JPH04115119A - Encoder - Google Patents

Encoder

Info

Publication number
JPH04115119A
JPH04115119A JP23337790A JP23337790A JPH04115119A JP H04115119 A JPH04115119 A JP H04115119A JP 23337790 A JP23337790 A JP 23337790A JP 23337790 A JP23337790 A JP 23337790A JP H04115119 A JPH04115119 A JP H04115119A
Authority
JP
Japan
Prior art keywords
probe
signal
relative displacement
relative
reference scale
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23337790A
Other languages
Japanese (ja)
Inventor
Akira Kuroda
亮 黒田
Hiroyasu Nose
博康 能瀬
Toshihiko Miyazaki
俊彦 宮崎
Takahiro Oguchi
小口 高弘
Kunihiro Sakai
酒井 邦裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP23337790A priority Critical patent/JPH04115119A/en
Publication of JPH04115119A publication Critical patent/JPH04115119A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PURPOSE:To measure relative displacement accurately and stably by relatively scanning a probe along the surface of a reference graduation, and correcting the deviation of the probe along the direction perpendicular to the detecting direction of the relative displacement. CONSTITUTION:An x-direction probe-driving signal 3a generated in a reference- signal oscillator 111 is applied on the x-direction driving electrode of an x-y-z direction probe-driving element 103 through an amplifier 112. A y-direction probe-driving signal 3b is applied to the y-direction driving electrode of the element 103 through an adder 113 and an amplifier 114. Then, the tip of a probe 104 scans a reference graduation 105 in a circle drawing pattern. In gate circuits 115 and 116, an input signal 3b from a current/voltage converter circuit 107 is gated with a gate signal whose phase is shifted in synchronization with signals 3a and 3b outputted from the oscillator 111. Thus, signals 3k and 3l are outputted. These signals are averaged in averaging circuits 117 and 118 and binary-coded in binary-coding circuits 119 and 120. Thus, a relative moving amount signal 4a and a moving direction signal 4b are obtained. An x-direction relative displacement amount 4c are further computed in an up and down counter 121.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微小位置決め、寸法測長、測距、速度および
計測等における位置情報測定、特に原子オーダ(0,1
ナノメートル)の分解能を必要とする計測制御に用いる
エンコーダに関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention is applicable to position information measurement in micro-positioning, dimension measurement, distance measurement, speed, measurement, etc., particularly on the atomic order (0, 1
This invention relates to encoders used for measurement control that require resolution of nanometers.

[従来の技術] 従来、この種のエンコーダは、位置または角度に関する
情報を有する基準目盛と、これと相対的に移動して位置
または角度に関する情報を検出する検出手段とで構成さ
れていた。そして、この基準目盛と検出手段によってい
くつかのタイプに分類され、例えば光学式エンコーダ、
磁気式エンコーダ、静電容量エンコーダ等があった。
[Prior Art] Conventionally, this type of encoder has been composed of a reference scale having information regarding position or angle, and a detection means that moves relative to the reference scale to detect information regarding position or angle. It is classified into several types depending on this reference scale and detection means, such as optical encoder,
There were magnetic encoders, capacitive encoders, etc.

また、さらに高分解能が得られる変位量測定装置として
、走査トンネル顕微鏡(STM)の原理を用いて原子配
列を基準目盛とした平行移動量検出装置、走査型トンネ
ル電流検圧装置や位置決め装置が提案されている(特開
昭62−209302号公報、1989年度精密工学会
秋季大会学術講1寅会論文集P153)。走査型トンネ
ル顕微鏡は、導電性試料と導電性探針との間に電圧を印
加してlnm程度の距離まで接近させるとトンネル電流
か流れ、その距離によりトンネル電流か指数関数的に変
化することを利用したものて、先鋭な探針を用いて、導
電性物質からなる試料表面との距離を一定に保ち、2次
元的に走査すると、表面の原子配列または凹凸の形状に
よりトンネル電流が変化し、表面の像を得ることかでき
る[G、B1nn1g et al、、Phys、Re
v、Lett、49(1982)57]。
In addition, as a displacement measurement device that can obtain even higher resolution, we have proposed a parallel displacement detection device using the principle of a scanning tunneling microscope (STM) with the atomic arrangement as a reference scale, a scanning tunnel current pressure detection device, and a positioning device. (Japanese Unexamined Patent Publication No. 62-209302, 1989 Japan Society for Precision Engineering Autumn Conference Academic Lecture 1 Tora Meeting Proceedings P153). In a scanning tunneling microscope, when a voltage is applied between a conductive sample and a conductive probe and the probe is brought close to a distance of about 1 nm, a tunnel current flows, and the tunnel current changes exponentially depending on the distance. When a sharp probe is used to scan two-dimensionally while maintaining a constant distance from the surface of a sample made of a conductive material, the tunneling current changes depending on the atomic arrangement or the shape of the irregularities on the surface. It is possible to obtain images of the surface [G, B1nn1g et al, Phys, Re
v. Lett, 49 (1982) 57].

規則的原子配列または周期的凹凸形状を有する試料を基
準目盛とし、その基準目盛と探針間に基準目盛の方向に
沿った相対的位置すれが生しるとそれに応して周期的に
トンネル電流が変化することを利用して、0.1ナノメ
ートル程度という原子オーダーの分解能を有する変位量
測定装置を構成することができる。
When a sample with a regular atomic arrangement or a periodic uneven shape is used as a reference scale, and there is a relative positional deviation between the reference scale and the probe along the direction of the reference scale, a tunnel current periodically occurs. By taking advantage of this change, it is possible to construct a displacement measuring device having an atomic-order resolution of about 0.1 nanometer.

[発明か解決しようとしている課題] しかしながら、上記従来例において基準目盛としてグラ
ファイト(HOPGまたはK15hグラフアイト)のよ
うな結晶格子を用いることができるが、実際のグラファ
イトのSTM像は第6図(A)に示すように三角格子状
に観察され、探針の移動する軌跡(図中の矢印)により
、検出されるトンネル電流は第6図(B)のように変化
する。例えば探針が図示するように結晶格子の山にのっ
たときの軌跡6aの場合には、波形6a”のような振幅
が太きくS/Nの良い信号か得られるが、谷に沿った軌
跡6bの場合は波形6b’のように振幅が非常に小さく
S/Nは悪くなる。また結晶格子の整列方向に対して傾
いた軌跡6cの場合は波形6c’のように山にのった所
は振幅は大きく谷を横切るところは小さくなってしまい
、圧力の誤差となってくる。
[Problem to be solved by the invention] However, in the above conventional example, a crystal lattice such as graphite (HOPG or K15h graphite) can be used as a reference scale, but the actual STM image of graphite is shown in Fig. 6 (A ), the tunneling current is observed in a triangular lattice shape, and the detected tunnel current changes as shown in FIG. 6(B) depending on the trajectory of the probe (arrow in the figure). For example, in the case of the trajectory 6a when the probe rests on the peaks of the crystal lattice as shown in the figure, a signal with a thick amplitude and good S/N as shown in waveform 6a'' can be obtained, but if In the case of trace 6b, the amplitude is very small as in waveform 6b', and the S/N is poor.In addition, in the case of trace 6c, which is tilted with respect to the alignment direction of the crystal lattice, it rides on a mountain as in waveform 6c'. The amplitude is large at certain points and becomes small at points where it crosses the valley, resulting in pressure errors.

実際に上記従来例のように変位量測定装置を構成した場
合、探針の軌跡が第6図(A)の軌跡6aを通ることが
望ましいが、結晶格子を利用した基準目盛では01ナノ
メートルオーダーて相対移動量検出方向(X方向とよぶ
)と直交する方向(X方向とよぶ)に探針と基準目盛か
相対的にずれないように保持することは、変位量測定装
置として装置に組込んだ状態での温度ドリフト、応力緩
和、外部からの振動などによる相対すれ、相対秘動支持
機構の非直線性、相対移動方向と基準目盛の結晶格子方
向との角度誤差等かあるため、非常に困難であった。
In fact, when a displacement measuring device is configured as in the conventional example above, it is desirable that the trajectory of the probe passes along the trajectory 6a in FIG. Holding the probe and the reference scale so that they do not deviate relative to each other in the direction (referred to as the X direction) perpendicular to the relative displacement detection direction (referred to as the Due to temperature drift in the open state, stress relaxation, relative displacement due to external vibration, non-linearity of the relative movement support mechanism, angular error between the direction of relative movement and the crystal lattice direction of the reference scale, etc. It was difficult.

また、上記従来例の位置決め装置においては、てあり、
結晶格子の局所的欠陥によって誤差を生しる。
In addition, in the conventional positioning device described above, there are
Errors are caused by local defects in the crystal lattice.

また、上記従来例の走査型トンネル電流検出装置におい
ても、探針をx、y2方向に異なる振動数て横振動させ
る必要があり、エンコーダとしての追従速度が小さくな
るという問題があった。
Furthermore, in the conventional scanning tunnel current detection device described above, it is necessary to vibrate the probe laterally at different frequencies in the x and y directions, which causes a problem in that the tracking speed as an encoder becomes low.

本発明の目的は、このような従来技術の間H,6に鑑み
、0.1ナノメートルオーダーの分解能をもつエンコー
ダにおいて、探針と基準目盛か相対移動量検出方向と直
交する方向に相対的にすれないようにし、かつ、追従速
度か大きいエンコータを実現することにある。
In view of the above-mentioned problems in the prior art, it is an object of the present invention to provide an encoder with a resolution of 0.1 nanometer order, in which the probe and the reference scale are relative to each other in a direction perpendicular to the relative movement detection direction. The purpose of the present invention is to realize an encoder with a high follow-up speed and a high tracking speed.

[課題を解決するための手段] 上記目的を達成するため本発明のエンコーダは、第1の
物体に固定された周期パターン表面を有する基準目盛と
、その基準目盛に先端を近つけて第2の物体上に配置さ
れた探針と、この探針を基準目盛の表面に沿って相対的
に閉曲線状に走査させる探針駆動手段と、探針を介して
基準目盛の情報に応じた信号を検出する信号検出手段と
、探針駆動手段による走査に際して信号検出手段により
検出される信号に基づき第1および第2の物体間の所定
方向の相対変位を検出する変位検出手段と、変位検出手
段による相対変位検出方向と直交する方向への相対ずれ
を検出するずれ検出手段と、ずれ検出手段による検出結
果に基ついて基準目盛と探針との相対すれを補正するよ
うに基準目盛と探針とを相対移動させる相対移動手段と
を具備する。
[Means for Solving the Problems] In order to achieve the above object, the encoder of the present invention has a reference scale having a periodic pattern surface fixed to a first object, and a second scale whose tip is brought close to the reference scale. A probe placed on the object, a probe driving means that scans the probe in a relatively closed curve along the surface of the reference scale, and a signal corresponding to the information on the reference scale detected through the probe. a signal detecting means for detecting a relative displacement in a predetermined direction between the first and second objects based on a signal detected by the signal detecting means during scanning by the probe driving means; a deviation detection means for detecting a relative deviation in a direction perpendicular to the displacement detection direction; and a deviation detection means for detecting a relative deviation in a direction perpendicular to the displacement detection direction; and relative moving means for moving.

探針駆動手段は、相対変位検出方向の成分の振幅が、相
対変位検出方向の基準目盛の間る方向の成分の振幅か相
対変位検出方向と直交探針を閉曲線状に走査させるもの
であるのが好ましい。
The probe driving means is such that the amplitude of the component in the relative displacement detection direction is equal to the amplitude of the component in the direction between the reference scales in the relative displacement detection direction or the probe is made to scan in a closed curve shape orthogonal to the relative displacement detection direction. is preferred.

前記閉曲線としては、例えば、円または楕円か用いられ
る。
As the closed curve, for example, a circle or an ellipse is used.

相対移動手段における制御状態から、相対変位検出方向
と直交する方向の相対変位量を検出するようにしてもよ
い。
The amount of relative displacement in a direction orthogonal to the relative displacement detection direction may be detected from the control state of the relative displacement means.

[作用] この構成において、探針を基準目盛の表面に沿つて相対
的に円周状または楕円周状に走査させると、探針先端が
相対変位量検出方向と平行で走査円または楕円の中心を
通る直線上を横切る2ケ所におけるトンネル電流の大き
さは、相対変位量検出方向の基準目盛の目盛列と探針と
の相対位置に応じて変化する。すなわち、トンネル電流
信号の大きさは探針が目盛列の真上のとき最大となり、
目盛列の間にあるとき最小となり、目盛列に対応して周
期的に変化する。したがって、相対変位量の検出に際し
ては、上述の2ケ所における信号の方で目盛列をカウン
トし、他方で、移動方向を検知する。
[Function] In this configuration, when the probe is scanned relatively in a circular or elliptical manner along the surface of the reference scale, the tip of the probe is parallel to the relative displacement detection direction and the center of the scanning circle or ellipse. The magnitude of the tunnel current at two locations crossing the straight line passing through changes depending on the relative position of the probe and the scale row of the reference scale in the relative displacement detection direction. In other words, the magnitude of the tunnel current signal is maximum when the probe is directly above the scale row,
It is at its minimum when it is between the scale rows, and changes periodically in accordance with the scale rows. Therefore, when detecting the amount of relative displacement, the scale rows are counted based on the signals at the two locations mentioned above, and the direction of movement is detected using the other signal.

探針先端が、相対変位量検出方向と直交し、走査円また
は楕円の中心を通る直線上を横切る2ケ所におけるトン
ネル電流の大きさは、相対変位量検出方向と直交する方
向の基準目盛と探針とのずれに応じて変化する。したか
って、上述の2ケ所における信号の大きさが同一になる
ように基準目盛と探針との相対ずれ量を補正するよう相
対移動させて、探針走査の中心が相対変位量検出方向と
平行な基準目盛上のある目盛列上に保たれる。
The magnitude of the tunnel current at two locations where the tip of the probe crosses a straight line that is perpendicular to the relative displacement detection direction and passes through the center of the scanning circle or ellipse is determined by the reference scale and the probe in the direction perpendicular to the relative displacement detection direction. It changes depending on the deviation from the needle. Therefore, the relative displacement between the reference scale and the probe is corrected so that the signal magnitudes at the two locations described above are the same, and the center of probe scanning is parallel to the relative displacement detection direction. is kept on a certain scale row on a standard reference scale.

[実施例コ 以下、図面を用いて本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例に係るエンコーダの構成を示
すブロック図であり、第2図はこのエンコーダの原理を
示す説明図、第3図と第4図は、このエンコーダの各構
成部分において得られる信号を示す波形図、第5図は、
他の探針走査法と基準目盛を示す説明図である。
FIG. 1 is a block diagram showing the configuration of an encoder according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the principle of this encoder, and FIGS. 3 and 4 show each component of this encoder. A waveform diagram showing the signal obtained in FIG. 5 is as follows.
FIG. 7 is an explanatory diagram showing another probe scanning method and a reference scale.

第1図に示すように、このエンコータは、相対変位量を
検知すべぎ2つの対象物の一方である対象物101に固
定したxyz方向探針駆動素子103、その先端に取り
付けた導電性を有する探針104、探針104の先端に
対抗するように他方の対象物102上に固定した導電性
を有する2次元基準目盛105を備える。2次元基準目
盛105としては、例えは、グラファイトのへき開面の
炭素原子格子、雲母のへき開面基板上の金のエピタキシ
ャル成長面の金原子格子、丁丁F−TCNQ (テトラ
チアフルバレン・テトラシアノキノジメタン)結晶のへ
き開面の分子配列なと原子や分子の周期的な2次元配列
を用いる。探針1゜4と基準目盛105の間にはバイア
ス電源+06によりバイアス電圧が加えられ、探針駆動
素子103により探針104の先端と基準目盛105と
の間隔はトンネル電流か流れる程度まで近づけられるよ
うになっている。このトンネル電流は電流−電圧変換回
路107により電圧に変換され、これを用いて探針10
4と基準目盛105とか相対移動する際に平均間隔が一
定となるように制御される。すなわち、電流−電圧変換
回路107の出力信号3gは平均トンネル電流設定回路
108に人力されて所望の間隔となる設定トンネル電流
値とのエラー信号か検出され、その検出信号に基つきロ
ーパスフィルタ109および増幅器11oを介して探針
駆動素子103のX方向駆動電極に制御電圧か印加され
る。ローパスフィルタ+09のカットオフ周波数は、探
針104て基準目盛1゜5を走査したときに基準目盛の
山により探針と基準目盛の間隔か変化することにより生
するトンネル電流の速い変調成分を取り除ぎ、トンネル
電流の直流成分を通すように選はれる。これにより探針
104は基準目盛105との平均距離か一定となるよう
に、探針駆動素子103によりX方向に駆動制御される
As shown in FIG. 1, this encoder has an xyz direction probe drive element 103 fixed to an object 101, which is one of two objects, and a conductive element attached to the tip of the element 103 to detect the amount of relative displacement. A probe 104 is provided with a conductive two-dimensional reference scale 105 fixed on the other object 102 so as to oppose the tip of the probe 104 . Examples of the two-dimensional reference scale 105 include a carbon atomic lattice on a cleavage plane of graphite, a gold atomic lattice on an epitaxial growth surface of gold on a cleavage plane substrate of mica, and a carbon atomic lattice on an epitaxial growth plane of gold on a cleavage plane substrate of mica. ) Uses a periodic two-dimensional arrangement of atoms and molecules, such as the molecular arrangement of the cleavage plane of a crystal. A bias voltage is applied between the probe 1°4 and the reference scale 105 by a bias power supply +06, and the distance between the tip of the probe 104 and the reference scale 105 is brought close to the extent that a tunnel current flows by the probe driving element 103. It looks like this. This tunnel current is converted into voltage by the current-voltage conversion circuit 107, and is used to
4 and the reference scale 105 are controlled so that the average interval remains constant when they move relative to each other. That is, the output signal 3g of the current-voltage conversion circuit 107 is manually inputted to the average tunnel current setting circuit 108, and an error signal with a set tunnel current value having a desired interval is detected.Based on the detected signal, the low-pass filter 109 and A control voltage is applied to the X-direction drive electrode of the probe drive element 103 via the amplifier 11o. The cutoff frequency of the low-pass filter +09 removes the fast modulation component of the tunnel current that is generated when the probe 104 scans the reference scale of 1°5 and the distance between the probe and the reference scale changes due to the peak of the reference scale. is selected to pass the direct current component of the tunneling current. As a result, the probe 104 is driven and controlled in the X direction by the probe drive element 103 so that the average distance from the reference scale 105 is constant.

また、振動数fの余弦波信号であるX方向探針駆動信号
3aおよび振動数fの正弦波信号であるy方向探針駆動
信号3bならびにケート信号3c〜3fを発生する基準
信号発振器111、このX方向探針駆動信号3aを増幅
して探針駆動素子103のX方向駆動電極に印加する増
幅器112、y方向探針駆動信号3bとy方向制御回路
127からのy方向制御信号とを加算する加算器113
、その圧力を増幅して探針駆動素子1゜3のy方向駆動
N極に印加する増幅器】14、電流;正変換回路107
からの出力信号3gとそれぞれ基準信号発振器111か
らのゲート信号30〜3dとのアンドをとってイ言号3
に、3m。
Further, a reference signal oscillator 111 that generates an X-direction probe drive signal 3a that is a cosine wave signal of frequency f, a y-direction probe drive signal 3b that is a sine wave signal of frequency f, and gate signals 3c to 3f; An amplifier 112 amplifies the X-direction probe drive signal 3a and applies it to the X-direction drive electrode of the probe drive element 103, and adds the y-direction probe drive signal 3b and the y-direction control signal from the y-direction control circuit 127. Adder 113
, an amplifier that amplifies the pressure and applies it to the y-direction driving N pole of the probe driving element 1゜3] 14. Current: Positive conversion circuit 107
The output signal 3g from the reference signal oscillator 111 is ANDed with the gate signals 30 to 3d from the reference signal oscillator 111, respectively, and
3m.

3u、3nを出力するゲート回路115122、  1
16.  123  、  イ言 号 3に、   3
m3ρ、3nをそれぞれ平均化して出力する平均化回路
117.124.118.125、平均化回路117.
118の出力をそれぞね二値化して相対B動量信号4a
および移動方向信号4bを出力する二値化回路119.
120、信号4a、4bに基づきX方向相対変位置を算
出してX方向相対変位量信号4cを出力するアップダウ
ンカウンタ121、平均化回路124と125の出力の
差をとって出力する減算器126、そして、減算器12
6からの差信号がゼロとなるようにy方向制御信号を加
算器】13に出力するy方向制御回路127を備える。
Gate circuit 115122, 1 that outputs 3u and 3n
16. 123, A word No. 3, 3
Averaging circuits 117.124.118.125 and 117.125 average and output m3ρ and 3n, respectively.
Each of the outputs of 118 is binarized to obtain a relative B movement signal 4a.
and a binarization circuit 119 that outputs the moving direction signal 4b.
120, an up/down counter 121 that calculates the X-direction relative displacement position based on the signals 4a and 4b and outputs the X-direction relative displacement amount signal 4c, and a subtractor 126 that calculates and outputs the difference between the outputs of the averaging circuits 124 and 125. , and subtractor 12
A y-direction control circuit 127 is provided which outputs a y-direction control signal to the adder 13 so that the difference signal from 6 becomes zero.

次に、対象物101 (探針側)と対象物102(基準
目盛側)間の相対変位量(相対移動量及び相対啓動方向
)を検知する動作を説明する。
Next, the operation of detecting the relative displacement amount (relative movement amount and relative movement direction) between the object 101 (probe side) and the object 102 (reference scale side) will be described.

基準信号発振器111て発生したX方向探針駆動信号3
aを増幅器112を介して探針駆動素子103のX方向
駆動電極に印加するとともに、y方向探針駆動信号3b
を加算器113と増幅器114を介して探針駆動素子1
03のX方向駆動電極に印加すると、第2図に示すよう
に、探針104の先端は、円201を描くようにして基
準目盛105を走査する。このとき、探針104先端の
軌跡の円の直径をDとし、基準目盛の原子配列の格子間
隔dとすると、 D=(N±−)d  (N=1.2,3.・・・)とな
るように、余弦波信号(X方向探針駆動信号3a)及び
正弦波信号(y方向探針駆動信号3b)の振幅を調節す
る。これにより、後述するX方向の移動方向信号4bが
最大となる。
X-direction probe drive signal 3 generated by the reference signal oscillator 111
a is applied to the X-direction drive electrode of the probe drive element 103 via the amplifier 112, and the Y-direction probe drive signal 3b is applied to the X-direction drive electrode of the probe drive element 103.
is connected to the probe driving element 1 via an adder 113 and an amplifier 114.
When the voltage is applied to the X-direction drive electrode 03, the tip of the probe 104 scans the reference scale 105 in a circle 201, as shown in FIG. At this time, if the diameter of the circle of the trajectory of the tip of the probe 104 is D, and the lattice spacing of the atomic arrangement of the reference scale is d, then D=(N±-)d (N=1.2, 3...) The amplitudes of the cosine wave signal (X-direction probe drive signal 3a) and the sine wave signal (y-direction probe drive signal 3b) are adjusted so that As a result, the moving direction signal 4b in the X direction, which will be described later, becomes maximum.

第2図において、点A〜Eは、対象物101と対象物1
02とが、X方向に相対移動を生したときに移動してゆ
く、各時点での探針104先端の軌跡の中心を示す。探
針104先端の円運動の中心がX軸に沿って点AからE
へと移動するにつれて、電流電圧変換回路107の出力
信号は、信号3g〜3j、そして3gと変化する。
In FIG. 2, points A to E are object 101 and object 1.
02 indicates the center of the trajectory of the tip of the probe 104 at each point in time when relative movement occurs in the X direction. The center of circular motion of the tip of the probe 104 is from point A to E along the X axis.
, the output signal of the current-voltage conversion circuit 107 changes from signals 3g to 3j to 3g.

今、中心が点Aにあるとすると、ゲート回路115およ
び116ては、基準信号発振器111から出力される、
x、X方向探針駆動信号3a3bに同期し互いに位相か
すれたゲート信号3c、3eによって、電流電圧変換回
路107からの人力信号3gにゲートかかけられ、信号
3に、3uか出力される。これらの信号を第3図(k)
、(Il)においてそれぞれ破線で示すように平均化回
路117.118で平均化し、モして二値化回路119
.120で二値化して相対移動量信号4aおよび移動方
向信号4bとし、ざらにこれらの信号に基つきアップダ
ウンカウンタ121においてX方向相対変位量4cを算
出する。算出は、次のようにして行なう。
Now, assuming that the center is at point A, the gate circuits 115 and 116 output from the reference signal oscillator 111,
The human power signal 3g from the current-voltage conversion circuit 107 is gated by the gate signals 3c and 3e, which are synchronized with the x and X-direction probe drive signals 3a3b and are out of phase with each other, and the signal 3u is output as the signal 3. These signals are shown in Figure 3 (k).
, (Il), are averaged by averaging circuits 117 and 118 as shown by broken lines, and are then averaged by a binarization circuit 119.
.. In step 120, the relative displacement amount signal 4a and the moving direction signal 4b are binarized, and roughly based on these signals, the X-direction relative displacement amount 4c is calculated in the up/down counter 121. The calculation is performed as follows.

すなわち、相対移動量信号パルス4aのパルス立ち下か
り点り、、D2.D3において、移動方向信号4bの符
号か+(プラス)であれは、カウンタ121はパルス数
を加算し、−(マイナス)てあれは、減算する。さらに
、パルス立ち上がり点U、、U2において符号か−(マ
イナス)であれば、パルス数を加算し、+(プラス)で
あれば減算する。このようにして、X方向相対変位量4
cを求めることかできる。
That is, the pulse falling point of the relative movement amount signal pulse 4a, , D2. In D3, if the sign of the movement direction signal 4b is + (plus), the counter 121 adds the number of pulses, and if it is - (minus), it subtracts it. Further, if the sign is - (minus) at the pulse rising points U, U2, the number of pulses is added, and if it is + (plus), the number of pulses is subtracted. In this way, the X-direction relative displacement amount 4
It is possible to find c.

y方向相対変位量については、同様に今、中心が点Aに
あるとすると、ケート回路122123において、基準
信号発振器111から出力されるx、X方向探針駆動信
号3a、3bに同期し互いに位相がずれたケート信号3
d、3fによって、電流電圧変換回路107からの人力
信号3gにケートかかけられ信号3m、3nが出力され
る。これらの信号は、第3図(m)、(n)において破
線で示すように平均化回路124125て平均化され、
減算器126てそれらの差かとられ、そしてその差信号
がゼロとなるようにX方向制御回路127からX方向制
御信号か加算器113および増幅器114を介して、探
針駆動素子103のX方向駆動電極に印加され、これに
よってX方向の探針位置制御が行なわれる。
Regarding the amount of relative displacement in the y direction, assuming that the center is now at point A, the gate circuit 122123 synchronizes with the x and Kate signal 3 shifted
d and 3f are applied to the human power signal 3g from the current-voltage conversion circuit 107, and signals 3m and 3n are output. These signals are averaged by an averaging circuit 124125 as shown by broken lines in FIGS. 3(m) and (n),
The subtracter 126 calculates the difference between them, and the X-direction control signal is sent from the X-direction control circuit 127 to drive the probe drive element 103 in the X-direction via the adder 113 and amplifier 114 so that the difference signal becomes zero. The voltage is applied to the electrode, thereby controlling the probe position in the X direction.

このようにして、対象物101と対象物102とか相対
変位を生ずる際に、探針104は回転運動をしなから、
その中心か基準目盛105のX方向のある1つの原子配
列に沿うように移動することになり(トラッキング)、
対象物101と102とが、X方向に相対変位を生して
も、探針104先端は、基準目盛105に対して、(回
転運動のX方向成分以外の)X方向には相対変位を生し
ない。
In this way, when a relative displacement occurs between the object 101 and the object 102, the probe 104 does not make a rotational movement.
The center will move along one atomic arrangement in the X direction of the reference scale 105 (tracking),
Even if the objects 101 and 102 produce a relative displacement in the X direction, the tip of the probe 104 produces a relative displacement in the X direction (other than the X direction component of rotational motion) with respect to the reference scale 105. do not.

このときのX方向制御信号は、基準目盛105に対して
探針104先端をX方向に追従させるために探針駆動素
子103に加える信号であり、したがってこれから、対
象物101と102とのy方向相対変位量を求めること
かできる。また同時に、探針104は基準目盛105の
X方向のある1つの原子配列に沿うように移動(トラッ
キング)するため、X方向相対移動量の検知においてX
方向の横ずれによる検知誤差がない。
The X-direction control signal at this time is a signal applied to the probe drive element 103 in order to make the tip of the probe 104 follow the reference scale 105 in the X direction. It is possible to calculate the amount of relative displacement. At the same time, the probe 104 moves (tracks) along one atomic arrangement in the X direction of the reference scale 105, so when detecting the amount of relative movement in the X direction,
There is no detection error due to lateral deviation in direction.

なお、本実施例では、基準目盛105の原子配列か三角
格子の場合を例にあげ、探針104先端の運動の軌跡が
円の場合について説明したが、本発明の概念は、なんら
ごわらに限定されるものでなく、例えば、第5図(A)
および(B)に示すように、探針先端の運動の軌跡が、
楕円501でもよい。この場合、X方向格子間隔をdx
、’!方向格子間隔をdYとすれは、X方向の8勅方向
信号およびX方向のトラッキング用差信号が最大となる
ように、楕円のX軸径Dx、Y軸径DYがそれぞれ となるように、探針駆動素子103に印加する余弦波信
号及び正弦波信号の振幅を調節する。
In this embodiment, the reference scale 105 has an atomic arrangement or a triangular lattice, and the locus of movement of the tip of the probe 104 is circular. For example, without limitation, FIG. 5(A)
And as shown in (B), the locus of movement of the tip of the probe is
An ellipse 501 may also be used. In this case, the grid spacing in the X direction is dx
,'! If the directional grid spacing is dY, search is performed so that the X-axis diameter Dx and Y-axis diameter DY of the ellipse are respectively the same, so that the 8 direction signals in the X direction and the tracking difference signal in the X direction are maximized. The amplitudes of the cosine wave signal and the sine wave signal applied to the needle drive element 103 are adjusted.

また、第5図(C)に示すように、基準目盛105の原
子配列が四角格子の場合も同様である。
Further, as shown in FIG. 5(C), the same applies when the atomic arrangement of the reference scale 105 is a square lattice.

[発明の効果コ 以上説明したように本発明によれば、原子配列等を基準
目盛に用い、探針を介して基準目盛の情報に応じた信号
を検出し、探針と基準目盛の相対位置ずれを検知するエ
ンコーダにおいて、探針を基準目盛の表面に沿って、相
対的に閉曲線状に走査させ、得られた信号に基づいて、
相対変位検出方向に垂直な方向に沿った探針のずれを補
正するように制御するようにしたため、装置の温度ドリ
フト、外部から振動、相対移動支持機構の非直線性、基
準目盛の角度設定誤差等に起因する相対変位検出方向と
直交する方向の相対ずれを補正し、相対変位を正確かつ
安定に計測することが可能となる。
[Effects of the Invention] As explained above, according to the present invention, an atomic arrangement or the like is used as a reference scale, a signal corresponding to information on the reference scale is detected via a probe, and the relative position of the probe and the reference scale is detected. In an encoder that detects deviation, the probe is scanned in a relatively closed curve along the surface of the reference scale, and based on the obtained signal,
Control is performed to correct the deviation of the probe along the direction perpendicular to the direction of relative displacement detection, which eliminates temperature drift of the device, external vibration, nonlinearity of the relative movement support mechanism, and angle setting error of the reference scale. It becomes possible to correct the relative displacement in the direction orthogonal to the relative displacement detection direction caused by such factors, and to accurately and stably measure the relative displacement.

また、円周状、楕円状等の閉曲線状に探針を走査させる
ため、高速化が可能で、追従速度か大きいエンコーダー
が実現される。
Furthermore, since the probe scans in a closed curve shape such as a circumferential shape or an elliptical shape, it is possible to increase the speed and realize an encoder with a high tracking speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例に係るエンコータの構成を
示すブロック図、 第2図は、本発明のエンコータの原理を示す説明図、 第3図(a)〜(n)および第4図は、第1図の装置の
各構成部分において得られる信号を示す波形図、 第5図(A)〜(C)は、他の探針走査法および基準目
盛を示す説明図、そして 第6図(A)および(B)は、従来例に係る測長用波形
の説明図である。 101・対象物、102:対象物、103:xyz方向
探針駆動素子、104・探針、105:基準目盛、10
6:ハイアス電源、1.07電流電圧変換回路、108
 平均トンネル電流設定回路、109:ローバスフィル
タ、110.増幅器、111:基準信号発振器、112
・増幅器、113 加算器、114:増幅器、115 
ゲート回路、】16.ケート回路、117.平均化回路
、118:平均化回路、119:二値化回路、120、
二値化回路、121 アップダウンカウンタ、122・
ゲート回路、123 ケート回路、124・平均化回路
、125:平均化回路、126:減算器、127:y方
向制御回路。
FIG. 1 is a block diagram showing the configuration of an encoder according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing the principle of the encoder of the present invention, and FIGS. The figure is a waveform diagram showing the signals obtained in each component of the device in Figure 1, Figures 5 (A) to (C) are explanatory diagrams showing other probe scanning methods and reference scales, and Figures (A) and (B) are explanatory diagrams of a length measurement waveform according to a conventional example. 101 - Target object, 102: Target object, 103: xyz direction probe drive element, 104 - Probe, 105: Reference scale, 10
6: Hias power supply, 1.07 current voltage conversion circuit, 108
Average tunnel current setting circuit, 109: Low-pass filter, 110. Amplifier, 111: Reference signal oscillator, 112
・Amplifier, 113 Adder, 114: Amplifier, 115
Gate circuit, ]16. Kate circuit, 117. Averaging circuit, 118: Averaging circuit, 119: Binarization circuit, 120,
Binarization circuit, 121 Up/down counter, 122.
gate circuit, 123 gate circuit, 124/averaging circuit, 125: averaging circuit, 126: subtracter, 127: y-direction control circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)第1の物体に固定された周期パターン表面を有す
る基準目盛と、その基準目盛に先端を近づけて第2の物
体上に配置された探針と、この探針を基準目盛の表面に
沿って相対的に閉曲線状に走査させる探針駆動手段と、
探針を介して基準目盛の情報に応じた信号を検出する信
号検出手段と、探針駆動手段による走査に際して信号検
出手段により検出される信号に基づき第1および第2の
物体間の所定方向の相対変位を検出する変位検出手段と
、変位検出手段による相対変位検出方向と直交する方向
への相対ずれを検出するずれ検出手段と、ずれ検出手段
による検出結果に基づいて基準目盛と探針との相対ずれ
を補正するように基準目盛と探針とを相対移動させる相
対移動手段とを具備することを特徴とするエンコーダ。
(1) A reference scale with a periodic pattern surface fixed to a first object, a probe placed on a second object with its tip close to the reference scale, and a probe placed on the surface of the reference scale. a probe driving means for scanning in a relatively closed curve along the probe;
A signal detection means detects a signal according to information on a reference scale via the probe; and a signal detection means detects a signal in a predetermined direction between the first and second objects based on the signal detected by the signal detection means during scanning by the probe drive means. Displacement detection means for detecting relative displacement; Displacement detection means for detecting relative displacement in a direction orthogonal to the relative displacement detection direction by the displacement detection means; An encoder comprising a relative moving means for relatively moving a reference scale and a probe so as to correct a relative deviation.
(2)探針駆動手段は、相対変位検出方向の成分の振幅
が、相対変位検出方向の基準目盛の間隔の1/4以上で
あり、相対変位検出方向と直交する方向の成分の振幅が
相対変位検出方向と直交する方向の基準目盛の間隔の1
/2以上であるように探針を閉曲線状に走査させるもの
である、請求項1記載のエンコーダ。
(2) The probe driving means is such that the amplitude of the component in the relative displacement detection direction is 1/4 or more of the interval between the reference scales in the relative displacement detection direction, and the amplitude of the component in the direction orthogonal to the relative displacement detection direction is relative to the relative displacement detection direction. 1 of the interval between the reference scales in the direction orthogonal to the displacement detection direction
2. The encoder according to claim 1, wherein the probe scans in a closed curve shape so that the angle is greater than or equal to /2.
(3)前記閉曲線が、円または楕円である、請求項1ま
たは2記載のエンコーダ。
(3) The encoder according to claim 1 or 2, wherein the closed curve is a circle or an ellipse.
(4)相対移動手段における制御状態から、相対変位検
出方向と直交する方向の相対変位量を検出する手段を備
える、請求項1〜4いずれかに記載のエンコーダ。
(4) The encoder according to any one of claims 1 to 4, further comprising means for detecting a relative displacement amount in a direction perpendicular to a relative displacement detection direction from a control state of the relative movement means.
JP23337790A 1990-09-05 1990-09-05 Encoder Pending JPH04115119A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23337790A JPH04115119A (en) 1990-09-05 1990-09-05 Encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23337790A JPH04115119A (en) 1990-09-05 1990-09-05 Encoder

Publications (1)

Publication Number Publication Date
JPH04115119A true JPH04115119A (en) 1992-04-16

Family

ID=16954149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23337790A Pending JPH04115119A (en) 1990-09-05 1990-09-05 Encoder

Country Status (1)

Country Link
JP (1) JPH04115119A (en)

Similar Documents

Publication Publication Date Title
EP0397116B1 (en) Information detecting apparatus
US5414260A (en) Scanning probe microscope and method of observing samples by using the same
Griffith et al. A scanning tunneling microscope with a capacitance‐based position monitor
US5323003A (en) Scanning probe microscope and method of observing sample by using such a microscope
CN106907999B (en) A kind of grating sensor displacement measurement system based on phase-modulation
Peng et al. Sensing mechanism and error analysis of a capacitive long-range displacement nanometer sensor based on time grating
JP2983876B2 (en) Real-time and nanometer-scale position measurement method and apparatus
JP2761801B2 (en) Angular positional relationship detection method and encoder using the same
KR19990029072A (en) Internal atom measurement method
Kawakatsu et al. Crystalline lattice for metrological applications and positioning control by a dual tunneling‐unit scanning tunneling microscope
JP2775464B2 (en) Position detection device
Mazzeo et al. Atomic force microscope for accurate dimensional metrology
JPH04115119A (en) Encoder
JP4190582B2 (en) Interatomic measurement technology
Aketagawa et al. Tracking and stepping control of the tip position of a scanning tunneling microscope by referring to atomic points and arrays on a regular crystalline surface
JP2013011471A (en) Gap measuring device, surface shape measuring apparatus, gap measuring method and surface shape measuring method
JP3103217B2 (en) Scanning probe microscope and method for observing a sample using the same
US20020079446A1 (en) Scanning probe microscope
JPH036422A (en) Encoder
JP3029504B2 (en) Scanning tunnel microscope and information recording / reproducing device
Chen et al. Atomic force microscope cantilevers as encoders for real-time forward and backward displacement measurements
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JPH045503A (en) Inclination correcting method
JPH06258014A (en) Scanning probe microscope and recorder and/or reproducer employing it
JPH02311709A (en) Encoder