JPH036422A - Encoder - Google Patents

Encoder

Info

Publication number
JPH036422A
JPH036422A JP14234289A JP14234289A JPH036422A JP H036422 A JPH036422 A JP H036422A JP 14234289 A JP14234289 A JP 14234289A JP 14234289 A JP14234289 A JP 14234289A JP H036422 A JPH036422 A JP H036422A
Authority
JP
Japan
Prior art keywords
probe
signal
scale
tunnel current
reference object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14234289A
Other languages
Japanese (ja)
Other versions
JP2686653B2 (en
Inventor
Toshimitsu Kawase
俊光 川瀬
Toshihiko Miyazaki
俊彦 宮崎
Takahiro Oguchi
小口 高弘
Akihiko Yamano
明彦 山野
Hiroyasu Nose
博康 能瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP14234289A priority Critical patent/JP2686653B2/en
Publication of JPH036422A publication Critical patent/JPH036422A/en
Application granted granted Critical
Publication of JP2686653B2 publication Critical patent/JP2686653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

PURPOSE:To lessen an error in measurement by a method wherein, with a reference substance rotated, a scanning track formed by a probe is adjusted so that it may accord with the direction of a crystal lattice of the surface of the reference substance. CONSTITUTION:A modulated component of a frequency formed by scanning by a probe 103 on a reference scale 104 of a scale period (p) provided on a rotary table 11 is superposed on a tunnelling current 107 flowing between the probe 103 and the reference scale 104 by vibrations of the probe 103. When an object 101 and an object 102 move mutually in the lateral direction herein, the modulated component of the frequency superposed on the current 107 causes a phase shift in relation to a signal serving as a reference, e.g. a probe vibration signal 2A. The phase shift in one period, i.e. 2pi, of the signal corresponds to the lateral shift of the probe 103 from a base for the period of the scale 104, and by detecting this phase shift, therefore, the amount of the relative shift in the lateral direction of the object 101 from the object 102 can be detected accurately.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微小位置決め、寸法測定、測距、速度および
計測等における位置情報測定であって、特に原子オーダ
ー(数人)の分解能を必要とする計測に用いるエンコー
ダに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to position information measurement in micro-positioning, dimension measurement, distance measurement, speed, measurement, etc. This invention relates to an encoder used for measurement.

[従来の技術] 従来この種のエンコーダは、位置または角度に関する情
報を有する基準目盛とこれと相対的に8動して位置また
は角度に関する情報を検出する検出手段とで構成されて
いる。そして、この基準目盛と検出手段によっていくつ
かのタイプに分類され、例えば光学式エンコーダ、磁気
式エンコーダ、静電容量エンコーダ等がある。
[Prior Art] Conventionally, this type of encoder is composed of a reference scale having information regarding position or angle, and a detection means for detecting information regarding position or angle by moving eight times relative to the reference scale. They are classified into several types depending on the reference scale and detection means, such as optical encoders, magnetic encoders, and capacitance encoders.

また、さらに高分解能が得られるエンコーダとして、走
査型トンネル顕微鏡(STM)の原理を用いて原子配列
を基準目盛としたエンコーダが提案されている(特開昭
1i2−209302号)。
Further, as an encoder capable of obtaining even higher resolution, an encoder using the principle of a scanning tunneling microscope (STM) and using an atomic arrangement as a reference scale has been proposed (Japanese Patent Application Laid-open No. 209302/1989).

この走査型トンネル顕微鏡は導電性試料と導電性探針の
間に電圧を印加してlnm程度の距離まで接近させてト
ンネル電流を流した場合、その距離によりトンネル電流
が指数関数的に変化することを利用したものである。す
なわち、例えば先鋭な探針を用いて、導電性物質からな
る試料表面を探針と試料表面間の距離を一定に保ちなが
ら2次元的に走査した場合、表面の原子配列または凹凸
形状によりトンネル電流が変化するので、これに基づき
試料表面の像を得ることができる(「固体物理J Vo
L、22 No、31987 PP、176−186 
)。
In this scanning tunneling microscope, when a voltage is applied between a conductive sample and a conductive probe and the probe is brought close to a distance of about 1 nm and a tunnel current is caused to flow, the tunnel current changes exponentially depending on the distance. This is what was used. For example, when a sharp probe is used to two-dimensionally scan a sample surface made of a conductive material while keeping the distance between the probe and the sample surface constant, a tunneling current may occur due to the atomic arrangement or uneven shape of the surface. changes, so an image of the sample surface can be obtained based on this ("Solid State Physics J Vo
L, 22 No. 31987 PP, 176-186
).

すなわち、規則的原子配列または周期的凹凸形状を有す
る試料を基準目盛とし、その基準目盛と探針間に基準目
盛の方向に沿った相対的位置ずれが生じると、それに応
じて周期的にトンネル電流が変化することを利用して数
人程度という原子オニダーの分解能を有するエンコーダ
を構成することができる。
In other words, when a sample with a regular atomic arrangement or a periodic uneven shape is used as a reference scale, and a relative positional shift occurs between the reference scale and the probe along the direction of the reference scale, the tunnel current periodically changes depending on the relative positional deviation between the reference scale and the probe. It is possible to construct an encoder that has the resolution of several atomic oniders by taking advantage of this change.

[発明が解決しようとする課題] しかしながら、上記従来例において、基準目盛としてグ
ラファイト(HOP GまたはK15hグラフアイト)
のような結晶格子を用いることができるが、実際のグラ
ファイトのSTM像は第6図(A)のように三角格子状
に観察され、探針の8動する軌跡(図中の矢印7a〜7
b)により、検出されるトンネル電流は第5図(B)の
波形7a’〜7b’ のように変化する。例えば、矢印
7aで示すように探針の軌跡が結晶格子の山にのった場
合には、波形7a’ のように振幅が大きくSN比の良
い均一な出力信号が得られるが、矢印7bで示すように
、結晶格子の整列方向に対して傾いた場合は波形7b’
 のように山にのった所は振幅は大きく谷を横切るとこ
ろは小さくなってしまい、均一な出力信号が得られずエ
ンコーダ出力の誤差となってくる。
[Problem to be solved by the invention] However, in the above conventional example, graphite (HOPG or K15h graphite) is used as the reference scale.
Although a crystal lattice such as the one shown in FIG.
According to b), the detected tunnel current changes as shown in waveforms 7a' to 7b' in FIG. 5(B). For example, if the trajectory of the probe rests on the peak of the crystal lattice as shown by arrow 7a, a uniform output signal with a large amplitude and good signal-to-noise ratio as shown in waveform 7a' can be obtained, but as shown in arrow 7b As shown, when the crystal lattice is tilted to the alignment direction, the waveform 7b'
As shown in the figure, the amplitude is large at the peaks and small at the valleys, making it impossible to obtain a uniform output signal, resulting in an error in the encoder output.

実際に上記従来例のようにエンコーダを構成した場合、
探針は矢印7aで示すような軌跡を通ることが望ましい
が、結晶格子を利用した基準目盛をエンコーダにセット
する場合必ずしも探針がこのような軌跡を通るとは限ら
ない。また、結晶格子の方位が基準目盛の面内で全域に
わたフて同方位を持つことも絶対的でない。例えば、探
針がトンネル電流を検出する場所において、探針を基準
目盛に近づけ、遠ざけ、そしてまた近づけるという動作
を行なった場合、前者と後者とでは、マイクロンオーダ
ーの検出位置ずれを生じることが充分考えられると同時
に、結晶格子を利用した基準目盛面内の方位変化が起こ
ると考えられる。
If the encoder is actually configured as in the conventional example above,
Although it is desirable for the probe to follow a trajectory as shown by the arrow 7a, the probe does not necessarily follow such a trajectory when a reference scale using a crystal lattice is set on the encoder. Furthermore, it is not absolute that the orientation of the crystal lattice has the same orientation throughout the entire area within the plane of the reference scale. For example, in a location where the probe detects tunneling current, if the probe is brought closer to the reference scale, moved away from it, and then brought closer again, the former and the latter are likely to cause a detection position shift on the order of microns. At the same time, it is thought that an orientation change within the reference scale plane using the crystal lattice occurs.

したがって、このように第7図(A)の矢印7aに示す
ような軌跡を通るという保証がなく、これが、前述した
ようにエンコーダ出力の誤差原因となる。
Therefore, there is no guarantee that the path will follow the trajectory shown by the arrow 7a in FIG. 7(A), which causes an error in the encoder output as described above.

本発明の目的は、このような従来技術の問題点に鑑み、
エンコーダにおいて、測定誤差をより少なくすることに
ある。
In view of the problems of the prior art, an object of the present invention is to
The objective is to reduce measurement errors in encoders.

[課題を解決するための手段] この目的を達成するため本発明のエンコーダは、導電性
の基準物と、基準物の表面に先端を近づけて配置された
導電性の探針と、探針を基準物に対し相対変位量検出方
向に相対的に振動させる手段と、基準物と探針との間に
電圧を印加する手段と、基準物と探針との間に流れるト
ンネル電流を検出する手段と、この検出手段によって検
出されたトンネル電流の信号と基準となる信号との位相
ずれを検出し、これに基いて基準物と探針間の相対変位
量およびその相対変位の方向を検出する手段と、基準物
を回転させる手段とを具備する。
[Means for Solving the Problems] In order to achieve this object, the encoder of the present invention includes a conductive reference object, a conductive probe whose tip is placed close to the surface of the reference object, and a conductive probe disposed with its tip close to the surface of the reference object. A means for vibrating relative to a reference object in a relative displacement detection direction, a means for applying a voltage between the reference object and the probe, and a means for detecting a tunnel current flowing between the reference object and the probe. and a means for detecting a phase shift between the tunnel current signal detected by the detection means and a reference signal, and detecting the amount of relative displacement between the reference object and the probe and the direction of the relative displacement based on this. and means for rotating the reference object.

[作用] この構成において、探針と基準物間の変位量はその間に
トンネル電流を流しながら探針な相対変位量検出方向に
振動させ、その振動によるトンネル電流の変調成分の位
相ずれに基づいて検出される。そして、この位相ずれは
検出されるトンネル電流のSN比の影響を受け、このS
N比を高めて正確な測定を行なうためには、探針による
走査軌跡が、基準物表面の結晶格子方向に一致すること
が必要である。そこで、本発明では、測定に際しては、
基準物を回転させる手段により基準物を回転させて、探
針による走査軌跡が基準物表面の結晶格子方向に一致す
るように調整され、正確な測定が行なわれる。
[Function] In this configuration, the displacement between the probe and the reference object is determined by causing the probe to vibrate in the relative displacement detection direction while passing a tunnel current between them, and based on the phase shift of the modulation component of the tunnel current caused by the vibration. Detected. This phase shift is influenced by the S/N ratio of the detected tunnel current, and this S
In order to increase the N ratio and perform accurate measurements, it is necessary that the scanning locus of the probe coincide with the crystal lattice direction of the surface of the reference object. Therefore, in the present invention, during measurement,
The reference object is rotated by the means for rotating the reference object, and the scanning locus of the probe is adjusted to match the crystal lattice direction of the surface of the reference object, thereby performing accurate measurements.

「実施例] 以下、図面を用いて本発明の詳細な説明する。"Example] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は、本発明の一実施例に係るエンコーダの構成図
、第2図および第3図は、第1図の装置の各構成部分に
おいて得られる信号を示す。第4図(a)は、第1図の
エンコーダの回転機構部分の詳細を示す平面図、同図(
b)はそのA−A線断面図である。
FIG. 1 is a block diagram of an encoder according to an embodiment of the present invention, and FIGS. 2 and 3 show signals obtained in each component of the apparatus shown in FIG. 1. FIG. 4(a) is a plan view showing details of the rotation mechanism of the encoder in FIG.
b) is a sectional view taken along line A-A.

第1図に示すように、このエンコーダにおいて、対象物
101と対象物102は、相対的に横方向(図面内左右
の方向)にのみ変位できるように設置され、対象物10
1には導電性を有する探針103が、対象物102には
基準目盛104を有する回転台11が設けられている。
As shown in FIG. 1, in this encoder, a target object 101 and a target object 102 are installed so that they can be relatively displaced only in the horizontal direction (left and right directions in the drawing).
1 is provided with a conductive probe 103, and the object 102 is provided with a rotary table 11 having a reference scale 104.

探針103と回転台11の間には、バイアス電源106
によってバイアス電圧が印加され、探針103の先端と
回転台11上の基準目盛104とは、両者間にトンネル
電流107が流れる程度まで(はぼ1ナノメートル以下
)近づけられている。トンネル電流107はトンネル電
流検出回路108によって検出される。
A bias power supply 106 is connected between the probe 103 and the rotary table 11.
A bias voltage is applied, and the tip of the probe 103 and the reference scale 104 on the rotary table 11 are brought close to each other (approximately 1 nanometer or less) to the extent that a tunnel current 107 flows between them. Tunnel current 107 is detected by tunnel current detection circuit 108.

測定に際しては、発振回路109から出力される振動数
fの三角波である探針振動駆動信号2Aおよびこれに従
って駆動する探針振動手段110によって、探針103
を対象物101と対象物102の相対変化方向に振動数
f、振幅dで振動させる。この時の振動速度は対象物1
01と102の相対変位速度より充分大きい。なお、探
針103を振動させるかわりに、基板振動手段を対象物
102に設けて基板105を振動させるようにしてもよ
い。
During measurement, the probe 103 is activated by the probe vibration drive signal 2A, which is a triangular wave with a frequency f, output from the oscillation circuit 109, and by the probe vibration means 110, which is driven in accordance with the probe vibration drive signal 2A.
is vibrated at a frequency f and an amplitude d in the direction of relative change between the object 101 and the object 102. The vibration speed at this time is object 1
It is sufficiently larger than the relative displacement speed of 01 and 102. Note that instead of vibrating the probe 103, a substrate vibrating means may be provided on the object 102 to vibrate the substrate 105.

探針103の振動によって、探針103と回転台11上
の目盛周期Pの基準目盛104との間を流れるトンネル
電流107には、探針103て基準目盛104上を走査
することによる周波物101と対象物102とが相互に
相対的に横方向に移動すると上記のトンネル電流107
に重畳骨、例えば探針振動信号2Aに対して位相ずれを
起こす。信号の1周期すなわち2πの位相ずれが基準メ
モリ104の周期分の探針103と基板105との横ず
れに対応しているので、この位相ずれを検知することに
より、対象物101と対象物102の相対的な横方向の
ずれ量を検知することができる。
Due to the vibration of the probe 103, the tunnel current 107 flowing between the probe 103 and the reference scale 104 of the scale period P on the rotary table 11 includes a frequency object 101 caused by scanning the reference scale 104 with the probe 103. When the object 102 and the object 102 move laterally relative to each other, the tunnel current 107 described above increases.
A phase shift occurs with respect to the superimposed bone, for example, the probe vibration signal 2A. Since a phase shift of one period of the signal, that is, 2π, corresponds to a lateral shift between the probe 103 and the substrate 105 corresponding to the period of the reference memory 104, by detecting this phase shift, the difference between the objects 101 and 102 can be determined. A relative amount of lateral deviation can be detected.

以下、信号処理の方式について説明する。上記構成にお
いて、トンネル電流107に重畳する周108およびフ
ィルタによって、トンネル電流変d 調信号2pとして取り出される。ただし□=n(nは自
然数)となるように探針振動手段110に加える探針振
動駆動信号2Aの振幅を調整して、トンネル電流変調信
号2Dの周波数をnfに致させる。一方、基準信号発生
回路111は、発信回路109からの振動数fの信号の
振動数をn逓倍した後、正弦波に波形変換して動き量基
準信号2Bを出力し、およびさらに位相をπ/2ずらし
て動き方向基準信号2Cを出力する。そして、位相比較
回路112はトンネル電流変調信号2Dと動き量基準信
号2Bとを位相比較し、動ぎ量位相比較信号2Eを出力
する。一方、位相比較回路113はトンネル電流変調信
号2Dと動き方向基準信号2Cとを位相比較して、動き
方向位相比較信号2Fを出力する。この動き量位相比較
信号2Eおよび動き方向位相比較信号2Fは、対象物1
01と対象物102が横方向に変位すると、その変位量
に応じて、それぞれ第3図の信号3Aおよび3Cに示す
ような信号に変化する。この信号3A、3Cは二値化さ
れてそれぞれ動き量位相比較二値化信号3Bおよび動き
方向位相比較二値化信号3Dとされ、カウンタ114は
これらの信号3B、3Dに基づき次のようにして相対変
位量の検知を行なう。
The signal processing method will be explained below. In the above configuration, the tunnel current 107 is superimposed on the tunnel 108 and the filter takes out the tunnel current modulation signal 2p as a tunnel current modulation signal 2p. However, the amplitude of the probe vibration drive signal 2A applied to the probe vibration means 110 is adjusted so that □=n (n is a natural number), and the frequency of the tunnel current modulation signal 2D is brought to nf. On the other hand, the reference signal generating circuit 111 multiplies the frequency of the signal with the frequency f from the transmitting circuit 109 by n, converts the waveform into a sine wave, outputs the motion amount reference signal 2B, and further changes the phase by π/ The motion direction reference signal 2C is output with a shift of 2. Then, the phase comparison circuit 112 compares the phases of the tunnel current modulation signal 2D and the motion amount reference signal 2B, and outputs a motion amount phase comparison signal 2E. On the other hand, the phase comparison circuit 113 compares the phases of the tunnel current modulation signal 2D and the motion direction reference signal 2C, and outputs a motion direction phase comparison signal 2F. The motion amount phase comparison signal 2E and the motion direction phase comparison signal 2F are
01 and the object 102 are displaced in the lateral direction, the signals change to signals 3A and 3C shown in FIG. 3, respectively, depending on the amount of displacement. The signals 3A and 3C are binarized into a binary motion amount phase comparison signal 3B and a binary motion direction phase comparison signal 3D, respectively, and the counter 114 operates as follows based on these signals 3B and 3D. Detects relative displacement.

すなわち、第3図に示すように、動き量位相比較二値化
信号3Bのパルス立ちあがり点(3b、、3b2,3b
3)において、動き方向位相比較二値化信号3Dの符号
が+(プラス)であれは、カウンタ114はパルス数を
加算し、逆に信号3Bのパルス立ち上がり点(3b43
b5)において、信号3Dの符号が−(マイナス)であ
れは、カウンタ114はパルス数を減算し、相対変位量
信号3Eを出力する。ここて、カウンタ114における
1パルスは、トンネル電流変調信号2Dにおける変調1
周期分の位相ずれ、すなわち、基準目盛104の周期構
造物の周期分(p)の対象物101と102の相対変位
量に対応する。したがって、あらかじめ周期pのわかっ
ている基準目盛を用いれば、カウンタ114が出力する
相対変位量信号3Eに基づき対象物101と102間の
相対変位量を検知することがてきる。
That is, as shown in FIG. 3, the pulse rising points (3b, 3b2, 3b
In 3), if the sign of the motion direction phase comparison binary signal 3D is + (plus), the counter 114 adds the number of pulses, and conversely, the pulse rising point of the signal 3B (3b43
In b5), if the sign of the signal 3D is - (minus), the counter 114 subtracts the number of pulses and outputs the relative displacement amount signal 3E. Here, one pulse in the counter 114 corresponds to one modulation in the tunnel current modulation signal 2D.
This corresponds to a phase shift corresponding to a period, that is, a relative displacement amount between the objects 101 and 102 corresponding to a period (p) of the periodic structure of the reference scale 104. Therefore, by using a reference scale whose period p is known in advance, it is possible to detect the relative displacement between the objects 101 and 102 based on the relative displacement signal 3E output by the counter 114.

次に、回転機構部分の説明について第4図を用いて説明
する。
Next, the rotation mechanism portion will be explained using FIG. 4.

同図(a)はこの回転機構の平面図、同図(b)は同図
(a)のA−A断面図である。同図において、11は基
準目盛104を有する回転台、102は対象物、13は
軸受、14はナツト、15は回転台11軸としっかり固
定されているギア、16はギア15を回転させるための
つ1−ムギア、17はワッシャである。回転台11は対
象物102に対し、軸受13、ナツト14およびワッシ
ャ17により、回転台11か摩擦摺動回転できる力より
も小さい力で抑圧固定されている。
FIG. 3(a) is a plan view of this rotation mechanism, and FIG. 2(b) is a sectional view taken along line AA in FIG. In the figure, 11 is a rotary table having a reference scale 104, 102 is an object, 13 is a bearing, 14 is a nut, 15 is a gear firmly fixed to the shaft of the rotary table 11, and 16 is a gear for rotating the gear 15. 1-Mugia, 17 is a washer. The rotary table 11 is pressed and fixed to the object 102 by a bearing 13, a nut 14, and a washer 17 with a force smaller than the force that allows the rotary table 11 to rotate by frictional sliding.

回転台11を回転させるには、つオームギア16を回転
させ、ギア15にその回転力を伝達する。ウオームギア
16は、DCモータ、ステッピングモータ等の回転駆動
手段によって回転されるが、手動であってもよく、とく
に限定はない。
To rotate the rotary table 11, the ohm gear 16 is rotated and its rotational force is transmitted to the gear 15. The worm gear 16 is rotated by a rotation drive means such as a DC motor or a stepping motor, but it may be rotated manually, and is not particularly limited.

次に、回転機構を用いた具体的実施例を第1図と第5図
を用いて説明する。上述のように基準口1 盛104をエンコーダ装置にセッテングし、トンネル電
流107が検出できるところまで探針1゜3を基準目盛
104に近接させる。そして探針103を探針振動手段
110を用いて振動させ、この時のトンネル電流107
の変化をトンネル電流検出回路108で検出したときの
探針の軌跡および検出信号が第5図(A)の矢印7bお
よび信号7b’ のようになったとする。これてはカウ
ンタ114は、動作はするがSN比が悪いために、実際
の移動量を検出できない。そこで、このよな場合は、−
度探針103と基準目盛104との距離を1ミリメート
ル程度離し、回転台11をギア15の回転によって、例
えば約8度だけ第5図(A)で時計周りの方向に回転さ
せる。次に再度、探針103と基準目盛104との距離
をトンネル電流107が消れる距離まで接近させ、探針
103を振動させる。これにより探針は第7図(A)の
矢印7aのような軌跡を描くようになり、同図(B)の
波形7a’ で示すような検出信号が得られるようにな
る。
Next, a specific example using a rotation mechanism will be described with reference to FIGS. 1 and 5. As described above, the reference port 1 graduation 104 is set on the encoder device, and the probe 1° 3 is brought close to the reference graduation 104 until the tunnel current 107 can be detected. Then, the probe 103 is vibrated using the probe vibrating means 110, and the tunnel current 107 at this time is
It is assumed that the locus of the probe and the detection signal when the tunnel current detection circuit 108 detects a change in the current are as shown by the arrow 7b and the signal 7b' in FIG. 5(A). In this case, although the counter 114 operates, the actual amount of movement cannot be detected because the SN ratio is poor. So, in this case, −
The distance between the degree probe 103 and the reference scale 104 is set at about 1 mm, and the rotary table 11 is rotated, for example, by about 8 degrees clockwise in FIG. 5(A) by rotation of the gear 15. Next, the distance between the probe 103 and the reference scale 104 is brought close to the distance where the tunnel current 107 disappears, and the probe 103 is vibrated. As a result, the probe draws a trajectory as shown by the arrow 7a in FIG. 7(A), and a detection signal as shown by the waveform 7a' in FIG. 7(B) can be obtained.

 2 ここで探針103の移動量検知のための振動方向と基準
目盛104の目盛の方向を一致させるために、まず最初
に探針103を2次元的に走査し、その表面像から画像
処理により、方向の角度ずれを検知し、上述の回転機構
を駆動するDCモータ等にその方向ずれに対応する角度
だけ回転させるようフィードバック制御をかけ自動的に
基準目盛104の方向を合わせる。
2. In order to match the direction of vibration for detecting the amount of movement of the probe 103 with the direction of the scale of the reference scale 104, first, the probe 103 is scanned two-dimensionally, and the surface image is determined by image processing. , the direction of the reference scale 104 is automatically adjusted by detecting an angular deviation in the direction and applying feedback control to the DC motor or the like that drives the above-mentioned rotation mechanism so as to rotate it by an angle corresponding to the directional deviation.

もし角度ずれがない場合は回転動作を行なわない。If there is no angular deviation, no rotation operation is performed.

[発明の効果コ 以上説明したように本発明によれば、走査型トンネル顕
微鏡(STM)の原理を応用した高分解能エンコーダに
おいて、基準目盛を回転させる機構を設置したことによ
り、基準目盛をエンコーダに搭載した時の角度誤差およ
び、基準目盛面内の方位ずれを、任意に調整することが
簡単に可能となり、エンコーダ出力の誤差を減少させ信
頼性を向上させるという効果がある。
[Effects of the Invention] As explained above, according to the present invention, in a high-resolution encoder applying the principle of a scanning tunneling microscope (STM), a mechanism for rotating the reference scale is installed, so that the reference scale can be rotated to the encoder. It becomes possible to easily adjust the angular error when mounted and the azimuth deviation in the reference scale plane as desired, which has the effect of reducing encoder output errors and improving reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例に係るエンコーダの構成図
、 第2図および第3図は、第1図のエンコーダの出力波形
図、 第4図は、第1図のエンコーダの回転機構部分詳細図、 第5図は、基準目盛面内の操作方向と出力波形を示す説
明図である。 11、回転台 13:軸受 101:対象物 102:対象物 103:探針 104、基準目盛 106 バイアス電源 108・トンネル電流検出回路 109 発振回路 110:探針振動手段 基準信号発生回路 ・位相比較回路 、位相比較回路 :カウンタ
1 is a configuration diagram of an encoder according to an embodiment of the present invention, FIGS. 2 and 3 are output waveform diagrams of the encoder of FIG. 1, and FIG. 4 is a rotation mechanism of the encoder of FIG. 1. A partial detailed view, FIG. 5, is an explanatory diagram showing the operating direction and output waveform within the reference scale plane. 11, rotary table 13: bearing 101: object 102: object 103: probe 104, reference scale 106, bias power supply 108/tunnel current detection circuit 109, oscillation circuit 110: probe vibration means reference signal generation circuit/phase comparison circuit, Phase comparison circuit: counter

Claims (1)

【特許請求の範囲】[Claims] (1)導電性の基準物と、基準物の表面に先端を近づけ
て配置された導電性の探針と、探針を基準物に対し相対
変位量検出方向に相対的に振動させる手段と、基準物と
探針との間に電圧を印加する手段と、基準物と探針との
間に流れるトンネル電流を検出する手段と、この検出手
段によって検出されたトンネル電流の信号と基準となる
信号との位相ずれを検出し、これに基いて基準物と探針
間の相対変位量およびその相対変位の方向を検出する手
段と、基準物を回転させる手段とを具備することを特徴
とするエンコーダ。
(1) a conductive reference object, a conductive probe disposed with its tip close to the surface of the reference object, and means for vibrating the probe relative to the reference object in a relative displacement detection direction; A means for applying a voltage between the reference object and the probe, a means for detecting a tunnel current flowing between the reference object and the probe, a signal of the tunnel current detected by the detection means, and a signal serving as a reference. An encoder comprising means for detecting a phase shift between the reference object and the probe, and detecting the relative displacement amount and direction of the relative displacement between the reference object and the probe based on the detected phase shift, and means for rotating the reference object. .
JP14234289A 1989-06-05 1989-06-05 Relative displacement amount detector Expired - Fee Related JP2686653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14234289A JP2686653B2 (en) 1989-06-05 1989-06-05 Relative displacement amount detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14234289A JP2686653B2 (en) 1989-06-05 1989-06-05 Relative displacement amount detector

Publications (2)

Publication Number Publication Date
JPH036422A true JPH036422A (en) 1991-01-11
JP2686653B2 JP2686653B2 (en) 1997-12-08

Family

ID=15313132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14234289A Expired - Fee Related JP2686653B2 (en) 1989-06-05 1989-06-05 Relative displacement amount detector

Country Status (1)

Country Link
JP (1) JP2686653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286981A (en) * 1992-05-26 1995-10-31 Ta Instr Inc Method and apparatus for space resolution-type modulation differential analysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07286981A (en) * 1992-05-26 1995-10-31 Ta Instr Inc Method and apparatus for space resolution-type modulation differential analysis

Also Published As

Publication number Publication date
JP2686653B2 (en) 1997-12-08

Similar Documents

Publication Publication Date Title
US5432346A (en) Relative position change amount detecting apparatus having bi-directional probe with compensated movement
CA2046474C (en) Information detection apparatus and displacement information measurement apparatus
KR100540027B1 (en) Inter-atomic measurement technique
EP0497288B1 (en) Probe scanning system
JP2761801B2 (en) Angular positional relationship detection method and encoder using the same
JP2983876B2 (en) Real-time and nanometer-scale position measurement method and apparatus
JP2572026B2 (en) Speed signal generator
US5132533A (en) Method for forming probe and apparatus therefor
JP2775464B2 (en) Position detection device
JPH036422A (en) Encoder
JP4190582B2 (en) Interatomic measurement technology
JPH08285512A (en) Minute surface shape measuring equipment
US5757760A (en) Information recording and/or reproducing apparatus and method for performing recording and/or reproduction of information by using probe
EP0441399B1 (en) Position displacement detecting apparatus
JPH04115119A (en) Encoder
JPH02147803A (en) Scanning tunnel electron microscope
JP2000162218A (en) Scanning probe microscope
JP3581473B2 (en) Tracking method and information recording / reproducing device
JP2686651B2 (en) Displacement detector
JP3029504B2 (en) Scanning tunnel microscope and information recording / reproducing device
KR20230144861A (en) Potential gradient microscopy and operating method thereof
JPH08211074A (en) Probe microscope
JPS58177567A (en) Tracking or azimuth compensating device
JPH06325415A (en) Relative aligning device and method in information recording and reproducing device
JPH09281118A (en) Scanning type probe microscope

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees