JPH0365138B2 - - Google Patents

Info

Publication number
JPH0365138B2
JPH0365138B2 JP60027925A JP2792585A JPH0365138B2 JP H0365138 B2 JPH0365138 B2 JP H0365138B2 JP 60027925 A JP60027925 A JP 60027925A JP 2792585 A JP2792585 A JP 2792585A JP H0365138 B2 JPH0365138 B2 JP H0365138B2
Authority
JP
Japan
Prior art keywords
fraction
soybean protein
soybean
protein
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60027925A
Other languages
Japanese (ja)
Other versions
JPS61187755A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2792585A priority Critical patent/JPS61187755A/en
Priority to BE0/216265A priority patent/BE904225A/en
Priority to CN86100959A priority patent/CN1008684B/en
Publication of JPS61187755A publication Critical patent/JPS61187755A/en
Priority to US07/063,748 priority patent/US4771126A/en
Publication of JPH0365138B2 publication Critical patent/JPH0365138B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は大豆蛋白成分の分画・製造法を提供す
るものである。 (従来技術) 従来から、大豆蛋白原料を水系下に抽出・分離
(水溶性画分と不溶性画分=通称オカラ)し、水
溶性画分を等電沈澱(PH4〜5、通常PH4.2〜
4.6)させて得られる沈澱画分を中和し乾燥等し
て大豆蛋白を分離する所謂大豆蛋白の製造が行わ
れている。 ところで、大豆蛋白は高分子の複雑な高次構造
を有する各種の蛋白から構成され、例えば、大豆
蛋白を超遠心により沈降恒数の差で分画する方法
では、所謂2S、7S、11S、15S等の蛋白に分けら
れ、これらの蛋白は物性においても異なる特徴を
有している。また各々の蛋白はそれぞれ幾つかの
サブユニツトからなり、例えば7S蛋白は3個の
サブユニツト、11S蛋白は12個のサブユニツトか
らなる。これらの蛋白、サブユニツトは環境(イ
オン強度、PH、温度、濃度等)の変化により種々
変化(高次構造変化、サブユニツト間の相互作用
等)したものが得られ、その性質も違つたものに
なつてくることについて多くの研究報告がある。 これらの事実を利用して、多くの大豆蛋白の分
画法が試みられている。そして、これら多くの分
画法における僅かの違い(イオン強度、PH、ある
種の塩の存在、濃度、温度、操作手順の相違
等々)は分画・単離された大豆蛋白の物性、機
能、化学的性質等を相当に変化させている。それ
は前述した7S、11S等の蛋白の組成比ばかりでな
く高次構造の変化、蛋白間、サブユニツト間の相
互作用等と相挨つて生ずるものである。 従来から知られている大豆蛋白の分離(分画)
法の例示は以下のようである。即ち、例えば、斉
尾等は稀カルシウル塩を用いて11S成分と7S成分
を分画している(特願昭46−90289)。超山等は、
PH1.2〜4.0の塩化ナトリウムまたは塩化カリウム
存在下で不溶性区分を除去して7S蛋白を製造し
たり(特願昭47−72606)、PH5.40〜5.85で抽出後
PH4.5で等電沈澱させて7S蛋白を製造している
(特願昭54−31168)。シマー等は、PH約5.1〜5.9
で水抽出して熱凝固性粘性蛋白を製造している
(特願昭50−150762)。真島等は、PH6.0〜7.0の第
1段分画、PH5.0〜5.6の第2段分画、PH4.0〜4.8
の第3段分画により第2段と第3段分画蛋白を
個々に分離して蛋白を製造している(特願昭54−
60899)。オシル等は、水性抽出剤で抽出しPH約
6.5の抽出液を生成し、等電点に調節し、約115〜
145度F加熱かつ44%以上に濃縮している(特願
昭55−121275)。オーソエフアー等は植物蛋白質
含有スラリーから亜硫酸イオン存在下でPH6.5〜
8.0で水溶性成分を抽出・乾燥して単離物を得て
いる(特願昭56−216003)。レーンハート等は、
等電沈澱したスラリーをPH5.0〜5.6に調整し且つ
塩濃度を0.01〜0.2Mのモル濃度に調整して7S、
11S画分を分離している(特願昭57−139105)。 実験室的には、エルドウリツジ等、ブリツグ
等、ウオルフ等、タン等により大豆蛋白の分画法
が研究・報告されている。 例えば、タン等は脱脂大豆からトリス−塩酸緩
衝液(PH7.8、β−メルカプトエタノールを含む)
で抽出後10000rpmで不溶性画分を遠心分離除去
した抽出液をPH6.6に調整し透析後10000rpmで粗
11S画分と粗7S画分に遠心分離し、粗7S画分を等
電沈澱・水洗・凍結乾燥して7Sグロブリンを分
画している。山内等も同様の方法で分離した粗
11S画分を水洗・中和・緩衝液に溶解して11Sグ
ロブリンを研究している。 しかし、これらの方法はやはり実験室的方法の
域を免れず実際工業化する為には以下に述べる
数々の問題点を有している。 (発明が解決しようとする問題点) 本発明者等は工業的に実用可能な大豆蛋白の分
画・製造を目的として従来技術の追試検討改良工
夫等を試みるなかで単にトリス塩酸緩衝液を鉱
酸等に代えてPH調節しただけでは粗11S画分と粗
7S画分の抽出・分等が出来ない、トリス塩酸
緩衝液とかβ−メルカプトエタノール等の試薬は
食品工業的に利用することができない、特にβ
−メルカプトエタノールは強い不快臭気を有し風
味的に到底食品に用いることはできない、不溶
性画分を遠心分離除去した抽出液をPH6.6に調整
した液は極めて粘稠で粗11S画分と粗7S画分の分
離が工業的な低い遠心力による連続式遠心分離法
(例えばデカンター等)では沈澱スラリーと溶液
部とを中々うまく分離できない、等の問題点に遭
遇した。 そこで、鋭意研究の結果、大豆蛋白原料を亜
硫酸化合物、グルタチオン化合物、又はシステイ
ン化合物を用いPH6.5以上の水系下で処理するこ
と、及び大豆蛋白原料をその後PH5.5〜7.0且つ
20℃以下の範囲に移行することにより、可溶性画
分と不溶性画分に分画することが重要であつて、
風味的にも優れた互いに異なる性質を有する大豆
蛋白を分画・製造できること、及び、特に大豆蛋
白が大豆多糖類を含有するものであるときは、従
来使用が困難であつた工業的な連続遠心分離機
(例えばデカンター等)を使用して実用的な分離
が極めて容易であること等を見出し、この本発明
を完成するに到つた。 (問題を解決する為の手段) 本発明は、大豆蛋白原料を、亜硫酸化合物、グ
ルタチオン化合物、又はシステイン化合物の存在
下且つPH6.5以上の水系下で処理し、PH5.5〜7.0且
つ20℃以下の範囲に移行して可溶性画分(以下
S1画分と称する)と不溶性画分(以下P1画分と
称する)に分画することを骨子とする大豆蛋白の
製造法である。 本発明に用いる大豆蛋白原料は、大豆、脱脂大
豆、豆乳(乾燥粉末も含む)、濃縮大豆蛋白、分
離大豆蛋白等大豆蛋白を含む原料であれば全て用
いることができる。好ましくは大豆、脱脂大豆、
濃縮大豆蛋白等のように大豆蛋白と不溶性多糖類
を併せ持つた大豆蛋白原料のほうがS1画分とP1
画分の分離がより容易になり適当である。 本発明にいう亜硫酸イオン化合物とは水系下で
亜硫酸イオンを生じるものをいい、例えば、亜硫
酸のアルカリ金属(亜硫酸、重亜硫酸、ピロ亜硫
酸、メタ重亜硫酸、のカリウム又はナトリウム)
塩、その他の水溶性塩及びカチオン(例えばアン
モニウム、それらの混合物)塩、亜硫酸ガスを挙
げることができる。亜硫酸化合物は、大豆蛋白原
料の蛋白含量にもよるが、大豆蛋白原料に対し
0.5重量%以上、好ましくは1.0重量%以上が適当
である、0.5重量%未満ではS1画分の純度、換言
すればS1画分の蛋白の特異性、が低下して好ま
しくない。 本発明にいうグルタチオン化合物、又はシステ
イン化合物とは、グルタチオン、システイン又は
これらの塩、例えば塩酸塩等であつて、通常大豆
蛋白原料に対し5m mole以上、好ましくは10
m mole以上用いられるが、メルカプトエタノ
ールのような強い臭気を示さない等、得られる各
画分は風味的にも衛生的にも良好である。 上記化合物の存在下において一旦PHは6.5以上、
好ましくはPHを7.1〜9、更に好ましくは7.5〜8.5
の水系で大豆蛋白原料を処理する。PH6.5未満で
は上記化合物の効果がないばかりか、S1画分の
収率が低下し好ましくない。またPHが9を越える
とアルカリによる特有の臭が生じることがある。
水系での処理は、大豆蛋白原料から蛋白質を溶
解・抽出させる公知の混合・撹拌装置を用いるこ
とができる。水性溶媒の量は多い程蛋白質の溶
解・抽出は容易であるけれども、多すぎると、
P1画分の分離が悪くなりP1画分中の蛋白質がS1
画分に混入する傾向にあるので、大豆蛋白原料に
対し30倍以下が適当である。 水性溶媒を含む大豆蛋白原料は、次いで、PH
5.5〜7.0(好ましくはPH6.0〜6.9)且つ20℃以下の
範囲に移行することが重要であり、この状態で生
じる沈澱画分(P1画分)とそうでない画分(S1
画分)に分離するのである。即ちPH5.5未満では
S1画分の収率が低く、逆にPHが7.0を越えるとS1
画分の純度が低下したりその粘度が上昇したりし
て工業上好ましくない。温度も20℃より高いと、
S1画分とP1画分の分離が悪くなりS1画分の純度
が低下する。但し、温度は水性溶媒を含む大豆蛋
白原料が凍結しない程度であり、凍結状態では分
離性は低下する。 分離の手段は、公知の分離手段(濾別、遠心分
離等)を用いることができ、特に連続式遠心分離
機(例えばデカンター)等を用いても容易に連続
的にP1画分とS1画分とに分離することができる。
勿論バツチ式等の非連続式遠心分離機の使用を妨
げるものではない。 上記のように該移行・分離によつてP1画分と
S1画分の分離がデカンター、ノズルセパレータ
ー等のような連続式遠心分離機でも極めて容易に
なる効果があるが、例えば、大豆蛋白原料を抽出
後PH5.5〜7.0に移行しないで、抽出の後一旦遠心
分離等により不溶性画分を分離除去した水溶性画
分をPH6.7且つ3℃に調製して生ずる水溶性画分
と不溶性画分を分離するにはバツチ式や実験室的
に用いられる強い遠心力(約10000rpm程度)を
要し、デカンター等の連続式遠心分離機(約2000
〜2500rpm程度の弱い遠心力)を用いて遠心分離
しようとしてもS1画分とP1画分の分離は極めて
困難である。 P1画分は、さらに温水系下に移行し分散或い
は溶解させ、分散或いは溶解した画分(S2画分)
を分離することもできる。P1画分からS2画分を
分散・溶解させる為に用いる水の温度は、少なく
とも11℃以上、好ましくは21℃以上、より好まし
くは30〜60℃が適当であり、このときのPHは6以
上、好ましくは6.7〜9が適当であり、P1画分に
含まれるS2画分の分散・溶解が容易になる。 以上の、S1画分、P1画分、又はS2画分はそれ
ぞれこのまま、或いは濃縮、或いは乾燥して、従
来の分離大豆蛋白とは異なつた性質を示す大豆蛋
白として用いることができる。濃縮手段として、
各画分を等電沈澱させ沈澱画分を分離回収する方
法は好ましくは水洗を伴うことにより風味的及び
衛生的に好ましい製品を得ることができ、又等電
沈澱の後中和、加熱殺菌処理し、或いはさらにプ
ロテアーゼ等を用いた酵素処理することもでき
る。殺菌、乾燥した形態が最も通常である(以
後、S1画分又はS2画分から得られる乾燥物をそ
れぞれD1画分、D2画分と称する)。加熱殺菌処
理は公知のHTST、UHT処理として知られる公
知の温度、時間、装置で行うことができる。 得られる各画分は、後記実施例にも示すよう
に、ゲル強度、粘性、透明感等の性質において、
常法により得られる分離大豆蛋白と異なる性質を
示すので、大豆蛋白のより高度な利用が可能にな
る。 以下実施例により本発明を説明する。 実施例 1 脱脂大豆90部(以下部は重量部であることを示
す)、水900部、亜硫酸水素ナトリウム(重亜硫酸
ナトリウム)1.26部をPH7.8の条件下に30分間撹
拌・抽出しそのまま6−Nの塩酸を用いてPH6.25
に調節し5℃以下(氷冷)に30分放置した。連続
遠心分離機(デカンター)を用い2500R.P.M.で
沈澱画分(P1画分)とそうでない画分(S1画分)
に分離し、S1画分はPH4.5に調製して等電沈澱さ
せ沈澱画分を分離した。これに水500部を加え撹
拌・水洗し同様に遠心分離して沈澱画分とした。
この沈澱画分を中和後135℃で30秒加熱し、噴霧
乾燥して乾燥物(D1画分)を12.6部得た。 一方、先に得られたP1画分をPH8.0、50℃の温
水500部に撹拌・分散或いは溶解させ、デカンタ
ーを用い沈澱画分を除去して分散或いは溶解画分
(S2画分)を分離し、S2画分をPH4.5に調製して等
電沈澱させ沈澱画分をデカンターを用いて分離
し、これを中和後加熱処理し、噴霧乾燥して乾燥
物(D2画分)を12.8部得た。 工程途中及び得られたS1画分、S2画分、D1画
分、D2画分に不快臭は感じられなかつた。 実験例 1 実施例1で得られたD1画分、D2画分、及び以
下の方法(常法)によつて得たSPIの物性を比較
した。 (SPIの調製) 実施例1に用いたと同様の脱脂大豆1部に水10
部を加え、撹拌・抽出してオカラを遠心分離除去
して得た豆乳を等電沈澱してカードを得、水10部
を加えて水洗し、中和後実施例1と同様に加熱、
噴霧乾燥してSPIを得た。 (NSIの測定方法及び結果) 試料3.5gを100mlに分散させ、40℃で450rpm
でプロペラ撹拌しながら60分抽出後、2500rpmで
遠心分離した上澄みと、沈澱を同様に再度抽出・
遠心分離して得た上澄みとを合わせ、ケルダール
法にて粗蛋白含量を測定しこれを試料の粗蛋白で
除した値をNSIとする。 この結果、D1画分が92、D2画分が93とSPIに
優るとも劣らない高いNSI値を示した。 (ゲル形成性及び粘度の測定方法及び結果) 試料(粉体)12gに水(又は2.5%食塩水)88
mlを加えホモゲナイズ(1200rpmで3分間)し遠
心脱泡(2500rpmで10分間)し、80℃で30分間加
熱してカードメーター(飯尾製)またはB型粘度
計(東京計器製)でゲル強度(g/cm2)又は粘度
(cps)を測定した。 この結果を次表に示す。
(Industrial Application Field) The present invention provides a method for fractionating and producing soybean protein components. (Prior art) Traditionally, soybean protein raw materials are extracted and separated in an aqueous system (water-soluble fraction and insoluble fraction = commonly known as Okara), and the water-soluble fraction is subjected to isoelectric precipitation (PH4-5, usually pH4.2-
4.6) The so-called soybean protein production is carried out by neutralizing the resulting precipitate fraction and drying it to separate the soybean protein. By the way, soybean protein is composed of various proteins with complex higher-order polymer structures. For example, in the method of fractionating soybean protein by ultracentrifugation based on the difference in sedimentation constant, soybean protein is composed of various proteins with complex higher-order structures. These proteins have different physical properties as well. Furthermore, each protein is composed of several subunits, for example, the 7S protein is composed of 3 subunits, and the 11S protein is composed of 12 subunits. These proteins and subunits can be obtained with various changes (higher-order structure changes, interactions between subunits, etc.) due to changes in the environment (ionic strength, PH, temperature, concentration, etc.), and their properties can also vary. There are many research reports on this. Taking advantage of these facts, many soybean protein fractionation methods have been attempted. Slight differences among these many fractionation methods (differences in ionic strength, pH, presence of certain salts, concentration, temperature, operating procedures, etc.) may affect the physical properties and functions of the fractionated and isolated soybean protein. The chemical properties etc. have changed considerably. This is caused not only by the composition ratio of proteins such as 7S and 11S mentioned above, but also by changes in higher order structure, interactions between proteins and between subunits, etc. Conventionally known separation (fractionation) of soybean protein
An example of the law is as follows. That is, for example, Nario et al. fractionated the 11S component and the 7S component using a rare calcium salt (Japanese Patent Application No. 1989-90289). Super mountain etc.
7S protein can be produced by removing the insoluble fraction in the presence of sodium chloride or potassium chloride at pH 1.2 to 4.0 (Japanese Patent Application No. 1972-72606), or after extraction at pH 5.40 to 5.85.
7S protein is produced by isoelectric precipitation at pH 4.5 (patent application 1983-31168). Shimmer etc. has a pH of approximately 5.1 to 5.9.
A heat-coagulable viscous protein is produced by extracting it with water (Japanese Patent Application No. 150762, 1972). Mashima et al. used 1st stage fractionation at PH6.0 to 7.0, 2nd stage fractionation at PH5.0 to 5.6, and PH4.0 to 4.8.
Proteins are produced by separating the second and third fraction proteins individually through the third stage fractionation.
60899). Osil etc. are extracted with an aqueous extractant and the pH is approx.
Generate an extract of 6.5 and adjust to isoelectric point, approximately 115~
It is heated to 145 degrees F and concentrated to more than 44% (patent application 1982-121275). Ortho-fur etc. is made from plant protein-containing slurry in the presence of sulfite ions at a pH of 6.5~
8.0 to extract and dry the water-soluble components to obtain an isolated product (patent application 1982-216003). Lanehart et al.
The isoelectrically precipitated slurry was adjusted to pH 5.0 to 5.6, and the salt concentration was adjusted to a molar concentration of 0.01 to 0.2M, followed by 7S.
The 11S fraction is separated (Japanese Patent Application No. 139105, 1982). In the laboratory, soybean protein fractionation methods have been studied and reported by Erdouritzi et al., Blitzu et al., Wolff et al., and Tan et al. For example, tongue is made from defatted soybeans using Tris-HCl buffer (PH7.8, containing β-mercaptoethanol).
After extraction, the insoluble fraction was removed by centrifugation at 10,000 rpm.The extract was adjusted to pH 6.6, and after dialysis, the insoluble fraction was centrifuged at 10,000 rpm.
The 7S globulin is fractionated by centrifugation into the 11S fraction and crude 7S fraction, and the crude 7S fraction is isoelectrically precipitated, washed with water, and lyophilized. Yamauchi et al.
We study 11S globulin by washing the 11S fraction with water, neutralizing it, and dissolving it in a buffer solution. However, these methods still remain in the realm of laboratory methods and have a number of problems as described below in order to be commercialized. (Problems to be Solved by the Invention) The inventors of the present invention simply used Tris-HCl buffer as a means of conducting further tests and improving the conventional technology for the purpose of fractionating and producing industrially practical soybean protein. If you just adjust the pH instead of using acids etc., the crude 11S fraction and the crude
Reagents such as Tris-HCl buffer and β-mercaptoethanol, which cannot extract and separate the 7S fraction, cannot be used in the food industry, especially for β-mercaptoethanol.
-Mercaptoethanol has a strong unpleasant odor and cannot be used in food because of its flavor. The extract obtained by removing the insoluble fraction by centrifugation and adjusting the pH to 6.6 is extremely viscous and contains the crude 11S fraction and the crude When separating the 7S fraction using an industrial continuous centrifugation method using a low centrifugal force (for example, using a decanter), we encountered problems such as difficulty in separating the precipitated slurry and the solution portion. Therefore, as a result of intensive research, we have found that soy protein raw materials can be treated with sulfite compounds, glutathione compounds, or cysteine compounds in an aqueous system with a pH of 6.5 or higher, and that soy protein raw materials can be treated with pH 5.5 to 7.0 and
It is important to fractionate into soluble and insoluble fractions by moving to a temperature below 20°C.
It is possible to fractionate and produce soybean proteins with different properties that are excellent in flavor, and it is also possible to use industrial continuous centrifugation, which has traditionally been difficult to use, especially when soybean proteins contain soybean polysaccharides. The present inventors have discovered that practical separation is extremely easy using a separator (such as a decanter), and have completed the present invention. (Means for Solving the Problems) The present invention involves treating soybean protein raw materials in the presence of a sulfite compound, a glutathione compound, or a cysteine compound in an aqueous system with a pH of 6.5 or higher, and at a pH of 5.5 to 7.0 and at 20°C. The soluble fraction (less than
This is a method for producing soybean protein that consists of fractionating it into an insoluble fraction (hereinafter referred to as the P1 fraction) and an insoluble fraction (hereinafter referred to as the P1 fraction). As the soybean protein raw material used in the present invention, any raw material containing soybean protein can be used, such as soybean, defatted soybean, soybean milk (including dry powder), concentrated soybean protein, and isolated soybean protein. Preferably soybeans, defatted soybeans,
Soy protein raw materials that contain both soy protein and insoluble polysaccharides, such as concentrated soy protein, have a higher S1 fraction and P1 fraction.
This is suitable because separation of fractions becomes easier. The sulfite ion compound referred to in the present invention refers to a compound that generates sulfite ions in an aqueous system, such as potassium or sodium alkali metal sulfite (sulfite, bisulfite, pyrosulfite, metabisulfite, etc.)
Mention may be made of salts, other water-soluble salts and cationic (eg ammonium, mixtures thereof) salts, sulfur dioxide gas. Although it depends on the protein content of soybean protein raw materials, sulfite compounds are
An amount of 0.5% by weight or more, preferably 1.0% by weight or more is appropriate; less than 0.5% by weight is not preferred because the purity of the S1 fraction, in other words, the specificity of the protein in the S1 fraction decreases. The glutathione compound or cysteine compound referred to in the present invention is glutathione, cysteine, or a salt thereof, such as a hydrochloride, and is usually 5 mmole or more, preferably 10 mmole or more, based on the soybean protein raw material.
m mole or more is used, but each fraction obtained is good in terms of flavor and hygiene, as it does not exhibit a strong odor like mercaptoethanol. In the presence of the above compound, once the PH is 6.5 or higher,
Preferably PH is 7.1-9, more preferably 7.5-8.5
The soybean protein raw material is processed in aqueous system. If the pH is less than 6.5, not only will the above compound not be effective, but the yield of the S1 fraction will decrease, which is undesirable. Moreover, when the pH exceeds 9, a characteristic odor due to alkali may occur.
For the aqueous treatment, a known mixing/stirring device that dissolves and extracts protein from soybean protein raw materials can be used. The larger the amount of aqueous solvent, the easier it is to dissolve and extract proteins, but if it is too large,
Separation of P1 fraction becomes poor and protein in P1 fraction becomes S1.
Since it tends to be mixed into the fraction, it is appropriate to use 30 times or less of the soybean protein raw material. The soy protein raw material containing the aqueous solvent is then
5.5 to 7.0 (preferably PH6.0 to 6.9) and below 20℃.
fraction). In other words, below PH5.5
The yield of S1 fraction is low, and conversely, if the pH exceeds 7.0, S1
This is industrially unfavorable because the purity of the fraction decreases and its viscosity increases. If the temperature is higher than 20℃,
Separation between S1 and P1 fractions becomes poor and the purity of S1 fraction decreases. However, the temperature is such that the soybean protein raw material containing the aqueous solvent does not freeze, and the separation property decreases in a frozen state. As the means of separation, known separation means (filtration, centrifugation, etc.) can be used, and in particular, even if a continuous centrifuge (e.g. decanter) etc. is used, it is easy to separate the P1 fraction and the S1 fraction in a continuous manner. It can be separated into
Of course, this does not preclude the use of discontinuous type centrifuges such as batch type centrifuges. As mentioned above, the P1 fraction and
Continuous centrifuges such as decanters and nozzle separators have the effect of making separation of the S1 fraction extremely easy. The batch method or laboratory method is used to separate the water-soluble fraction and the insoluble fraction, which are obtained by separating and removing the insoluble fraction by centrifugation, etc., and adjusting the water-soluble fraction to pH 6.7 and 3°C. It requires a strong centrifugal force (approximately 10,000 rpm), and a continuous centrifugal separator such as a decanter (approximately 2,000 rpm) is required.
Even if centrifugation is attempted using a weak centrifugal force of ~2500 rpm, it is extremely difficult to separate the S1 and P1 fractions. The P1 fraction is further transferred to a warm water system and dispersed or dissolved, and the dispersed or dissolved fraction (S2 fraction)
can also be separated. The appropriate temperature of the water used to disperse and dissolve the S2 fraction from the P1 fraction is at least 11°C or higher, preferably 21°C or higher, and more preferably 30 to 60°C, and the pH at this time is 6 or higher. Preferably, 6.7 to 9 is appropriate, and the S2 fraction contained in the P1 fraction can be easily dispersed and dissolved. The above S1 fraction, P1 fraction, or S2 fraction can be used as is, or after being concentrated or dried, as a soybean protein that exhibits properties different from conventional isolated soybean proteins. As a means of concentration,
The method of isoelectrically precipitating each fraction and separating and recovering the precipitated fraction is preferably accompanied by washing with water, so that a product that is favorable in terms of taste and hygiene can be obtained, and after isoelectric precipitation, neutralization and heat sterilization are performed. Alternatively, further enzymatic treatment using protease or the like can be performed. It is most commonly in a sterilized and dried form (hereinafter, the dried products obtained from the S1 fraction or S2 fraction will be referred to as the D1 fraction and D2 fraction, respectively). The heat sterilization treatment can be performed using known temperatures, times, and equipment known as HTST and UHT treatments. As shown in the examples below, each fraction obtained has different properties such as gel strength, viscosity, and transparency.
Since it exhibits properties different from those of isolated soybean protein obtained by conventional methods, it becomes possible to utilize soybean protein in a more advanced manner. The present invention will be explained below with reference to Examples. Example 1 90 parts of defatted soybeans (the following parts indicate parts by weight), 900 parts of water, and 1.26 parts of sodium hydrogen sulfite (sodium bisulfite) were stirred and extracted for 30 minutes under the condition of PH 7.8, and then extracted as it was. -PH6.25 using N hydrochloric acid
The temperature was adjusted to 5°C or lower (ice-cooled) for 30 minutes. Using a continuous centrifuge (decanter) at 2500 R.PM, separate the precipitated fraction (P1 fraction) and the non-precipitated fraction (S1 fraction).
The S1 fraction was adjusted to pH 4.5, subjected to isoelectric precipitation, and the precipitated fraction was separated. To this was added 500 parts of water, stirred, washed with water, and similarly centrifuged to obtain a precipitate fraction.
After neutralization, this precipitated fraction was heated at 135° C. for 30 seconds and spray-dried to obtain 12.6 parts of a dried product (D1 fraction). On the other hand, the previously obtained P1 fraction was stirred and dispersed or dissolved in 500 parts of warm water at pH 8.0 and 50°C, and the precipitated fraction was removed using a decanter to obtain the dispersed or dissolved fraction (S2 fraction). The S2 fraction was adjusted to pH 4.5, subjected to isoelectric precipitation, and the precipitated fraction was separated using a decanter. After neutralization, this was heat-treated and spray-dried to obtain a dried product (D2 fraction). I got 12.8 copies. No unpleasant odor was detected during the process or in the S1, S2, D1, and D2 fractions obtained. Experimental Example 1 The physical properties of the D1 fraction, D2 fraction obtained in Example 1, and SPI obtained by the following method (normal method) were compared. (Preparation of SPI) Add 1 part of the same defatted soybean as used in Example 1 to 10 parts of water.
The soy milk obtained by centrifuging and removing the okara was subjected to isoelectric precipitation to obtain a curd, which was washed with 10 parts of water, neutralized, and then heated in the same manner as in Example 1.
SPI was obtained by spray drying. (NSI measurement method and results) Disperse 3.5 g of sample in 100 ml, 450 rpm at 40°C.
After extraction for 60 minutes with propeller stirring, the supernatant and precipitate were centrifuged at 2500 rpm and extracted again in the same manner.
Combine the supernatant obtained by centrifugation, measure the crude protein content using the Kjeldahl method, and divide this by the crude protein of the sample to determine the NSI. As a result, the D1 fraction showed a high NSI value of 92 and the D2 fraction 93, which was as high as the SPI. (Measurement method and results of gel forming property and viscosity) 12 g of sample (powder) and 88 g of water (or 2.5% saline)
ml, homogenized (1200 rpm for 3 minutes), centrifuged to defoam (2500 rpm for 10 minutes), heated at 80℃ for 30 minutes, and measured the gel strength ( g/cm 2 ) or viscosity (cps) was measured. The results are shown in the table below.

【表】 D1画分は加塩ゲルの状態で脆いが、無塩での
粘性は高かつたのに対して、D2画分は加塩ゲル
の状態で強い強度を示し、無塩での粘性は低かつ
た。 (透明感の測定方法及び結果) PH7.0における各濃度における濁度(OD600n
m)を測定した。結果を第1図に示す。 以上のように、D1画分及びD2画分は、ゲル化
力、粘稠度、透明感等において、SPIとは異なる
ものであつた。なおD2画分は色が白く硬いゲル
を形成しカマボコによく近似していた。 実施例 2 実施例1と同様の方法において、亜硫酸水素ナ
トリウムと脱脂大豆の比(重量比)を変えてD2
画分の回収率をみた。結果を第2図に示す。但
し、実施例1に於けるD2画分の収率を100として
相対的に示した。 この図より明らかなように、亜硫酸水素ナトリ
ウムは少なくとも0.5重量%/脱脂大豆以上、好
ましくは1.0重量%/脱脂大豆以上必要なことが
分かる。亜硫酸水素ナトリウム不存在下ではD1
画分とD2画分の分離が困難なことを示す。 実施例 3 実施例1の方法において、亜硫酸水素ナトリウ
ムの代わりにシステイン塩酸塩、グルタチオンを
それぞれ脱脂大豆100g当たり15m mole用い同
様に処理してD1画分、D2画分を得た。実施例1
のD2画分の回収率を100としたときの相対的回収
率を次表に示す。
[Table] The D1 fraction is brittle in the salted gel state but has high viscosity without salt, whereas the D2 fraction shows strong strength in the salted gel state and low viscosity in the unsalted state. It was. (Transparency measurement method and results) Turbidity at each concentration at PH7.0 (OD600n
m) was measured. The results are shown in Figure 1. As described above, the D1 and D2 fractions were different from SPI in terms of gelling power, consistency, transparency, etc. The D2 fraction was white in color and formed a hard gel, closely resembling a kamaboko. Example 2 In the same method as in Example 1, D2 was prepared by changing the ratio (weight ratio) of sodium bisulfite and defatted soybeans.
The recovery rate of the fractions was examined. The results are shown in Figure 2. However, the yield of the D2 fraction in Example 1 is taken as 100 and shown in relative terms. As is clear from this figure, it can be seen that sodium bisulfite is required to be at least 0.5% by weight/defatted soybean, preferably 1.0% by weight/defatted soybean. D1 in the absence of sodium bisulfite
This shows that it is difficult to separate the fraction and D2 fraction. Example 3 In the same manner as in Example 1, cysteine hydrochloride and glutathione were each used in amounts of 15 mmole per 100 g of defatted soybeans instead of sodium bisulfite, and treated in the same manner as in Example 1 to obtain fractions D1 and D2. Example 1
The following table shows the relative recovery rate when the recovery rate of the D2 fraction is set as 100.

【表】 比較例 1 脱脂大豆1部に10m M β−メルカプトエタ
ノールを含むPH7.8のトリス塩酸緩衝液(63mM)
15部を加え撹拌抽出して10000rpmで遠心分離し
て不溶性画分(オカラ)を除き得られた液を2N
の塩酸でPH6.6に調整し氷冷して2〜3℃に3時
間放置後デカンターにかけたが沈澱画分と水分散
画分を分離は困難であつた。そこで10000rpmの
遠心力でバツチ式遠心分離して上澄み画分(S1
画分)と沈澱画分に分離し、沈澱画分をPH7.6の
リン酸緩衝液に分散させた(S2画分)。S1画分、
S2画分共メルカプトエタノールの不快臭を有し
且つ緩衝液を含むものでありとても食用に供し得
るものではなかつた。 (効果) 以上詳述したように、本発明により工業的に
大豆蛋白成分の分画が可能になつたものである。
更に詳しくは、トリス塩酸緩衝液とか強い不快
臭気を有し風味的にもとても食品に用いることは
できないメルカプトエタノール等の試薬を用いる
ことなくS1画分とS2画分を含むP1画分の分離が
可能になり、更にS1画分とP1画分は工業的な
連続式遠心分離機(例えばデカンター等)で容易
に分離すること等が可能になつたものであり、
P1画分からS2画分を分離することによりS1画分
とS2画分の工業的分離が容易になつたものであ
り産業の発達に大いに寄与するものである。
[Table] Comparative Example 1 1 part defatted soybean and 10mM β-mercaptoethanol in PH7.8 Tris-HCl buffer (63mM)
Add 15 parts, stir and extract, centrifuge at 10,000 rpm, remove the insoluble fraction (Okara), and dilute the resulting liquid with 2N
The pH was adjusted to 6.6 with hydrochloric acid, cooled on ice, left at 2-3°C for 3 hours, and then decanted, but it was difficult to separate the precipitated fraction and the water-dispersed fraction. Therefore, the supernatant fraction (S1
fraction) and a precipitate fraction, and the precipitate fraction was dispersed in a phosphate buffer solution of PH7.6 (S2 fraction). S1 fraction,
The S2 fraction had an unpleasant odor of mercaptoethanol and contained a buffer solution, so it was hardly edible. (Effects) As detailed above, the present invention has made it possible to industrially fractionate soybean protein components.
More specifically, it is possible to separate the P1 fraction, including the S1 and S2 fractions, without using reagents such as Tris-HCl buffer or mercaptoethanol, which has a strong unpleasant odor and cannot be used in food products due to its flavor. Furthermore, it has become possible to easily separate the S1 fraction and P1 fraction using an industrial continuous centrifuge (for example, a decanter).
By separating the S2 fraction from the P1 fraction, industrial separation of the S1 and S2 fractions has become easier and will greatly contribute to the development of industry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により得られたD1画分、D2画
分及びSPIの水分散液の濁度を例示する図グラフ
である。第2図は本発明における亜硫酸水素ナト
リウムと脱脂大豆の重量比によるD2画分の相対
的収率を例示するグラフである。
FIG. 1 is a diagram illustrating the turbidity of an aqueous dispersion of D1 fraction, D2 fraction, and SPI obtained according to the present invention. FIG. 2 is a graph illustrating the relative yield of the D2 fraction according to the weight ratio of sodium bisulfite and defatted soybean in the present invention.

Claims (1)

【特許請求の範囲】 1 大豆多糖類を含有する大豆蛋白原料を、亜硫
酸化合物、グルタチオン化合物、又はシステイン
化合物の存在下且つPH6.5以上の水系下で処理す
る第1工程と、第1工程で処理したPHより低く且
つPH5.5〜7.0及び第1工程で処理した温度より低
く且つ20℃以下の温度に移行する第2工程と、可
溶性画分と不溶性画分に分画する第3工程を含む
ことを特徴とする大豆蛋白の製造法。 2 第1工程、第2工程及び第3工程により分画
した不溶性画をさらに温水系下に移行し分散或い
は溶解させ、分散或いは溶解画分を分取する特許
請求の範囲第1項記載の製造法。 3 第1工程、第2工程及び第3工程により得た
可溶性画分を等電点沈澱させ沈澱画分を分離回収
し中和後加熱処理して乾燥する特許請求の範囲第
1項記載の製造法。
[Scope of Claims] 1. A first step in which a soybean protein raw material containing soybean polysaccharides is treated in the presence of a sulfite compound, a glutathione compound, or a cysteine compound in an aqueous system with a pH of 6.5 or higher; A second step in which the temperature is lower than the treated pH and 5.5 to 7.0 and a temperature lower than the temperature treated in the first step and 20 ° C or less, and a third step in which the temperature is fractionated into a soluble fraction and an insoluble fraction. A method for producing soybean protein characterized by comprising: 2. The production according to claim 1, wherein the insoluble fraction fractionated in the first step, second step, and third step is further transferred to a hot water system to be dispersed or dissolved, and the dispersed or dissolved fraction is separated. Law. 3. The production according to claim 1, wherein the soluble fractions obtained in the first, second, and third steps are subjected to isoelectric point precipitation, the precipitated fractions are separated and collected, and after neutralization, heat treatment is performed and dried. Law.
JP2792585A 1985-02-14 1985-02-14 Production of soya protein Granted JPS61187755A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2792585A JPS61187755A (en) 1985-02-14 1985-02-14 Production of soya protein
BE0/216265A BE904225A (en) 1985-02-14 1986-02-13 PROTEIN FRACTIONATION PROCESS.
CN86100959A CN1008684B (en) 1985-02-14 1986-02-14 Method for fractionation of proteins
US07/063,748 US4771126A (en) 1985-02-14 1987-06-19 Method for fractionation of vegetable proteins by reduction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2792585A JPS61187755A (en) 1985-02-14 1985-02-14 Production of soya protein

Publications (2)

Publication Number Publication Date
JPS61187755A JPS61187755A (en) 1986-08-21
JPH0365138B2 true JPH0365138B2 (en) 1991-10-09

Family

ID=12234457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2792585A Granted JPS61187755A (en) 1985-02-14 1985-02-14 Production of soya protein

Country Status (1)

Country Link
JP (1) JPS61187755A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2774559B2 (en) * 1989-03-31 1998-07-09 味の素株式会社 Manufacturing method of soy protein material
WO2006129647A1 (en) 2005-05-30 2006-12-07 Fuji Oil Company, Limited Fractionated soybean protein material, processed soybean suitable for the material, and processes for production of the soybean protein material and the processed soybean
JP2007116961A (en) * 2005-10-27 2007-05-17 Fuji Oil Co Ltd Method for producing gel, and food utilizing the gel
US7838633B2 (en) 2006-12-06 2010-11-23 Fuji Oil Company, Limited Method for production of fractionated soybean protein material
EP2255674A4 (en) 2008-03-04 2012-02-29 Fuji Oil Co Ltd Soybean protein material for patients with renal disease and foods made from the same
DE102009045722B4 (en) 2009-10-15 2021-09-16 Robert Bosch Gmbh Component carrier

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661961A (en) * 1979-10-23 1981-05-27 Fuji Oil Co Ltd Preparation of protein retort food
JPS57132844A (en) * 1980-12-29 1982-08-17 Staley Mfg Co A E Dried vegetable protein isolate and production thereof and food composition containing same
JPS603812A (en) * 1983-06-20 1985-01-10 住友電気工業株式会社 Method of producing cable

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5661961A (en) * 1979-10-23 1981-05-27 Fuji Oil Co Ltd Preparation of protein retort food
JPS57132844A (en) * 1980-12-29 1982-08-17 Staley Mfg Co A E Dried vegetable protein isolate and production thereof and food composition containing same
JPS603812A (en) * 1983-06-20 1985-01-10 住友電気工業株式会社 Method of producing cable

Also Published As

Publication number Publication date
JPS61187755A (en) 1986-08-21

Similar Documents

Publication Publication Date Title
US4771126A (en) Method for fractionation of vegetable proteins by reduction
EP0368864B1 (en) Whey protein fractions
JP4680989B2 (en) Reduction of phytic acid in protein isolation process
US4172828A (en) Method for processing soy protein and composition of matter
JPS6261543A (en) Production of low phytinate soy protein isolate
EP1434493B1 (en) Flax protein isolate and production
AU4987393A (en) A process for producing beta-casein enriched products
JP6267737B2 (en) Soy protein product with improved water binding capacity
IE45421B1 (en) Proteinaceous foodstuff
JPS593178B2 (en) Method for producing milk protein isolate, milk protein/vegetable protein isolate and its composition
JPH0365138B2 (en)
JPH0153023B2 (en)
EP1561384A1 (en) Fractionated soybean protein and process for producing the same
JP3213453B2 (en) Method for removing salts from fat globule membrane material in whey and method for separating various components
JP2985157B2 (en) Method for fractionating casein into α-casein and β-casein
US2826571A (en) Protein product and process
EP0967884B1 (en) Process for the manufacture of milk proteins
IE42519B1 (en) Removal of proteins from liquid acid cheese whey
JPH0150385B2 (en)
JPH0150380B2 (en)
CA1162435A (en) Soybean protein isolate production
JPS5840046A (en) Preparation of soybean protein material
IE62295B1 (en) Whey protein fractions
JPH0720981B2 (en) Protein fractionation method
NZ255608A (en) Producing a beta casein enriched product and a beta casein depleted product from a casein feedstock

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees