JP2991738B2 - Fiber reinforced ceramic matrix composite member and method of manufacturing the same - Google Patents

Fiber reinforced ceramic matrix composite member and method of manufacturing the same

Info

Publication number
JP2991738B2
JP2991738B2 JP2093258A JP9325890A JP2991738B2 JP 2991738 B2 JP2991738 B2 JP 2991738B2 JP 2093258 A JP2093258 A JP 2093258A JP 9325890 A JP9325890 A JP 9325890A JP 2991738 B2 JP2991738 B2 JP 2991738B2
Authority
JP
Japan
Prior art keywords
ceramic
precursor
weight
matrix
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2093258A
Other languages
Japanese (ja)
Other versions
JPH0365570A (en
Inventor
ミッシェル・ジョージ・ハリソン
ミッシェル・リー・ミラード
アンドリュー・ヅェダ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JENERARU EREKUTORITSUKU CO
Original Assignee
JENERARU EREKUTORITSUKU CO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JENERARU EREKUTORITSUKU CO filed Critical JENERARU EREKUTORITSUKU CO
Publication of JPH0365570A publication Critical patent/JPH0365570A/en
Application granted granted Critical
Publication of JP2991738B2 publication Critical patent/JP2991738B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6306Binders based on phosphoric acids or phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63424Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6346Polyesters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • C04B35/6365Cellulose or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/341Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/62Forming laminates or joined articles comprising holes, channels or other types of openings

Description

【発明の詳細な説明】 本発明は、セラミック複合部材およびその製造方法に
係り、さらに詳しくは、ひとつの態様で、セラミック繊
維で強化されたセラミックマトリックス複合部材に係
る。
The present invention relates to a ceramic composite member and a method of manufacturing the same, and more particularly, in one aspect, to a ceramic matrix composite member reinforced with ceramic fibers.

発明の背景 自動車用エンジン、ガスタービンなどを始めとする動
力発生装置用部品などのような高温作動品の形態でセラ
ミックスを使用することは、ある種のセラミックスのも
つ軽量性および高温強度のゆえに興味深い。代表的な部
品の一例はガスタービンエンジンストラットである。し
かし、補強材を含まない単調なセラミック構造体は脆
い。このような部材は追加・混入した強化用構造体の補
助がなければ、上記のように苛酷な用途で要求される信
頼性の要件に合致できない。
BACKGROUND OF THE INVENTION The use of ceramics in the form of high temperature working components, such as parts for power generating devices such as automotive engines, gas turbines, etc., is of interest due to the light weight and high temperature strength of certain ceramics. . One example of a typical component is a gas turbine engine strut. However, a monotonous ceramic structure without reinforcement is brittle. Without the assistance of added and mixed reinforcing structures, such members cannot meet the reliability requirements required for harsh applications as described above.

そのような欠点を克服する目的で、破壊に対して耐性
のあるセラミックマトリックス複合体がいくつか報告さ
れている。これらにはサイズとタイプがさまざまな繊
維、たとえば長繊維またはフィラメント、短繊維または
チョップトファイバー、ウィスカーなどが配合されてい
る。話を簡単にするために本明細書中ではこのような繊
維すべてを単に「繊維」と称することとする。繊維によ
っては、強化材とマトリックスとの間で激しい反応が起
こるのを避けるためにある種の物質が被覆されているこ
とがある。しかし、そのようなコーティングの中には、
所定の高い作動温度の空気にさらされると酸化する各種
形態の炭素やその他の物質からなるものがある。このよ
うな繊維をセラミックマトリックス内に含ませたのは脆
性破壊挙動に対抗するためであった。
In order to overcome such disadvantages, several ceramic matrix composites that are resistant to fracture have been reported. These are blended with fibers of various sizes and types, such as long fibers or filaments, short fibers or chopped fibers, whiskers, and the like. For simplicity, all such fibers will be referred to herein simply as "fibers". Some fibers are coated with certain materials to avoid vigorous reactions between the reinforcement and the matrix. However, in such coatings,
Some consist of various forms of carbon and other materials that oxidize when exposed to air at a predetermined high operating temperature. The inclusion of such fibers in the ceramic matrix was to counter the brittle fracture behavior.

炭素などのように酸化性の繊維をセラミック複合体中
の強化材として使用する際のひとつの問題は、その系が
使用環境に対して不安定になる可能性があることであ
る。すなわち、セラミックマトリックス中に亀裂が存在
すると、たとえそれが微小亀裂であっても、動力発生用
エンジンの高温部でみられる高い作動温度の空気中の酸
素と酸化性の繊維が接触する可能性が生じるのである。
強化用繊維のそのような酸化は繊維構造またはその機能
を弱めたり破壊したりし、その構造部材を許容できない
程度にまで弱くすることになる。
One problem with using oxidizable fibers, such as carbon, as reinforcement in ceramic composites is that the system may be unstable to the environment of use. In other words, if cracks are present in the ceramic matrix, even if they are micro-cracks, there is a possibility that oxygen in the air at the high operating temperature found in the high temperature part of the engine for power generation will come into contact with oxidizing fibers. It will happen.
Such oxidation of the reinforcing fibers weakens or destroys the fibrous structure or its function, and its structural components are weakened to an unacceptable degree.

もうひとつ別の問題は、強化用繊維の回りのセラミッ
ク粒子を焼結させる際の高温のために、使用することが
できる繊維の種類が限られるという事実に関連する。た
とえば、多くの繊維はおよそ1000℃以上で劣化するが、
この温度はセラミック粒子の焼結に必要な温度よりずっ
と低い。
Another problem relates to the fact that the high temperatures in sintering the ceramic particles around the reinforcing fibers limit the types of fibers that can be used. For example, many fibers degrade above about 1000 ° C,
This temperature is much lower than the temperature required for sintering the ceramic particles.

発明の概要 簡単にいうと、本発明はそのひとつの態様において、
酸化に対して安定な強化用繊維(たとえばセラミック繊
維)とその繊維の回りに撒き散らされたマトリックスと
からなる、環境に対して安定な繊維強化セラミックマト
リックス複合部材を提供する。本明細書中で繊維に関し
て「酸化に対して安定」という表現を使用する場合、そ
れは温度と雰囲気(たとえば空気など)の予定された作
動条件で実質的な酸化および/または環境による劣化を
ほとんど受けることのない繊維を意味するものとする。
マトリックスはセラミック相によって互いに結合された
セラミック粒子を含む混合物である。
SUMMARY OF THE INVENTION Briefly, the present invention, in one aspect,
An environmentally stable fiber reinforced ceramic matrix composite comprising oxidatively stable reinforcing fibers (eg, ceramic fibers) and a matrix dispersed around the fibers. As used herein, the term "oxidatively stable" with respect to a fiber is subject to substantial oxidation and / or environmental degradation at predetermined operating conditions of temperature and atmosphere (e.g., air). Shall mean fibers that do not.
The matrix is a mixture comprising ceramic particles bound together by a ceramic phase.

この方法の態様において、本発明は、加熱によりセラ
ミック相に変化するセラミックマトリックス前駆体と相
溶性のある液体中にセラミック粒子を含む不連続な材料
のマトリックス混合物スラリーの中にほぼ均一な分布で
混合されているセラミックマトリックス前駆体を提供す
る。このスラリーは酸化に対して安定な繊維の回りにマ
トリックス混合物として撒き散らされてプリプレグプリ
フォームを形成する。このプリフォームは空気などのよ
うな酸化性雰囲気中で加工温度に加熱される。その温度
は、少なくとも前記前駆体がセラミック相に変化するの
に必要とされる温度以上であり、プリフォーム中のセラ
ミックスの劣化を起こすことになる温度よりは低い。本
発明によるとそのような温度は約600〜1000℃の範囲と
することができる。このような加熱の際、セラミック前
駆体はたとえば分解などによってたとえば非晶質形態か
結晶質形態のセラミック相に変化する。このセラミック
相により、前記スラリーからのセラミック粒子が繊維の
回りでセラミックマトリックス中に結合される。この強
化されたセラミックマトリックス複合部材は、好ましく
はほとんど全部が互いに結合されたセラミック酸化物で
あるが、酸化性雰囲気中で安定化されているので、環境
に対して安定であり、高強度で、しかも破壊に対する耐
性が高い。
In an aspect of this method, the present invention provides a method for mixing a substantially uniform distribution of a matrix mixture of a discontinuous material containing ceramic particles in a liquid that is compatible with a ceramic matrix precursor that changes to a ceramic phase upon heating. The present invention provides a ceramic matrix precursor that has been used. The slurry is sprinkled as a matrix mixture around the oxidation-stable fibers to form a prepreg preform. The preform is heated to a processing temperature in an oxidizing atmosphere such as air. The temperature is at least equal to or higher than the temperature required for the precursor to change to a ceramic phase and lower than the temperature that would cause the ceramic in the preform to deteriorate. According to the present invention, such temperatures can range from about 600 to 1000 ° C. Upon such heating, the ceramic precursor changes to, for example, an amorphous or crystalline ceramic phase, for example, by decomposition. This ceramic phase binds ceramic particles from the slurry around the fibers into a ceramic matrix. The reinforced ceramic matrix composite member is preferably substantially entirely bonded to a ceramic oxide, but is stabilized in an oxidizing atmosphere, so is environmentally stable, has high strength, Moreover, it has high resistance to destruction.

好ましい具体例の説明 破壊耐性を有する繊維強化セラミックマトリックス複
合体のおかげで、自動車のエンジン、タービンエンジン
などの部品のごとき動力発生用エンジンの高温用部品の
設計技術者は強くて軽量の部材を指定することができ
る。しかし、そのような公知の複合材のいくつかは、酸
化可能な部分を空気にさらすことになる亀裂が発生した
際環境に対して不安定である。加えて、公知の加工処理
のいくつかでは望ましくない程度の気孔が製品中に残る
ことがある。また、必要とされるかなり高い焼結温度と
この必要な焼結温度より低い繊維の劣化温度のために、
焼結したセラミック強化複合材中に含ませることができ
る繊維の種類は限られている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Thanks to the fracture-resistant fiber reinforced ceramic matrix composite, design engineers for high temperature components of power generating engines, such as automotive engines, turbine engines, etc., specify strong and lightweight components can do. However, some of such known composites are environmentally unstable when cracks occur that expose the oxidizable portion to air. In addition, some of the known processes may leave undesirable levels of porosity in the product. Also, due to the much higher sintering temperature required and the fiber degradation temperature below this required sintering temperature,
The types of fibers that can be included in a sintered ceramic reinforced composite are limited.

本発明は、上記のような公知の問題を回避すると共
に、低めの加工温度で高い強度と高い破壊耐性をもち環
境に対して安定な、強化されたセラミックマトリックス
複合部材を作成するための改良された方法を提供する。
本発明の重要な基礎は低めの温度で安定化することがで
きる成分を使用することであり、安定化のために加熱し
た後のひとつ製品は、好ましくはほとんど全部のセラミ
ック酸化物が互いに結合している部材である。そのよう
な成分を使用すると、部材の使用中の酸化による劣化の
可能性が除かれる。
The present invention avoids the known problems noted above, and is an improved method for making a reinforced ceramic matrix composite that is environmentally stable, has high strength and high fracture resistance at lower processing temperatures. To provide a method.
An important basis of the present invention is the use of ingredients that can be stabilized at lower temperatures, and one product after heating for stabilization is preferably one in which almost all of the ceramic oxide is bound together. It is a member that is. The use of such components eliminates the possibility of degradation due to oxidation during use of the component.

セラミック材料として使用するセラミック粒子の典型
例はAl、Si、Ca、Hf、B、Ti、YおよびZrなどのような
元素の酸化物ならびにこれらの混合物および組合せであ
る。このような材料で市販のものとしてはAl2O3、Si
O2、CaO、ZrO2、HfO2、BN、TiO2、3Al2O3・2SiO2、Y2O3
CaO・Al2O3ならびに各種の粘土およびガラス繊維があ
る。本発明の評価時、直径が約75ミクロンから0.2ミク
ロンまでの範囲のセラミック粒子サイズをマトリックス
成分として試験した。本発明のひとつの態様は、このよ
うなセラミックスがそれぞれ、構造体として使用した場
合高い圧密化温度に焼成されると収縮するという事実に
関する。たとえば、あるひとつの形態のアルミナは1400
℃で約3〜4%の範囲の線収縮を示す。
Typical examples of ceramic particles used as ceramic materials are oxides of elements such as Al, Si, Ca, Hf, B, Ti, Y and Zr, and mixtures and combinations thereof. Commercially available materials such as Al 2 O 3 and Si
O 2 , CaO, ZrO 2 , HfO 2 , BN, TiO 2 , 3Al 2 O 3・ 2SiO 2 , Y 2 O 3
There are CaO.Al 2 O 3 and various clays and glass fibers. In evaluating the present invention, ceramic particle sizes ranging from about 75 microns to 0.2 microns in diameter were tested as matrix components. One aspect of the invention relates to the fact that each such ceramic, when used as a structure, shrinks when fired to a high consolidation temperature. For example, one form of alumina is 1400
It shows a linear shrinkage in the range of about 3-4% at ° C.

本発明に関連して、後述するように、マトリックス前
駆体および溶浸材として使用することができる各種のセ
ラミック前駆体を評価した。このような前駆体を結合材
としてセラミック粒子と共に組合せて使用すると、かな
り低めの加工温度で安定な複合体を生成することが可能
である。たとえば加熱の際分解によりセラミック相に変
化するそのような前駆体は、本発明の一部を実施するた
めに固体もしくは液体またはそれらの混合物の形態とす
ることができる。通常これらは有機金属化合物、ゾルゲ
ルまたは金属塩として分類される。この評価で使用した
ものとしては、ポリカルボシラン、シリコーン、金属塩
(それぞれ、ビニルポリシラン、ジメチルシロキサン、
オキシ塩化ハフニウムなど)、シリカおよびアルミナゾ
ル、アルミニウムイソプロポキシド、リン酸モノアルミ
ニウムその他のリン酸塩などのようなセラミック前駆体
がある。次の表Iにこれらの前駆体の特定の形態を示
す。
Various ceramic precursors that can be used as matrix precursors and infiltrants, as described below, were evaluated in connection with the present invention. When such precursors are used in combination with ceramic particles as binders, it is possible to produce stable composites at considerably lower processing temperatures. Such precursors that change to a ceramic phase upon decomposition, for example, upon heating, can be in the form of a solid or liquid or a mixture thereof for practicing part of the present invention. These are usually classified as organometallic compounds, sol-gels or metal salts. The materials used in this evaluation include polycarbosilane, silicone, and metal salts (vinylpolysilane, dimethylsiloxane,
Ceramic precursors such as hafnium oxychloride), silica and alumina sols, aluminum isopropoxide, monoaluminum phosphate and other phosphates. Table I below shows specific forms of these precursors.

本発明の方法によると、セラミック粒子、セラミック
前駆体、そして場合により結合材からなる不連続な材料
をある液体中に分散させてマトリックス混合物スラリー
とする。本明細書中で使用する「不連続な材料」という
用語は粉末、粒子、小断片、材料のフレーク、ウィスカ
ーなどを意味するものとする。このスラリーの液体の特
徴は、これがセラミック前駆体と、そして結合材を使用
する場合には結合材と相溶性のあるものであること、好
ましくはそれに対する溶剤であることである。このた
め、前駆体がセラミック粒子および場合により存在する
結合材と共にスラリー中に実質的に均一に分布したマト
リックス混合物が得られる。この液体は、前駆体または
その混合物および存在する場合には結合材に応じて、た
とえば水性であることもできるし有機質のものとするこ
ともできる。すでに述べたように前駆体はこの液体に溶
解するのが好ましく、その場合この液体は溶剤として働
く。溶剤として使用する典型的な有機の液体としては、
結合材、ポリマーおよび/または溶浸材を溶液状態に保
つことができるエチルアルコール、トリクロロエタン、
メチルアルコール、トルエンおよびメチルエチルケトン
がある。溶剤の必要量は結合材/ポリマーの溶解度およ
び飽和限界ならびにスラリーの所望の粘度に依存する。
好ましくは溶剤が20〜30重量%の範囲である。これ以上
に溶剤の量を増やすと余分な溶剤を蒸発させるのに必要
な乾燥時間が長くなるだけである。
According to the method of the present invention, a discontinuous material consisting of ceramic particles, a ceramic precursor, and optionally a binder is dispersed in a liquid to form a matrix mixture slurry. The term "discontinuous material" as used herein shall mean powder, particles, small pieces, flakes of material, whiskers, and the like. A characteristic of the liquid of this slurry is that it is compatible with the ceramic precursor and, if a binder is used, the binder, and preferably is a solvent for it. This results in a matrix mixture in which the precursor is substantially uniformly distributed in the slurry with the ceramic particles and any binders present. This liquid can be, for example, aqueous or organic, depending on the precursor or its mixture and the binder if present. As already mentioned, the precursor is preferably dissolved in the liquid, in which case the liquid acts as a solvent. Typical organic liquids used as solvents include
Ethyl alcohol, trichloroethane, which can keep the binder, polymer and / or infiltrant in solution;
There are methyl alcohol, toluene and methyl ethyl ketone. The required amount of solvent depends on the solubility and saturation limit of the binder / polymer and the desired viscosity of the slurry.
Preferably, the solvent is in the range of 20-30% by weight. Increasing the amount of solvent beyond this only increases the drying time required to evaporate excess solvent.

スラリー中のセラミック粒子に関していうと、このよ
うな粒子はセラミック粒子と前駆体の合計に対して40重
量%より多くて約90重量%までの範囲で含まれるべきで
あることが認められている。40重量%以下では複合部材
中の強化用繊維の回りにマトリックスを作るにはセラミ
ックスが不充分で気孔が大きくなり過ぎる。約90重量%
を越えると、変化した後の前駆体のセラミック相によ
る、強化用繊維の回りのセラミック粒子の結合が不充分
になる。粒子と前駆体の合計に対するセラミック粒子の
好ましい範囲は50〜80重量%、特に約70〜80重量%であ
る。
With respect to the ceramic particles in the slurry, it has been found that such particles should be included in the range of more than 40% and up to about 90% by weight, based on the sum of the ceramic particles and the precursor. Below 40% by weight, the ceramics are insufficient to form a matrix around the reinforcing fibers in the composite member and the pores become too large. About 90% by weight
Is exceeded, there is insufficient bonding of the ceramic particles around the reinforcing fibers by the changed ceramic phase of the precursor. The preferred range of ceramic particles relative to the total of particles and precursor is 50-80% by weight, especially about 70-80% by weight.

適切な流動性と結合を得るために、セラミック前駆体
はマトリックス混合物スラリー中にこの前駆体とセラミ
ック粒子との合計の約10〜40重量%の範囲で含ませるべ
きであり、10〜30重量%が好ましいことが認められてい
る。約10重量%未満であると、セラミック相の流動、お
よび前駆体の分解を生じる加熱の後のセラミック粒子と
の結合が不充分になる。約40重量%を越えると、前駆体
の分解によりマトリックス相内に生じる気孔が多くなり
過ぎる。
In order to obtain adequate fluidity and bonding, the ceramic precursor should be included in the matrix mixture slurry in a range of about 10-40% by weight of the total of this precursor and ceramic particles, and 10-30% by weight. Has been found to be preferred. Less than about 10% by weight results in insufficient flow of the ceramic phase and poor bonding with the ceramic particles after heating resulting in decomposition of the precursor. Above about 40% by weight, too many pores are formed in the matrix phase due to decomposition of the precursor.

このスラリーの残部はほとんど液体である。しかし、
未硬化のマトリックスを互いに保持するのに一時的に使
用される結合材(バインダー)や可塑剤などのような他
の物質(本明細書中では一般に「結合材」という)がス
ラリー中に含まれていることもできる。加工温度に加熱
する前プリフォームを互いに保持するための結合材は、
セラミック粒子、前駆体および結合材の合計の約20重量
%まで含ませることができる。これより多くすると気孔
が多くなり過ぎる。評価した(市販の)結合材および可
塑剤の例は、プレストラインマスターミックス[Presto
line Master Mix、ピー・ビー・エス・ケミカル(P.B.
S.Chemical)]、セルロースエーテル[ダウ・ケミカル
(Dow Chemical)]、ポリビニルブチラールおよびフタ
ル酸ブチルベンジル[いずれもモンサント(Monsant
o)]、ならびに、ポリアルキレングリコールおよびポ
リエチレングリコール[ユニオン・カーバイド(Union
Carbide)]である。同様に使用した結合系は、エポキ
シ樹脂、たとえばチバ−ガイギー(Ciba−Geigy)製の
汎用エポキシ樹脂、シリコーン、たとえばポリシロキサ
ン[ジー・イー(GE)]、RTV[ジー・イー(GE)]お
よびポリカルボシラン[ユニオン・カーバイド(Union
Carbide)]である。所要により、グリセロールトリオ
レエート、魚油、アジピン酸ポリエステル、ポリアクリ
ル酸ナトリウムおよびリン酸エステルなどのような分散
剤を含ませた。上記した好ましい範囲の前駆体およびセ
ラミックスと共にエポキシ樹脂を結合系として使用した
場合エポキシは前駆体とセラミック粒子との混合物に対
して約1〜10重量%とした。
The balance of this slurry is almost liquid. But,
Other materials (commonly referred to herein as "binders"), such as binders and plasticizers, used temporarily to hold the uncured matrix together are included in the slurry. You can also. The binder to hold the preforms together before heating to the processing temperature,
Up to about 20% by weight of the total of the ceramic particles, precursor and binder can be included. If it is larger than this, the number of pores becomes too large. Examples of evaluated (commercially available) binders and plasticizers are the Prestoline Master Mix [Presto
line Master Mix, PBS Chemical (PB
S. Chemical)], cellulose ethers [Dow Chemical], polyvinyl butyral and butyl benzyl phthalate [Monsant
o)], and polyalkylene glycols and polyethylene glycols [Union Carbide (Union Carbide)
Carbide)]. Bonding systems also used were epoxy resins, such as general purpose epoxy resins from Ciba-Geigy, silicones, such as polysiloxane [GE], RTV [GE] and Polycarbosilane [Union Carbide (Union
Carbide)]. If desired, dispersing agents were included such as glycerol trioleate, fish oil, adipic acid polyester, sodium polyacrylate and phosphate esters. When an epoxy resin is used as the bonding system together with the preferred ranges of precursors and ceramics described above, the amount of epoxy is about 1 to 10% by weight based on the mixture of the precursor and the ceramic particles.

本発明に関連して、次の表IIに熱膨張係数(CTE)と
共に示すセラミック強化用繊維を含めて各種の繊維を評
価した。
Various fibers were evaluated in connection with the present invention, including the ceramic reinforcing fibers shown in Table II below along with the coefficient of thermal expansion (CTE).

本発明に関連して評価した実施例1では、マトリック
ス混合物スラリーは、セラミック粒子としては約0.2〜5
0ミクロンのサイズ範囲のAl2O3粒子を、セラミック前駆
体としてはRTVとして市販されているシリコーンを、そ
して結合材としてはビスフェノールとして上市されてい
るエポキシ樹脂を含んでいた。この代表的な混合物で
は、Al2O3、シリコーンおよび結合材の合計を基準にし
て、Al2O3が70〜80重量%、シリコーンが10〜30重量
%、そしてエポキシが1〜10重量%であった。この混合
物を、液体として約20〜30重量%の量のトリクロロエタ
ンとエタノールの混合溶媒と組合せてマトリックス混合
物スラリーとした。このスラリーの残部にあたる70〜80
重量%はセラミック、前駆体および結合材からなる上記
の混合物であった。
In Example 1, which was evaluated in connection with the present invention, the matrix mixture slurry had about 0.2 to 5 ceramic particles.
It contained Al 2 O 3 particles in the size range of 0 microns, silicone commercially available as RTV as the ceramic precursor, and epoxy resin marketed as bisphenol as the binder. In this exemplary mixture, Al 2 O 3, based on the total of silicone and binder, Al 2 O 3 is 70 to 80% by weight, the silicone is 10 to 30 wt%, and epoxy 1-10 wt% Met. This mixture was combined with a mixed solvent of trichloroethane and ethanol in an amount of about 20-30% by weight as a liquid to form a matrix mixture slurry. 70-80 which is the rest of this slurry
% By weight was the above mixture of ceramic, precursor and binder.

実施例2ではセラミック前駆体を組合せて含ませた。
そのような混合物は、セラミック粒子、前駆体および結
合材の合計を基準にして、70〜80重量%のAl2O3をセラ
ミック粒子として、5〜15重量%のシリコーンと5〜15
重量%のアルミニウムイソプロポキシドをセラミック前
駆体として、そして1〜10重量%の量のエポキシを結合
材として含んでいた。この混合物を、液体として約20〜
30重量%の量のトリクロロエタンとエタノールの混合溶
媒と組合せてマトリックス混合物スラリーとした。この
スラリーの残部にあたる70〜80重量%はセラミック、前
駆体および結合材からなる上記の混合物であった。
In Example 2, a combination of ceramic precursors was included.
Such a mixture comprises, based on the sum of the ceramic particles, precursor and binder, 70-80% by weight of Al 2 O 3 as ceramic particles, 5-15% by weight of silicone and 5-15% by weight.
% By weight of aluminum isopropoxide as the ceramic precursor and 1 to 10% by weight of epoxy as binder. This mixture can be used as a liquid
The matrix mixture slurry was combined with a mixed solvent of trichloroethane and ethanol in an amount of 30% by weight. The remaining 70-80% by weight of the slurry was the above mixture of ceramic, precursor and binder.

本発明の方法のひとつの態様では、上記実施例1と2
のマトリックス混合物スラリーの各々を織物の形態の強
化用セラミック繊維の回りに巻き散らした。これらの実
施例では、強化用繊維は上で特定した住友(Sumitomo)
のヤーンまたはロービングから作成し、部材の20〜40容
量%の範囲で含ませた。他の態様と実施例では強化用セ
ラミック繊維は巻上げたフィラメントであった。本発明
においては、強化用繊維は部材の約10〜50容量%の範囲
で含ませるべきであり、30〜40容量%が好ましいことが
認められている。10容量%未満だと補強強度が不充分で
あり、約50容量%より多いと繊維が密になり過ぎてマト
リックスをその間に適切に配分できなくなる。
In one embodiment of the method of the present invention, Examples 1 and 2
Each of the matrix mixture slurries was wrapped around reinforcing ceramic fibers in the form of a woven fabric. In these examples, the reinforcing fibers are Sumitomo as specified above.
Made from yarns or rovings and contained in the range of 20-40% by volume of the component. In other embodiments and examples, the reinforcing ceramic fibers were wound filaments. In the present invention, it has been recognized that the reinforcing fibers should be included in the range of about 10-50% by volume of the component, with 30-40% by volume being preferred. If it is less than 10% by volume, the reinforcing strength is insufficient, and if it is more than about 50% by volume, the fibers become too dense and the matrix cannot be properly distributed therebetween.

このプリプレグを乾燥し、大部分の溶剤を蒸発させた
後、そうしてできたプリプレグ層を業界で周知であり実
施されてもいるように圧縮金型またはオートクレーブな
どを使用して温度と圧力をかけて賦形・成形して部材に
した。その後この部材を固体のプリフォーム形状に冷却
した。
After drying the prepreg and evaporating most of the solvent, the resulting prepreg layer is subjected to temperature and pressure using a compression mold or an autoclave as is well known and practiced in the art. It was shaped and formed into a member. The member was then cooled to a solid preform shape.

次にこのプリフォームを600〜1000℃の範囲の加工温
度に加熱した。この温度は、公知の方法で使用される一
般にずっと高い焼結温度(たとえば約1300〜1650℃の範
囲)よりずっと低い。この加熱は、一時的な結合材など
のような有機物を除去し、かつ分解によりセラミック前
駆体を変化させてセラミック結合材相にするために行な
うものである。セラミック粒子を含む結合材前駆体を使
用する本発明を実施すると、加工温度を、強化用繊維の
回りのセラミック粒子を互いに焼結させるのに必要な加
工温度よりずっと低い範囲に維持することができる。ま
た、本発明以外の場合には公知の高い焼結温度で劣化し
たり熱化学的に損傷を受けたりする繊維の使用も可能に
なる。
The preform was then heated to a processing temperature in the range of 600-1000C. This temperature is much lower than the generally much higher sintering temperatures used in known methods (e.g., in the range of about 1300-1650C). This heating is performed for removing organic substances such as a temporary binder and changing the ceramic precursor by decomposition to form a ceramic binder phase. By practicing the present invention using a binder precursor containing ceramic particles, the processing temperature can be maintained in a range much lower than the processing temperature required to sinter the ceramic particles around the reinforcing fibers together. . In addition, other than the present invention, it is possible to use fibers which are deteriorated or thermochemically damaged at a known high sintering temperature.

上記実施例1と2では、加工温度での加熱は約600〜8
00℃の範囲で行なった。このような加熱により、セラミ
ック粒子がセラミック相を介して互いに結合したセラミ
ックマトリックスが得られる。一般に、このマトリック
スは開放気孔率が約5〜30容量%の範囲である。
In Examples 1 and 2 above, the heating at the processing temperature was about 600 to 8
Performed in the range of 00 ° C. Such heating results in a ceramic matrix in which the ceramic particles are bonded together via a ceramic phase. Generally, the matrix has an open porosity in the range of about 5-30% by volume.

本発明はもうひとつ別の態様において、上記のような
気孔を低減または除去する付加的なステップを含む。そ
のような態様においては、液体形態、または通常高濃度
で液体に分散させた形態の別のセラミック前駆体を使用
して上記セラミックマトリックスの気孔中に溶浸させ
る。たとえば、液体のセラミック前駆体溶浸材中にマト
リックスを浸漬し、減圧にして溶浸材が細孔内に浸透し
易くすることができる。乾燥後、溶浸されたマトリック
スを上記と同様にして加熱して溶浸材セラミック前駆体
をセラミック相に変化させることにより、いくらかの気
孔を除去する。このような細孔の溶浸と変換のための加
熱とは所望により繰返してマトリックスの気孔(率)を
所望程度まで低下または除去することができる。
The invention, in another aspect, includes the additional step of reducing or eliminating porosity as described above. In such an embodiment, another ceramic precursor, in liquid form or usually in a form dispersed in liquid at a high concentration, is used to infiltrate the pores of the ceramic matrix. For example, the matrix can be immersed in a liquid ceramic precursor infiltrant and the pressure reduced to facilitate penetration of the infiltrant into the pores. After drying, some pores are removed by heating the infiltrated matrix in the same manner as described above to convert the infiltrant ceramic precursor to a ceramic phase. Such infiltration of pores and heating for conversion can be repeated as desired to reduce or eliminate the porosity (rate) of the matrix to a desired degree.

第1図の比較用グラフは、本発明に従って作成した部
材の破壊耐性と靭性を示す応力−歪み曲線である。第1
図のデータは室温での試験で得たものである。使用した
試片は0.5″×6″×0.1″の矩形試験棒であった。
The comparative graph of FIG. 1 is a stress-strain curve showing the fracture resistance and toughness of a member made according to the present invention. First
The data in the figure was obtained from a test at room temperature. The specimen used was a 0.5 "x 6" x 0.1 "rectangular test rod.

曲線1で示したデータは、上記実施例1の混合物から
上に記載のようにして作成した試片の試験結果である。
ただし、この場合スラリーは強化用繊維の回りに分散さ
せなかった。曲線1の物質はセラミック粒子、セラミッ
ク前駆体およびエポキシ結合材からなる単調なマトリッ
クスであって、強度が低く急激に脆性破壊を起こす。こ
のタイプの単調なセラミックスは、欠陥に対して耐性が
なくてその結果靭性が低いため、構造用途における重要
な形状のものに対する候補とならない。
The data shown by curve 1 is the test results for a sample prepared as described above from the mixture of Example 1 above.
However, in this case, the slurry was not dispersed around the reinforcing fibers. The material of Curve 1 is a monotonous matrix of ceramic particles, ceramic precursor and epoxy binder, having low strength and rapidly brittle fracture. Monotonous ceramics of this type are not candidates for important shapes in structural applications because they are not resistant to defects and consequently have low toughness.

第1図の曲線2で表わされているデータは、曲線1の
データをとるのに使用した試片と同じ混合物から作成し
たサイズと形状が同じ試片の試験で得られたものであ
る。しかし、この場合混合物は部材に対して約30容量%
の量で、住友(Sumitomo)のヤーン製強化用繊維織物上
に撒き散らして分散させた。曲線2で示す物質は、曲線
1のものと同じ単調なマトリックス材料が繊維強化材の
間および回りに配合されているセラミック複合材であ
る。この物質は負荷が高強度の繊維に移されるため強度
が高く、都合のよい破壊様相と靭性を示す。このような
複合材挙動により、それから作成した部品は破壊が発生
した後にも長い寿命を示すことが可能である。
The data represented by curve 2 in FIG. 1 was obtained by testing specimens of the same size and shape made from the same mixture as the specimen used to obtain the data of curve 1. However, in this case the mixture is about 30% by volume
And dispersed on a reinforcing fiber fabric made of Sumitomo yarn. The material shown by curve 2 is a ceramic composite in which the same monotonous matrix material as in curve 1 is compounded between and around the fiber reinforcement. This material has high strength as the load is transferred to high strength fibers and exhibits favorable fracture features and toughness. Such composite behavior allows parts made therefrom to exhibit long life even after failure has occurred.

第1図から明らかなように、曲線2の強化されたセラ
ミックマトリックス複合部材は強度と靭性が曲線1の部
材よりかなり高い。
As can be seen from FIG. 1, the reinforced ceramic matrix composite of Curve 2 has significantly higher strength and toughness than the member of Curve 1.

第1図には、比較のために、Al2O3のマトリックス中
にサファイア強化用繊維を使用し、およそ1450〜1500℃
(表IIで特定した繊維の使用可能温度範囲をずっと上回
っている)で焼結した部材を示す曲線3も挙げてある。
アルミノケイ酸塩55容量%とサファイア繊維45容量%の
このような複合材中には前駆体をまったく入れなかっ
た。このため、この混合物は、本発明の方法で使用した
加工温度(一般におよそ600〜1000℃)よりかなり高い
焼結圧密化温度を使用する必要があった。曲線3の物質
は靭性挙動をもつ曲線2の物質より強度が高い。このよ
うな改良された特性は、強度がより高い強化用繊維を熱
的に適合性のあるマトリックスと共に使用して、負荷を
マトリックスから繊維に有効に移すことを可能にした結
果である。
FIG. 1 shows, for comparison, sapphire reinforcing fibers in an Al 2 O 3 matrix at approximately 1450-1500 ° C.
Curve 3 is also shown, which shows a sintered part (much above the usable temperature range of the fibers identified in Table II).
No precursor was included in such a composite with 55% by volume aluminosilicate and 45% by volume sapphire fibers. This required the mixture to use a sinter consolidation temperature that was significantly higher than the processing temperature used in the process of the present invention (typically around 600-1000 ° C). The material of curve 3 is stronger than the material of curve 2 with toughness behavior. Such improved properties are the result of using higher strength reinforcing fibers with a thermally compatible matrix to allow effective transfer of load from the matrix to the fibers.

本発明を代表する曲線2と異なる方法で作成した部材
を代表する曲線3とを比較すると分かるように、本発明
は極めて高い温度で圧密化する工程をとることなく高い
強度と靭性をもつ強化されたセラミック複合材を提供す
る。これは、本発明においてセラミック前駆体を使用し
た結果であり、このようなセラミック前駆体は低めの温
度で分解して、セラミック粒子と強化用繊維とを複合部
材中に共に結合するセラミック相となるのである。
As can be seen by comparing Curve 2 representing the present invention with Curve 3 representing a member made in a different manner, the present invention provides enhanced strength and toughness without the need for consolidation at extremely high temperatures. Provide a ceramic composite material. This is the result of the use of ceramic precursors in the present invention, such ceramic precursors decompose at lower temperatures into a ceramic phase that bonds the ceramic particles and reinforcing fibers together in the composite member. It is.

本発明に従って作成することができる部材の典型例
は、ガスタービンエンジンの高温部に有用な翼形のスト
ラットである。このようなストラットの一例を第2図の
部分断面透視図に示す。一般に10で示したストラットは
前縁14と後縁16を有するストラット本体12を含んでい
る。ストラット10は、リブ20によって分離された複数個
のキャビティー18が存在するため中空ストラットといわ
れることがある。
A typical example of a component that can be made in accordance with the present invention is an airfoil strut useful in the hot section of a gas turbine engine. An example of such a strut is shown in a partially sectional perspective view in FIG. The strut, generally indicated at 10, includes a strut body 12 having a leading edge 14 and a trailing edge 16. Struts 10 are sometimes referred to as hollow struts due to the presence of a plurality of cavities 18 separated by ribs 20.

ストラット10は上記のようにして作成したラミネーシ
ョン、シート、テープなどのような複数個の層から作成
することができる。第3図の部分断面図はそのような層
の配置を概略的に示す代表例である。この層はアルミニ
ウムなどのようなフォーミングブロック24の回りに22と
して示されている。この図は、最終製品のストラットの
形状に関連して最初に形成された第2図のストラットの
一部のプリフォーム形状を示している。実際には、この
部材の各層は業界で周知のように繊維と形態に応じた厚
みをもっている。たとえば、典型的な厚みは約0.008〜
0.020インチの範囲である。しかし、業界でよく知られ
ているように、このような積層構造体を得るのに現実に
必要な層の数は第3図に簡略化して示したものより多く
なるであろう。ボイドを減少させるために、ブロック24
の縁の曲線領域の層間に生じ得る空間内部に層間に追加
の個別繊維25が分配されている。
The struts 10 can be made from a plurality of layers such as laminations, sheets, tapes, etc. made as described above. The partial cross-sectional view of FIG. 3 is a representative example schematically showing the arrangement of such layers. This layer is shown as 22 around a forming block 24, such as aluminum. This figure shows the preform shape of a portion of the strut of FIG. 2 initially formed in relation to the shape of the strut of the final product. In practice, each layer of the member will have a thickness depending on the fiber and configuration, as is well known in the art. For example, a typical thickness is about 0.008-
It is in the range of 0.020 inches. However, as is well known in the art, the number of layers actually required to obtain such a laminated structure will be greater than that simplified in FIG. Block 24 to reduce voids
Additional individual fibers 25 are distributed between the layers within the space that can occur between the layers of the curved region of the edge.

フォーミングブロック24の回りで組立てて第3図の部
材を形成した後このアセンブリを、部材を積層して物品
のプリフォームを作成するために、第4図に示した適切
な形状の噛合せフォーミングダイ26Aおよび26Bの中に入
れる。通常、適切な積層が起こるのに適した時間の間、
矢印28で表わした約150〜1000ポンド/平方インチの範
囲の圧力を部材にかけながら、たとえば150〜400゜Fの
範囲に部材を加熱する。このような温度はこれらの構築
材料の圧密化を起こすようなことはない。
After assembling around the forming block 24 to form the component of FIG. 3, the assembly is assembled into a suitably shaped mating forming die shown in FIG. 4 to laminate the components to form a preform of the article. Put in 26A and 26B. Usually, during the appropriate time for proper lamination to occur
The member is heated, for example, to a temperature in the range of 150-400 ° F. while applying a pressure in the range of approximately 150-1000 pounds per square inch as represented by arrow 28. Such temperatures do not cause compaction of these building materials.

積層後得られたプリフォームをフォーミングダイから
取出し、フォーミングブロックを除く。次にこのプリフ
ォームを炉に入れ、調節しながら1000℃未満の温度に加
熱して結合材と可塑剤を除去した後、1000℃以上のよう
な繊維の劣化が起こらない加工温度に加熱してプリフォ
ームを焼結して第2図の実質的に緻密なセラミックマト
リックス複合物品にする。
The preform obtained after lamination is removed from the forming die, and the forming block is removed. Next, put this preform in a furnace, heat it to a temperature below 1000 ° C while adjusting to remove the binder and plasticizer, and then heat it to a processing temperature such as 1000 ° C or more where fiber deterioration does not occur. The preform is sintered into the substantially dense ceramic matrix composite article of FIG.

本出願と同時に出願された相互に関連する1989年米国
特許出願第341,001号(その開示内容はここで援用した
ことにより本明細書中に含まれているものとする)は、
圧密化されたセラミック粒子の収縮およびその結果の気
孔の問題に関するものである。その関連出願の発明によ
ると、このような収縮は、圧密化の前にセラミック粒子
を無機質充填材粒子と混合することによって打消され
る。そのような充填材は圧密化温度に加熱される間セラ
ミック粒子に対して正味の膨張を示す。その発明の評価
時に試験されたのは、次の表IIIで特定するラスタイプ
の結晶形の無機充填材である。
A co-pending US Patent Application No. 341,001 1989 filed concurrently with the present application, the disclosure of which is incorporated herein by reference,
It concerns shrinkage of the compacted ceramic particles and the resulting pores. According to the invention of the related application, such shrinkage is counteracted by mixing the ceramic particles with the inorganic filler particles prior to consolidation. Such fillers exhibit a net expansion for the ceramic particles while being heated to the consolidation temperature. At the time of evaluation of the invention, the lath-type crystalline inorganic filler specified in Table III below was tested.

上記のような充填材は、本発明のひとつの態様におい
て、加工温度に加熱する間に生じた気孔を打消すために
使用することができる。この充填材の上記混合物中の割
合は、この充填材の膨張により、発生した気孔が打消さ
れるように選択される。
Fillers as described above can be used, in one aspect of the invention, to counteract pores created during heating to the processing temperature. The proportion of the filler in the mixture is selected such that the expansion of the filler cancels the generated pores.

セラミック粒子と前駆体を含みそして場合により結合
材を含む本発明のマトリックス混合物中に上記関連出願
の無機充填材を含ませる場合、そのような充填材はセラ
ミックス、前駆体、場合により使用する結合材、および
充填材の合計のたとえば約50重量%までの量で含ませる
ことができる。この割合は、充填材の膨張により気孔が
相殺されるように選択される。そのような気孔はセラミ
ック粒子の収縮の結果生じる可能性があるが、すでに述
べたように、酸化性雰囲気中で本発明のプリフォームを
加熱する間材料の変換または容積変化が主たる原因とな
って低めの加工温度で起こる。典型的な場合、セラミッ
ク粒子と充填材からなる気孔調節用混合物はセラミック
粒子が50〜93重量%で無機充填材が7〜50重量%であ
り、その気孔調節用混合物は粒子、前駆体および場合に
より存在する結合材からなるマトリックス混合物の40重
量%より大きくて約90重量%までである。無機充填材と
して好ましいのは、上の表IIIに示したラスタイプの結
晶形を有するものである。特に、パイロフィライトとウ
ォラストナイトは充填材として特に有用であることが判
明している。また、上記関連出願の開示に含まれている
ように、マトリックス混合物に対して膨張する強化用繊
維は周囲温度でのプリフォームの加工性を高める。
When including the inorganic filler of the related application in the matrix mixture of the present invention comprising ceramic particles and a precursor and optionally including a binder, such a filler comprises a ceramic, a precursor, and optionally a binder. , And fillers, for example, up to about 50% by weight. The proportion is chosen such that the pores are offset by the expansion of the filler. Such porosity can result from the shrinkage of the ceramic particles, but, as already mentioned, is primarily due to material conversion or volume change during heating of the preform of the present invention in an oxidizing atmosphere. Occurs at lower processing temperatures. Typically, the pore control mixture of ceramic particles and filler is 50-93% by weight of ceramic particles and 7-50% by weight of inorganic filler, the pore control mixture comprising particles, precursor and case. From about 40% to about 90% by weight of the matrix mixture consisting of the binder present. Preferred as inorganic fillers are those having the lath-type crystal form shown in Table III above. In particular, pyrophyllite and wollastonite have been found to be particularly useful as fillers. Also, as included in the disclosure of the related application above, reinforcing fibers that expand against the matrix mixture enhance the processability of the preform at ambient temperature.

以上、非限定的ではあるが代表的な実施例と具体例お
よび関連するデータに関して本発明を説明して来た。し
かし、当業者には容易に分かるように、本発明には添付
の特許請求の範囲内のさまざまな修正と変形が可能であ
る。
The invention has been described with reference to non-limiting exemplary embodiments and examples and associated data. However, it will be readily apparent to one skilled in the art that the present invention is capable of various modifications and variations within the scope of the appended claims.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、非強化マトリックス、別の強化マトリック
ス、そして本発明の複合強化部材に対する破壊耐性デー
タを比較して示すグラフである。 第2図は、ガスタービンエンジンストラットの一部の部
分断面透視図である。 第3図は、フォーミングブロックの回りに配置されたセ
ラミックマトリックス複合材の層の部分概略断面図であ
る。 第4図は、フォーミングダイ内に配置された第3図の部
材の部分断面透視図である。 10……翼形ストラット、22……個々の層、24……フォー
ミングブロック、26……フォーミングダイ。
FIG. 1 is a graph showing a comparison of the fracture resistance data for an unreinforced matrix, another reinforced matrix, and a composite reinforced member of the present invention. FIG. 2 is a partial sectional perspective view of a part of the gas turbine engine strut. FIG. 3 is a partial schematic cross-sectional view of a ceramic matrix composite layer disposed around a forming block. FIG. 4 is a partial cross-sectional perspective view of the member of FIG. 3 disposed within a forming die. 10 ... airfoil struts, 22 ... individual layers, 24 ... forming blocks, 26 ... forming dies.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−197472(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/80 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-197472 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/80

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】加熱によりセラミック相に変化するセラミ
ックマトリックス前駆体、この前駆体と相溶性のある液
体、および、セラミック粒子からなる不連続材料を準備
し、 前記のセラミックマトリックス前駆体、液体および不連
続材料を一緒に混合して、セラミック粒子と前駆体が実
質的に均一に分布しているマトリックス混合物スラリー
とし、 酸化に対して安定な複数の強化用繊維を用意し、マトリ
ックス混合物スラリーを繊維の回りに撒き散らしてプリ
プレグプリフォームとし、 このプリフォームを酸化性雰囲気中で、前記前駆体をセ
ラミック相に変化させるのに必要な温度以上であるがプ
リフォーム中のセラミックスの劣化を引き起こす温度よ
りは低い加工温度に加熱することによりセラミックマト
リックス前駆体を変化させて、前記スラリーからのセラ
ミック粒子を繊維を回りのセラミックマトリックス中で
結合させるセラミック相に変化させると共に、環境に対
して安定であり高強度で破壊耐性が高い繊維強化セラミ
ックマトリックス複合部材を得ることからなる、繊維強
化セラミックマトリックス複合部材の製造方法。
1. A ceramic matrix precursor which changes into a ceramic phase by heating, a liquid compatible with the precursor, and a discontinuous material comprising ceramic particles are prepared. The continuous material is mixed together to form a matrix mixture slurry in which the ceramic particles and precursors are substantially uniformly distributed, providing a plurality of oxidatively stable reinforcing fibers, and combining the matrix mixture slurry with the fibers. A prepreg preform is scattered around the preform, and in an oxidizing atmosphere, the temperature of the preform is higher than a temperature required to change the precursor into a ceramic phase, but is lower than a temperature that causes deterioration of ceramics in the preform. The ceramic matrix precursor is changed by heating to a lower processing temperature, A fiber comprising changing ceramic particles from a slurry into a ceramic phase that binds the fibers in a surrounding ceramic matrix, and obtaining a fiber-reinforced ceramic matrix composite member that is environmentally stable, has high strength, and has high fracture resistance. A method for producing a reinforced ceramic matrix composite member.
【請求項2】マトリックス混合物スラリーが、 (a)セラミック粒子とセラミック前駆体の合計の40重
量%より多くて約90重量%までの範囲のセラミック粒
子、および (b)前記合計の約10〜40重量%の範囲のセラミック前
駆体からなり、強化用繊維が当該複合部材の約10〜50容
量%である、請求項1記載の方法。
2. A matrix mixture slurry comprising: (a) ceramic particles ranging from more than 40% to about 90% by weight of the total of ceramic particles and ceramic precursor; and (b) about 10 to 40 of said total. The method of claim 1, comprising a range of weight percent of the ceramic precursor, wherein the reinforcing fibers are about 10-50% by volume of the composite member.
【請求項3】強化用繊維がセラミック繊維である、請求
項2記載の方法。
3. The method according to claim 2, wherein the reinforcing fibers are ceramic fibers.
【請求項4】約600〜1000℃の範囲の加工温度の空気中
でプリプレグプリフォームを加熱する、請求項2記載の
方法。
4. The method of claim 2 wherein the prepreg preform is heated in air at a processing temperature in the range of about 600-1000 ° C.
【請求項5】結合材を用意し、セラミック粒子、セラミ
ック前駆体および結合材の合計の約20重量%までの範囲
でスラリー中に含ませる、請求項2記載の方法。
5. The method of claim 2, wherein a binder is provided and included in the slurry up to about 20% by weight of the total of the ceramic particles, ceramic precursor and binder.
【請求項6】マトリックス混合物スラリーが、セラミッ
ク粒子、セラミック前駆体および結合材を全体で70〜80
重量%(このうちセラミック粒子が全体の50〜80重量
%、セラミック前駆体が全体の10〜30重量%、結合材が
全体の1〜20重量%)、および有機液体として液体を20
〜30重量%含む、請求項5記載の方法。
6. The slurry of the matrix mixture comprising the ceramic particles, the ceramic precursor and the binder in a total of 70-80.
% By weight (including 50 to 80% by weight of the ceramic particles, 10 to 30% by weight of the ceramic precursor, and 1 to 20% by weight of the binder), and 20% by weight of the liquid as an organic liquid.
The method of claim 5 comprising about 30% by weight.
【請求項7】セラミック前駆体が有機金属化合物、ゾル
ゲル、金属塩およびこれらの混合物より成る群の中から
選択された材料であり、セラミック粒子がAl、Si、Ca、
Hf、B、Ti、Hf、YおよびZrの酸化物ならびにこれらの
混合物および組合せより成る群の中から選択された物質
を含んでいる、請求項2記載の方法。
7. The ceramic precursor is a material selected from the group consisting of organometallic compounds, sol-gels, metal salts and mixtures thereof, wherein the ceramic particles are Al, Si, Ca,
3. The method according to claim 2, comprising a material selected from the group consisting of oxides of Hf, B, Ti, Hf, Y and Zr and mixtures and combinations thereof.
【請求項8】複数の繊維がひとつの層の形態になってお
り、マトリックス混合物をこの層中の繊維の回りに撒き
散らしてプリプレグ層を得る、請求項1記載の方法。
8. The method of claim 1 wherein the plurality of fibers are in the form of a layer and the matrix mixture is scattered around the fibers in the layer to obtain a prepreg layer.
【請求項9】加熱の前に複数のプリプレグ層を積層して
プリプレグプリフォームにする、請求項8記載の方法。
9. The method of claim 8, wherein a plurality of prepreg layers are laminated into a prepreg preform prior to heating.
【請求項10】より密度の高い複合部材を作成するため
に、酸化性雰囲気中でプリフォームを加熱してセラミッ
クマトリックス前駆体をセラミック相に変化させた後、
当該部材中の開放構造に溶浸するセラミック溶浸材前駆
体に複合部材を接触させ、その後溶浸された部材を酸化
性雰囲気中で加熱して溶浸したセラミック溶浸材前駆体
をセラミック相に変化させる、請求項1記載の方法。
10. A method of manufacturing a composite member having a higher density, comprising: heating a preform in an oxidizing atmosphere to convert a ceramic matrix precursor into a ceramic phase;
The composite member is brought into contact with a ceramic infiltrant precursor that infiltrates the open structure in the member, and then the infiltrated member is heated in an oxidizing atmosphere to infiltrate the ceramic infiltrant precursor into a ceramic phase. 2. The method according to claim 1, wherein
【請求項11】マトリックス混合物スラリーが、セラミ
ック粒子に加えて、加工温度に加熱された時セラミック
粒子に対して正味の膨張を示す粒子状無機充填材も含ん
でおり、マトリックス混合物中の無機充填材の割合を、
この充填材の膨張によって、加工温度に加熱される間に
プリフォーム中に生ずる気孔が打消されるように選択す
る、請求項1記載の方法。
11. The matrix mixture slurry also includes, in addition to the ceramic particles, a particulate inorganic filler that exhibits a net expansion to the ceramic particles when heated to the processing temperature, wherein the inorganic filler in the matrix mixture is Of the
2. The method of claim 1, wherein the expansion of the filler is selected to counteract the porosity created in the preform while being heated to the processing temperature.
【請求項12】マトリックス混合物スラリーが結合材を
含んでおり、(a)セラミック粒子、セラミック前駆
体、無機結合材および充填材の合計の40重量%より多く
て約90重量%までの範囲のセラミック粒子、(b)前記
合計の約10〜40重量%の範囲のセラミック前駆体、
(c)前記合計の約20重量%までの範囲の結合材、およ
び(d)前記合計の約50重量%までの範囲の無機充填材
からなる、請求項11記載の方法。
12. The matrix mixture slurry comprising a binder, wherein (a) the ceramic ranges from greater than 40% to about 90% by weight of the total of the ceramic particles, ceramic precursor, inorganic binder and filler. Particles, (b) a ceramic precursor in the range of about 10-40% by weight of the total;
12. The method of claim 11, comprising: (c) a binder in the range of up to about 20% by weight of the total; and (d) an inorganic filler in the range of up to about 50% by weight of the total.
【請求項13】(a)セラミック粒子が前記合計の約50
〜80重量%の範囲であり、(b)セラミック前駆体が前
記合計の約10〜30重量%の範囲であり、(c)結合材が
前記合計の約1〜20重量%の範囲であり、かつ(d)無
機充填材が前記合計の約7〜50重量%の範囲である、請
求項12記載の方法。
13. The method according to claim 13, wherein (a) the ceramic particles have a total of about 50
(B) the ceramic precursor is in the range of about 10-30% by weight of the total, (c) the binder is in the range of about 1-20% by weight of the total, 13. The method of claim 12, wherein (d) the inorganic filler ranges from about 7 to 50% by weight of the total.
JP2093258A 1989-04-14 1990-04-10 Fiber reinforced ceramic matrix composite member and method of manufacturing the same Expired - Fee Related JP2991738B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US34100089A 1989-04-14 1989-04-14
US341,000 1989-04-17

Publications (2)

Publication Number Publication Date
JPH0365570A JPH0365570A (en) 1991-03-20
JP2991738B2 true JP2991738B2 (en) 1999-12-20

Family

ID=23335847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093258A Expired - Fee Related JP2991738B2 (en) 1989-04-14 1990-04-10 Fiber reinforced ceramic matrix composite member and method of manufacturing the same

Country Status (6)

Country Link
JP (1) JP2991738B2 (en)
CA (1) CA2012240C (en)
DE (1) DE4012229A1 (en)
FR (1) FR2645853B1 (en)
GB (1) GB2230259B (en)
IT (1) IT1241114B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5635250A (en) * 1985-04-26 1997-06-03 Sri International Hydridosiloxanes as precursors to ceramic products
US5488017A (en) * 1989-04-14 1996-01-30 General Electric Company Fibert reinforced ceramic matrix composite member
DE4102909A1 (en) * 1991-01-31 1992-08-06 Man Technologie Gmbh WORKPIECES MADE OF FIBER REINFORCED CERAMIC
DE4123677A1 (en) * 1991-07-17 1993-01-21 Vaw Ver Aluminium Werke Ag FIBER MOLDED BODY AND METHOD FOR THE PRODUCTION THEREOF AND USE OF THE MOLDED BODY FOR THE PRODUCTION OF FIBER REINFORCED ALUMINUM CASTING PARTS
US5856252A (en) * 1995-06-07 1999-01-05 The Regents Of The University Of California Damage tolerant ceramic matrix composites by a precursor infiltration
DE19712808B4 (en) * 1996-03-26 2009-06-18 Mazda Motor Corp. Aluminum or aluminum alloy composite components in combination with preform structures
US5849375A (en) * 1996-07-17 1998-12-15 Minnesota Mining & Manufacturing Company Candle filter
US5780126A (en) * 1996-07-17 1998-07-14 Minnesota Mining & Manufacturing Filter material
DE10314271A1 (en) * 2003-03-29 2004-10-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Creep and thermal shock resistant fiber composite
US9410437B2 (en) * 2012-08-14 2016-08-09 General Electric Company Airfoil components containing ceramic-based materials and processes therefor
JP6276837B2 (en) * 2013-03-15 2018-02-07 ゼネラル・エレクトリック・カンパニイ Slurries for composite materials
US10563522B2 (en) 2014-09-22 2020-02-18 Rolls-Royce North American Technologies Inc. Composite airfoil for a gas turbine engine
JP6717871B2 (en) * 2018-03-14 2020-07-08 三菱重工業株式会社 Method for manufacturing turbine blade member

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA930261A (en) * 1970-05-11 1973-07-17 Union Carbide Corporation Ceramic coated articles
US4247249A (en) * 1978-09-22 1981-01-27 General Electric Company Turbine engine shroud
DE3163869D1 (en) * 1980-07-11 1984-07-05 Ici Plc Fibrous composite materials and the production and use thereof
FR2514752A1 (en) * 1981-10-20 1983-04-22 Onera (Off Nat Aerospatiale) CERAMIZED COMPOSITE MATERIALS WITH HIGH MECHANICAL AND THERMAL RESISTANCE AND THEIR PREPARATION
FR2547577B1 (en) * 1983-06-20 1989-12-15 Aerospatiale COMPOSITE REFRACTORY MATERIAL REINFORCED WITH REFRACTORY FIBERS AND MANUFACTURING METHOD THEREOF
US4737192A (en) * 1983-10-17 1988-04-12 Manville Service Corporation Refractory binder, method for making same, and product produced thereby
JPS61197472A (en) * 1985-02-27 1986-09-01 工業技術院長 Manufacture of sic continuous fiber reinforced sic compositebody
GB2175893A (en) * 1985-04-02 1986-12-10 Ae Plc Fibre-reinforced ceramic materials
JPH0822782B2 (en) * 1987-05-22 1996-03-06 石川島播磨重工業株式会社 Method for producing fiber-reinforced ceramics
DE3840781A1 (en) * 1988-12-03 1990-06-07 Hoechst Ag FIBER COMPOSITE CERAMICS AND METHOD FOR THEIR PRODUCTION
US4983422A (en) * 1988-03-11 1991-01-08 Kaiser Aerotech Process for forming aluminum oxide ceramic composites
JPH0288452A (en) * 1988-09-26 1990-03-28 Nichias Corp Heat-resistant inorganic compact
FR2641776B1 (en) * 1989-01-13 1993-03-26 Europ Propulsion COMPOSITE MATERIAL WITH MULTIPLE INTERPHASES BETWEEN REFRACTORY REINFORCEMENT FIBERS AND CERAMIC MATRIX

Also Published As

Publication number Publication date
GB2230259B (en) 1993-11-17
GB9001418D0 (en) 1990-03-21
DE4012229A1 (en) 1990-10-18
CA2012240A1 (en) 1990-10-17
IT9020023A1 (en) 1991-10-12
FR2645853B1 (en) 1994-06-10
JPH0365570A (en) 1991-03-20
IT9020023A0 (en) 1990-04-12
FR2645853A1 (en) 1990-10-19
GB2230259A (en) 1990-10-17
IT1241114B (en) 1993-12-29
CA2012240C (en) 2004-07-06

Similar Documents

Publication Publication Date Title
US5488017A (en) Fibert reinforced ceramic matrix composite member
JP2950902B2 (en) Consolidated member, method of manufacturing the same, and preform
JP2991738B2 (en) Fiber reinforced ceramic matrix composite member and method of manufacturing the same
US8357258B2 (en) Thermal insulation assemblies and methods for fabricating the same
US8043720B2 (en) Process of producing a ceramic matrix composite article and article formed thereby
US6969546B2 (en) Thermal insulation system employing oxide ceramic matrix composites
US6309994B1 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
EP1880984B1 (en) Oxide-based ceramic matrix composites
US6977060B1 (en) Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes
EP1740515A1 (en) Method for increasing the strength of porous ceramic bodies and bodies made therefrom
US20130157037A1 (en) Slurry composition, prepreg tape, and process for producing composites
US20060280940A1 (en) Ceramic fiber composite material
EP0417493A2 (en) Fiber reinforced composite having an aluminum phosphate bonded matrix
JP4507138B2 (en) Method for changing dielectric properties of ceramic matrix composites
US20220242796A1 (en) Surface treatments for ceramic coated/impregnated materials
WO2002085618A1 (en) Damage tolerant cmc using sol-gel matrix slurry
US20050136767A1 (en) Advanced anisotropic ceramic matrix composite system
US6624105B2 (en) Oxide ceramic fiber/oxide ceramic composite material and process for production thereof
JPH0640764A (en) Production of composite body
Heidenreich et al. Net Shape Manufacturing of Fabric Reinford Oxide/Oxide Components Via Resin Transfer Moulding and Pyrolysis
JPH05238814A (en) Production of composite product
JPH09202668A (en) Ceramic-based composite material of ceramic continuous filament and its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees