and fillers,
The joint mixture is 50-93% by weight of ceramic particles and 7-50% by weight of inorganic filler, and the pore-controlling mixture is 40% by weight of a 7-trix mixture of particles, precursors and optionally a binder. It is greater than 1 m% by weight and up to about 90% by weight.

無機充填材としC好ましいのは、−にの表■に示したラ
スタイプの結晶形を有するものである。
Preferred inorganic fillers are those having a lath type crystal form as shown in Table 1 below.

特に、パイロフィライI・とウオラストナイトは充填H
として特にq用であることが判明してぃ゛る。
In particular, pyrophillae I and wollastonite are filled with H
It turns out that it is especially suitable for q.

また、上記関連出願の開示に3まれでいるように、マト
リックス混合物に対して膨張イる強化用繊維は周囲温度
でのプリフォームの加J性を高める。
Also, as disclosed in the above-mentioned related application, reinforcing fibers that expand relative to the matrix mixture enhance the JJ properties of the preform at ambient temperatures.

以上、非限定的ではあるが代表的な実施例と具体例およ
び関連するデータに関して本発明を説明して来た。しか
し、当業者には容易に分かるように、本発明にはtイー
tの特許請求の範囲内のさまざまな修正と変形か可能で
ある。
The present invention has been described in terms of non-limiting representative embodiments and specific examples and related data. However, as will be readily apparent to those skilled in the art, the present invention is susceptible to various modifications and variations within the scope of the appended claims.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、非強化マトリックス、別の強化7トリツクス
、そ【2て本発明の損金強化部材に対する破壊耐性デー
タを比較して示すグラフである。 第2図は、ガスタービンエンジンストラットの一部の部
分断面透視図である。 第3図は、フォーミングブロックの回りに配置されたセ
ラミックマトリックス複合材の層の部分概略断面図であ
る。 第4図は、フォーミングダイ内に配置された第3図の部
材の部分断面透視図である。 10・・・翼形ストラット、22・・・個々の層、24
・・・フォーミングブロック、26・・・フォーミング
ダイ。 庇、力(ksL) 手続ン市正4眸(方式)
FIG. 1 is a graph showing a comparison of fracture resistance data for an unreinforced matrix, another reinforced 7-trix, and the loss reinforcement member of the present invention. FIG. 2 is a partial cross-sectional perspective view of a portion of a gas turbine engine strut. FIG. 3 is a partial schematic cross-sectional view of a layer of ceramic matrix composite arranged around a forming block. 4 is a partial cross-sectional perspective view of the member of FIG. 3 positioned within a forming die; FIG. 10...Airfoil struts, 22...Individual layers, 24
... Forming block, 26... Forming die. Eaves, Power (ksL) Procedural Municipality 4 Eyes (Method)

Claims (20)

【特許請求の範囲】[Claims] (1)加熱によりセラミック相に変化するセラミックマ
トリックス前駆体、この前駆体と相溶性のある液体、お
よび、セラミック粒子からなる不連続材料を準備し、 前記のセラミックマトリックス前駆体、液体および不連
続材料を一緒に混合して、セラミック粒子と前駆体が実
質的に均一に分布しているマトリックス混合物スラリー
とし、 酸化に対して安定な複数の強化用繊維を用意し、マトリ
ックス混合物スラリーを繊維の回りに撒き散らしてプリ
プレグプリフォームとし、 このプリフォームを酸化性雰囲気中で、前記前駆体をセ
ラミック相に変化させるのに必要な温度以上であるがプ
リフォーム中のセラミックスの劣化を引き起こす温度よ
りは低い加工温度に加熱することによりセラミックマト
リックス前駆体を変化させて、前記スラリーからのセラ
ミック粒子を繊維の回りのセラミックマトリックス中で
結合させるセラミック相に変化させると共に、環境に対
して安定であり高強度で破壊耐性が高い繊維強化セラミ
ックマトリックス複合部材を得る ことからなる、繊維強化セラミックマトリックス複合部
材の製造方法。
(1) A ceramic matrix precursor that changes into a ceramic phase by heating, a liquid that is compatible with this precursor, and a discontinuous material consisting of ceramic particles are prepared, and the ceramic matrix precursor, liquid, and discontinuous material as described above are prepared. are mixed together to form a matrix mixture slurry having a substantially uniform distribution of ceramic particles and precursors, a plurality of oxidation-stable reinforcing fibers are provided, and the matrix mixture slurry is wrapped around the fibers. dispersed to form a prepreg preform, which is processed in an oxidizing atmosphere at a temperature above that required to transform the precursor into a ceramic phase, but below a temperature that would cause deterioration of the ceramics in the preform. Heating to a temperature transforms the ceramic matrix precursor into a ceramic phase that binds the ceramic particles from the slurry in a ceramic matrix around the fibers and is environmentally stable and fractures with high strength. A method for producing a fiber-reinforced ceramic matrix composite component, comprising obtaining a highly resistant fiber-reinforced ceramic matrix composite component.
(2)マトリックス混合物スラリーが、 (a)セラミック粒子とセラミック前駆体の合計の40
重量%より多くて約90重量%までの範囲のセラミック
粒子、および (b)前記合計の約10〜40重量%の範囲のセラミッ
ク前駆体からなり、 強化用繊維が当該複合部材の約10〜50容量%である
、請求項1記載の方法。
(2) the matrix mixture slurry comprises (a) 40% of the total of ceramic particles and ceramic precursor;
(b) a ceramic precursor ranging from about 10 to 40 percent by weight of said total, wherein the reinforcing fibers account for about 10 to 50 percent by weight of said composite member; 2. The method of claim 1, wherein the amount is % by volume.
(3)強化用繊維がセラミック繊維である、請求項2記
載の方法。
(3) The method according to claim 2, wherein the reinforcing fibers are ceramic fibers.
(4)約600〜1000℃の範囲の加工温度の空気中
でプリプレグプリフォームを加熱する、請求項2記載の
方法。
4. The method of claim 2, wherein the prepreg preform is heated in air at a processing temperature in the range of about 600-1000<0>C.
(5)結合材を用意し、セラミック粒子、セラミック前
駆体および結合材の合計の約20重量%までの範囲でス
ラリー中に含ませる、請求項2記載の方法。
5. The method of claim 2, wherein a binder is provided and included in the slurry in an amount up to about 20% by weight of the total of ceramic particles, ceramic precursor, and binder.
(6)マトリックス混合物スラリーが、セラミック粒子
、セラミック前駆体および結合材を全体で70〜80重
量%(このうちセラミック粒子が全体の50〜80重量
%、セラミック前駆体が全体の10〜30重量%、結合
材が全体の1〜20重量%)、および有機液体として液
体を20〜30重量%含む、請求項5記載の方法。
(6) The matrix mixture slurry contains ceramic particles, ceramic precursors, and binders in a total of 70 to 80% by weight (of which, ceramic particles are 50 to 80% by weight, and ceramic precursors are 10 to 30% by weight). , binder (1 to 20% by weight of the total), and 20 to 30% by weight of a liquid as an organic liquid.
(7)セラミック前駆体が有機金属化合物、ゾルゲル、
金属塩およびこれらの混合物より成る群の中から選択さ
れた材料であり、セラミック粒子がAl、Si、Ca、
Hf、B、Ti、Hf、YおよびZrの酸化物ならびに
これらの混合物および組合せより成る群の中から選択さ
れた物質を含んでいる、請求項2記載の方法。
(7) Ceramic precursor is an organometallic compound, sol-gel,
A material selected from the group consisting of metal salts and mixtures thereof, in which the ceramic particles contain Al, Si, Ca,
3. The method of claim 2, comprising a material selected from the group consisting of oxides of Hf, B, Ti, Hf, Y and Zr and mixtures and combinations thereof.
(8)複数の繊維がひとつの層の形態になっており、マ
トリックス混合物をこの層中の繊維の回りに撒き散らし
てプリプレグ層を得る、請求項1記載の方法。
8. The method of claim 1, wherein the plurality of fibers are in the form of a layer and the matrix mixture is spread around the fibers in this layer to obtain the prepreg layer.
(9)加熱の前に複数のプリプレグ層を積層してプリプ
レグプリフォームにする、請求項8記載の方法。
(9) The method according to claim 8, wherein a plurality of prepreg layers are laminated to form a prepreg preform before heating.
(10)より密度の高い複合部材を作成するために、酸
化性雰囲気中でプリフォームを加熱してセラミックマト
リックス前駆体をセラミック相に変化させた後、当該部
材中の開放構造に溶浸するセラミック溶浸材前駆体に複
合部材を接触させ、その後溶浸された部材を酸化性雰囲
気中で加熱して溶浸したセラミック溶浸材前駆体をセラ
ミック相に変化させる、請求項1記載の方法。
(10) Ceramic infiltration into the open structures in the part after heating the preform in an oxidizing atmosphere to transform the ceramic matrix precursor into a ceramic phase to create a denser composite part. 2. The method of claim 1, further comprising contacting the composite member with the infiltrant precursor and then heating the infiltrated member in an oxidizing atmosphere to transform the infiltrated ceramic infiltrant precursor into a ceramic phase.
(11)マトリックス混合物スラリーが、セラミック粒
子に加えて、加工温度に加熱された時セラミック粒子に
対して正味の膨張を示す粒子状無機充填材も含んでおり
、マトリックス混合物中の無機充填材の割合を、この充
填材の膨張によって、加工温度に加熱される間にプリフ
ォーム中に生ずる気孔が打消されるように選択する、請
求項1記載の方法。
(11) The matrix mixture slurry also contains, in addition to the ceramic particles, a particulate inorganic filler that exhibits a net expansion relative to the ceramic particles when heated to the processing temperature, and the proportion of the inorganic filler in the matrix mixture 2. The method of claim 1, wherein the filler is selected such that expansion of the filler counteracts porosity that occurs in the preform during heating to the processing temperature.
(12)マトリックス混合物スラリーが結合材を含んで
おり、(a)セラミック粒子、セラミック前駆体、無機
結合材および充填材の合計の40重量%より多くて約9
0重量%までの範囲のセラミック粒子、(b)前記合計
の約10〜40重量%の範囲のセラミック前駆体、(c
)前記合計の約20重量%までの範囲の結合材、および
(d)前記合計の約50重量%までの範囲の無機充填材
からなる、請求項11記載の方法。
(12) the matrix mixture slurry includes a binder, wherein: (a) greater than about 40% by weight of the sum of the ceramic particles, ceramic precursor, inorganic binder, and filler;
(b) ceramic precursors ranging from about 10 to 40% by weight of said total; (c)
12. The method of claim 11, comprising: a) a binder in a range of up to about 20% by weight of said total; and (d) an inorganic filler in a range of up to about 50% by weight of said total.
(13)(a)セラミック粒子が前記合計の約50〜8
0重量%の範囲であり、(b)セラミック前駆体が前記
合計の約10〜30重量%の範囲であり、(c)結合材
が前記合計の約1〜20重量%の範囲であり、かつ(d
)無機充填材が前記合計の約7〜50重量%の範囲であ
る、請求項12記載の方法。
(13) (a) The ceramic particles are about 50 to 8 of the above total.
(b) the ceramic precursor is in the range of about 10-30% by weight of said total; (c) the binder is in the range of about 1-20% by weight of said total; and (d
13.) The method of claim 12, wherein the inorganic filler ranges from about 7 to 50% by weight of the total.
(14)複数の強化用繊維と、強化用繊維の回りに撒き
散らされたセラミック粒子からなるセラミックマトリッ
クスと、セラミック粒子と強化用繊維とを一緒に結合す
るセラミック結合材相とからなる、環境に対する耐性が
改良されており、改良された高強度と高い破壊耐性とを
合せもつ繊維強化複合部材。
(14) A ceramic matrix consisting of a plurality of reinforcing fibers, ceramic particles scattered around the reinforcing fibers, and a ceramic binder phase that binds the ceramic particles and reinforcing fibers together. Fiber-reinforced composite components with improved durability, combining improved high strength with high fracture resistance.
(15)強化用繊維が当該部材の約10〜50容量%で
ある、請求項14記載の部材。
15. The member of claim 14, wherein the reinforcing fibers are about 10-50% by volume of the member.
(16)セラミックスで結合されたセラミック粒子と強
化用繊維からなる複数の層が一緒に結合されている、請
求項14記載の部材。
16. The component of claim 14, wherein a plurality of layers of ceramic bonded ceramic particles and reinforcing fibers are bonded together.
(17)強化用繊維がセラミックスであって、それによ
って、セラミック繊維で強化されたセラミックマトリッ
クス複合部材が規定される、請求項14記載の部材。
17. The component of claim 14, wherein the reinforcing fibers are ceramics, thereby defining a ceramic fiber-reinforced ceramic matrix composite component.
(18)セラミックマトリックス中に、ラスタイプの結
晶形を有する無機物質の充填材を含んでいる、請求項1
4記載の部材。
(18) Claim 1, wherein the ceramic matrix contains an inorganic filler having a lath type crystal form.
4. The member described in 4.
(19)セラミック粒子がセラミック粒子とセラミック
結合材相との合計の約7〜50重量%の範囲であり、セ
ラミック結合材相が前記合計の約1〜20重量%の範囲
であり、強化用繊維が当該部材の約10〜50容量%の
範囲である、請求項14記載の部材。
(19) The ceramic particles range from about 7 to 50% by weight of the total of the ceramic particles and the ceramic binder phase, the ceramic binder phase ranges from about 1 to 20% by weight of the total, and the reinforcing fibers 15. The member of claim 14, wherein: is in the range of about 10-50% by volume of the member.
(20)ラスタイプの結晶形を有する無機物質の充填材
がセラミック粒子、セラミック結合材相および充填材の
合計の約7〜50重量%の範囲で含まれている、請求項
19記載の部材。
20. The component of claim 19, wherein the inorganic filler having a lath-type crystalline form is included in an amount ranging from about 7 to 50% by weight of the total of the ceramic particles, ceramic binder phase, and filler.
JP2093258A 1989-04-14 1990-04-10 Fiber reinforced ceramic matrix composite member and method of manufacturing the same Expired - Fee Related JP2991738B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34100089A 1989-04-14 1989-04-14
US341,000 1989-04-14

Publications (2)

Publication Number Publication Date
JPH0365570A true JPH0365570A (en) 1991-03-20
JP2991738B2 JP2991738B2 (en) 1999-12-20

Family

ID=23335847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093258A Expired - Fee Related JP2991738B2 (en) 1989-04-14 1990-04-10 Fiber reinforced ceramic matrix composite member and method of manufacturing the same

Country Status (6)

Country Link
JP (1) JP2991738B2 (en)
CA (1) CA2012240C (en)
DE (1) DE4012229A1 (en)
FR (1) FR2645853B1 (en)
GB (1) GB2230259B (en)
IT (1) IT1241114B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530512A (en) * 2012-08-14 2015-10-15 ゼネラル・エレクトリック・カンパニイ Airfoil component containing ceramic base material and method thereof
JP2016527160A (en) * 2013-03-15 2016-09-08 ゼネラル・エレクトリック・カンパニイ Slurries for composite materials
JP2019156687A (en) * 2018-03-14 2019-09-19 三菱重工業株式会社 Manufacturing method of turbine blade member

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
US5488017A (en) * 1989-04-14 1996-01-30 General Electric Company Fibert reinforced ceramic matrix composite member
DE4102909A1 (en) * 1991-01-31 1992-08-06 Man Technologie Gmbh WORKPIECES MADE OF FIBER REINFORCED CERAMIC
DE4123677A1 (en) * 1991-07-17 1993-01-21 Vaw Ver Aluminium Werke Ag FIBER MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF AND USE OF THE MOLDED BODY FOR THE PRODUCTION OF FIBER REINFORCED ALUMINUM CASTING PARTS
US5856252A (en) * 1995-06-07 1999-01-05 The Regents Of The University Of California Damage tolerant ceramic matrix composites by a precursor infiltration
DE19712808B4 (en) * 1996-03-26 2009-06-18 Mazda Motor Corp. Aluminum or aluminum alloy composite components in combination with preform structures
US5780126A (en) * 1996-07-17 1998-07-14 Minnesota Mining & Manufacturing Filter material
US5849375A (en) * 1996-07-17 1998-12-15 Minnesota Mining & Manufacturing Company Candle filter
DE10314271A1 (en) * 2003-03-29 2004-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Creep and thermal shock resistant fiber composite
US10563522B2 (en) * 2014-09-22 2020-02-18 Rolls-Royce North American Technologies Inc. Composite airfoil for a gas turbine engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197472A (en) * 1985-02-27 1986-09-01 工業技術院長 Manufacture of sic continuous fiber reinforced sic compositebody
JPS63288974A (en) * 1987-05-22 1988-11-25 Ishikawajima Harima Heavy Ind Co Ltd Production of fiber reinforced ceramics

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA930261A (en) * 1970-05-11 1973-07-17 Union Carbide Corporation Ceramic coated articles
US4247249A (en) * 1978-09-22 1981-01-27 General Electric Company Turbine engine shroud
DE3163869D1 (en) * 1980-07-11 1984-07-05 Ici Plc Fibrous composite materials and the production and use thereof
FR2514752A1 (en) * 1981-10-20 1983-04-22 Onera (Off Nat Aerospatiale) CERAMIZED COMPOSITE MATERIALS WITH HIGH MECHANICAL AND THERMAL RESISTANCE AND THEIR PREPARATION
FR2547577B1 (en) * 1983-06-20 1989-12-15 Aerospatiale COMPOSITE REFRACTORY MATERIAL REINFORCED WITH REFRACTORY FIBERS AND MANUFACTURING METHOD THEREOF
US4737192A (en) * 1983-10-17 1988-04-12 Manville Service Corporation Refractory binder, method for making same, and product produced thereby
GB2175893A (en) * 1985-04-02 1986-12-10 Ae Plc Fibre-reinforced ceramic materials
DE3840781A1 (en) * 1988-12-03 1990-06-07 Hoechst Ag FIBER COMPOSITE CERAMICS AND METHOD FOR THEIR PRODUCTION
US4983422A (en) * 1988-03-11 1991-01-08 Kaiser Aerotech Process for forming aluminum oxide ceramic composites
JPH0288452A (en) * 1988-09-26 1990-03-28 Nichias Corp Heat-resistant inorganic compact
FR2641776B1 (en) * 1989-01-13 1993-03-26 Europ Propulsion COMPOSITE MATERIAL WITH MULTIPLE INTERPHASES BETWEEN REFRACTORY REINFORCEMENT FIBERS AND CERAMIC MATRIX

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61197472A (en) * 1985-02-27 1986-09-01 工業技術院長 Manufacture of sic continuous fiber reinforced sic compositebody
JPS63288974A (en) * 1987-05-22 1988-11-25 Ishikawajima Harima Heavy Ind Co Ltd Production of fiber reinforced ceramics

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530512A (en) * 2012-08-14 2015-10-15 ゼネラル・エレクトリック・カンパニイ Airfoil component containing ceramic base material and method thereof
JP2016527160A (en) * 2013-03-15 2016-09-08 ゼネラル・エレクトリック・カンパニイ Slurries for composite materials
US11319253B2 (en) 2013-03-15 2022-05-03 General Electric Company Slurries for composite materials
JP2019156687A (en) * 2018-03-14 2019-09-19 三菱重工業株式会社 Manufacturing method of turbine blade member

Also Published As

Publication number Publication date
FR2645853B1 (en) 1994-06-10
CA2012240A1 (en) 1990-10-17
DE4012229A1 (en) 1990-10-18
FR2645853A1 (en) 1990-10-19
IT1241114B (en) 1993-12-29
IT9020023A0 (en) 1990-04-12
GB9001418D0 (en) 1990-03-21
IT9020023A1 (en) 1991-10-12
GB2230259A (en) 1990-10-17
CA2012240C (en) 2004-07-06
GB2230259B (en) 1993-11-17
JP2991738B2 (en) 1999-12-20

Similar Documents

Publication Publication Date Title
US5488017A (en) Fibert reinforced ceramic matrix composite member
US8357258B2 (en) Thermal insulation assemblies and methods for fabricating the same
JP2950902B2 (en) Consolidated member, method of manufacturing the same, and preform
US6969546B2 (en) Thermal insulation system employing oxide ceramic matrix composites
EP1880984B1 (en) Oxide-based ceramic matrix composites
JPH0365570A (en) Fiber-reinforced, ceramic matrix composite member and its manufacture
US7919039B2 (en) Ceramic fiber composite material
WO2005102959A1 (en) Method for increasing the strength of porous ceramic bodies and bodies made therefrom
US6613255B2 (en) Method of making a permeable ceramic tile insulation
US20020197465A1 (en) Damage tolerant CMC using sol-gel martix slurry
JP2000185977A (en) Method for varying dielectric characteristic of ceramic- based matrix composite material
Li et al. Enhanced 3D printed alumina ceramic cores via impregnation
CA2766653A1 (en) Process for producing cemented and skinned acicular mullite honeycomb structures
US8349111B2 (en) Method for joining ceramic components
Heidenreich et al. Net Shape Manufacturing of Fabric Reinford Oxide/Oxide Components Via Resin Transfer Moulding and Pyrolysis
JPH0640764A (en) Production of composite body
JP2001089254A (en) Composite ceramic material and its production process
JPH05238814A (en) Production of composite product
JPH04154677A (en) Composite material and its production
JPH04226748A (en) Production of composite body
JP2002186811A (en) Oxide ceramics filter and method for manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees