JP2686651B2 - Displacement detector - Google Patents

Displacement detector

Info

Publication number
JP2686651B2
JP2686651B2 JP13283689A JP13283689A JP2686651B2 JP 2686651 B2 JP2686651 B2 JP 2686651B2 JP 13283689 A JP13283689 A JP 13283689A JP 13283689 A JP13283689 A JP 13283689A JP 2686651 B2 JP2686651 B2 JP 2686651B2
Authority
JP
Japan
Prior art keywords
probe
dimensional surface
dimensional
reference object
displacement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13283689A
Other languages
Japanese (ja)
Other versions
JPH02311709A (en
Inventor
博康 能瀬
俊光 川瀬
俊彦 宮▲崎▼
高弘 小口
明彦 山野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP13283689A priority Critical patent/JP2686651B2/en
Priority to EP90109350A priority patent/EP0398334B1/en
Priority to DE69012644T priority patent/DE69012644T2/en
Publication of JPH02311709A publication Critical patent/JPH02311709A/en
Priority to US07/780,452 priority patent/US5130554A/en
Application granted granted Critical
Publication of JP2686651B2 publication Critical patent/JP2686651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、微小位置決め、寸法測定、測距、速度およ
び計測等における位置情報測定、特に原子オーダ(0.1
ナノメートメ)の分解能を必要とする計測制御に用いる
変位量検出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to position information measurement in micropositioning, dimension measurement, distance measurement, speed and measurement, particularly in atomic order (0.1
The present invention relates to a displacement amount detection device used for measurement control that requires nanometer resolution.

[従来の技術] 従来この種の変位量検出装置は、位置または角度に関
する情報を有する基準目盛とこれと相対的に移動して位
置または角度に関する情報を検出する検出手段とで構成
されていた。そして、この基準目盛と、検出手段によっ
ていくつかのタイプに分類され、例えば光学式変位量検
出装置、磁気式変位量検出装置、静電容量変位量検出装
置等があった。
[Prior Art] Conventionally, a displacement amount detecting device of this type has been constituted by a reference scale having information on a position or an angle and a detecting means which moves relative to the reference scale to detect information on the position or the angle. The reference scale and the detection means are classified into several types, for example, an optical displacement amount detection device, a magnetic displacement amount detection device, and an electrostatic capacitance displacement amount detection device.

また、特開昭62−209302号公報には、ステージ等の平
行移動量を原子オーダの分解能で検知する平行移動量検
出装置が開示されている。
Further, Japanese Patent Laid-Open No. 62-209302 discloses a parallel movement amount detection device for detecting the parallel movement amount of a stage or the like with atomic order resolution.

これは、第4図および第5図に示すように、x−yス
テージ505の平行移動装置において、固定部および可動
部にそれぞれ電極針401および単結晶402を固定し、両者
の間で移動する電荷によって生ずる電位の変化から平行
移動量を検知するものである。
As shown in FIGS. 4 and 5, in the parallel movement device of the xy stage 505, the electrode needle 401 and the single crystal 402 are fixed to the fixed portion and the movable portion, respectively, and the two are moved between them. The amount of parallel movement is detected from the change in the potential caused by the electric charge.

[発明が解決しようとする課題] しかしながら、上記に掲げた従来例において実用化さ
れているもののうち最も高分解能を有する格子干渉光学
式変位量検出装置の性能(分解能)は主に格子ピッチで
決められ、これをいかに精度よく微小間隔で刻み、それ
を精度よく検出するかが重要な点である。現状の精密加
工技術(例えば、電子ビーム描画やイオンビーム加工)
ではせいぜい10ナノメートルの精度が限界であり、また
検出技術(例えば、光ヘテロダイン法)においても10ナ
ノメートルの分解能が限界である。したがって、半導体
製造装置等のため、より高分解能のエンコーダが必要な
場合には、その要求に答えることがっできなかった。
[Problems to be Solved by the Invention] However, the performance (resolution) of the grating interference optical displacement amount detection device having the highest resolution among those practically used in the above-mentioned conventional examples is mainly determined by the grating pitch. The important point is how to accurately cut this at minute intervals and to detect it accurately. Current precision processing technology (eg electron beam drawing and ion beam processing)
Then, at most, the accuracy of 10 nanometers is the limit, and even in the detection technology (for example, the optical heterodyne method), the resolution of 10 nanometers is the limit. Therefore, when a higher resolution encoder is required due to a semiconductor manufacturing apparatus or the like, it has not been possible to meet the demand.

また、特開昭62−209302号公報記載に開示された平行
移動量検出装置においても、単結晶の局所的欠陥、誤差
や振動、温度ドリフト等の外乱によって誤差を生じ、さ
らに、二次元の原子配列をなす単結晶を用い、二次元の
移動量をx,y2方向の移動量に分離するためにあらかじめ
x,y2方向の平行移動量駆動信号が必要であることから、
この原理をそのまま変位量検出装置に応用することがで
きなかった。
Further, in the parallel movement amount detecting device disclosed in Japanese Patent Laid-Open No. 62-209302, an error is caused by a local defect of a single crystal, an error or a disturbance such as vibration or temperature drift, and a two-dimensional atomic In order to separate the amount of movement in two dimensions into the amount of movement in the x and y2 directions by using an array of single crystals,
Since a parallel displacement driving signal in the x and y2 directions is required,
This principle could not be directly applied to the displacement amount detecting device.

本発明の目的は、このような従来技術の問題点に鑑
み、変位量検出装置において、外乱に影響されずにより
高分解能の二次元の移動量を検出できるようにすること
にある。
An object of the present invention is to allow a displacement amount detection device to detect a high-resolution two-dimensional movement amount without being affected by disturbance in view of the problems of the conventional art.

[問題点を解決するための手段] 上記目的を達成するため本発明の変位量検出装置は、
第1の物体に固定された導電性の二次元表面を有する基
準物と、その二次元表面に先端を近づけて第2の物体上
に配置された導電性の探針と、この探針を基準物の二次
元表面に沿って相対的に二次元的に移動させる探針移動
手段と、基準物と探針との間に電圧を印加してトンネル
電流を生じさせる電源手段と、これにより生ずるトンネ
ル電流信号を検出する信号検出手段と、探針移動手段に
よる移動に際して信号検出手段により検出されるトンネ
ル電流に基づき基準物の二次元表面像のデータを得る手
段と、これによって異なる時期に得られた2つの二次元
表面像のデータに基づいてその間に生じた第1および第
2の物体間の相対変位量を検出する手段とを具備し、前
記基準物として導電性結晶の二次元の原子格子を用いた
ことを特徴とする。
[Means for Solving Problems] In order to achieve the above object, the displacement amount detecting device of the present invention is
A reference object having a conductive two-dimensional surface fixed to a first object, a conductive probe placed on a second object with its tip close to the two-dimensional surface, and this probe as a reference A probe moving means for relatively two-dimensionally moving along the two-dimensional surface of an object, a power supply means for applying a voltage between the reference object and the probe to generate a tunnel current, and a tunnel generated thereby. The signal detecting means for detecting the current signal, the means for obtaining the data of the two-dimensional surface image of the reference object based on the tunnel current detected by the signal detecting means during the movement by the probe moving means, and the means for obtaining the data at different times Means for detecting a relative displacement amount between the first and second objects generated between two two-dimensional surface image data, wherein a two-dimensional atomic lattice of a conductive crystal is used as the reference object. Characterized by using

二次元表面像のデータを得る手段は、例えば、基準物
の二次元表面と探針との間の距離を制御する手段を備
え、この距離制御手段は探針移動手段による探針の移動
に際して基準物と探針間に流れるトンネル電流が一定と
なるように基準物と探針間の距離を制御するものであ
り、二次元表面像のデータを得る手段はこの距離制御手
段における制御量から基準物の二次元表面像のデータを
得るものである。あるいは、基準物と探針間の距離は一
定とし、両者間に流れるトンネル電流の変化から直接二
次元表面像のデータを得るようにしてもよい。
The means for obtaining the data of the two-dimensional surface image includes, for example, means for controlling the distance between the two-dimensional surface of the reference object and the probe, and this distance control means is a reference when the probe is moved by the probe moving means. The distance between the reference object and the probe is controlled so that the tunnel current flowing between the object and the probe is constant, and the means for obtaining the data of the two-dimensional surface image is based on the control amount in this distance control means. The data of the two-dimensional surface image of is obtained. Alternatively, the distance between the reference object and the probe may be fixed, and the data of the two-dimensional surface image may be obtained directly from the change in the tunnel current flowing between the two.

[作用] この構成においては、走査型トンネル顕微鏡(Scanni
ng Tunneling Microscope,以下STMと略す。)の原理が
応用されている。STMは、1ナノメートル程度の距離ま
で近接させた導電性探針と導電性物質との間に電圧を印
加し、その間に流れるトンネル電流を検知することによ
り導電性物質の表面の形状や電子分布状態に関する種々
の情報を横分解能0.1ナノメートル、縦分解能0.01ナノ
メートルで得ることが可能である[G.Binnig et al.,Ph
ys.Rev.Lett.49(1982)57]。本発明ではこの原理を応
用し、相対変化を生ずる第1および第2の物体に設けら
れた基準物と探針間に電圧を印加してトンネル電流を流
すと同時に基準物の二次元表面上のある決まった範囲を
探針で二次元的に走査しその二次元の各点におけるトン
ネル電流を検知して探針の先端近傍における二次元表面
の凹凸分布を二次元画像データとして得る。そしてこの
画像データを所定の時間間隔で得、その間に第1および
第2の物体間に相対変位が生じたとすれば、それは画像
データ間の位置ずれとなって現われることになる。そこ
で、この二次元画像データ間の位置ずれ量から第1およ
び第2の物体間の相対変位量が検出される。
[Operation] In this configuration, the scanning tunneling microscope (Scanni
ng Tunneling Microscope, abbreviated as STM below. ) Is applied. STM applies a voltage between a conductive probe and a conductive substance that are close to each other to a distance of about 1 nanometer, and detects the tunnel current flowing between them to detect the shape and electron distribution of the surface of the conductive substance. It is possible to obtain various information about the state with a lateral resolution of 0.1 nanometer and a longitudinal resolution of 0.01 nanometer [G. Binnig et al., Ph
ys. Rev. Lett. 49 (1982) 57]. In the present invention, by applying this principle, a voltage is applied between the reference object and the probe provided on the first and second objects that generate a relative change to allow a tunnel current to flow, and at the same time, on the two-dimensional surface of the reference object. A certain range is two-dimensionally scanned by the probe, the tunnel current at each of the two-dimensional points is detected, and the unevenness distribution of the two-dimensional surface near the tip of the probe is obtained as two-dimensional image data. If this image data is obtained at a predetermined time interval and a relative displacement occurs between the first and second objects during that time, it will appear as a positional shift between the image data. Therefore, the relative displacement amount between the first and second objects is detected from the displacement amount between the two-dimensional image data.

これによれば、基準物の二次元表面の凹凸情報を相対
変位量検知の基準に用いているため、基準物の二次元表
面の局所欠陥、誤差や振動、温度ドリフト等の外乱に対
しより安定した少い誤差で検出が行なわれる。また、走
査型トンネル顕微鏡の原理を応用しているため、0.1ナ
ノメートルの分解能をもって相対変位量の検出が行なわ
れる。
According to this, since the unevenness information of the two-dimensional surface of the reference object is used as a reference for detecting the relative displacement amount, it is more stable against local defects on the two-dimensional surface of the reference object, disturbances such as errors and vibrations, and temperature drift. Detection is performed with a small error. Moreover, since the principle of the scanning tunneling microscope is applied, the relative displacement amount can be detected with a resolution of 0.1 nanometer.

[実施例] 以下、図面を用いて本発明の実施例を説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は、本発明の一実施例に係る変位量検出装置の
構成を示し、第3図はこの変位量検出装置の二次元基準
目盛101としてそれぞれ、金蒸着膜の微小凹凸パター
ン、および導電性結晶へき開面の原子格子を用いた場合
の二次元像位置ずれ量検出手段102における二次元画像
を示す。第1図の変位量検出装置において、対象物103
と対象物104とは相対的に横方向(図面内左右の方向)
にのみ変位できるように設置され、対象物104には導電
性を有する探針105が、対象物103には導電性二次元基準
目盛101が設けられている。そして、探針105を二次元基
準目盛101に対向させて1ナノメートル以下の距離まで
近接させ、両者間にバイアス電源106によってバイアス
電圧を印加し、両者間に流れるトンネル電流をトンネル
電流検出回路107によって検出し、検出トンネル電流値
があらかじめ設定した値(例えば1ナノアンペア)にな
るようにすなわち、探針105と二次元基準目盛101間の距
離が一定になるように探針縦方向位置制御回路108と探
針縦方向位置制御手段109とにより探針105と二次元基準
目盛101との間隔の制御を行なうように構成されてい
る。
FIG. 1 shows a configuration of a displacement amount detecting device according to an embodiment of the present invention, and FIG. 3 shows a two-dimensional reference scale 101 of this displacement amount detecting device, respectively, a fine concavo-convex pattern of a gold vapor deposition film and a conductive layer. 2D shows a two-dimensional image in the two-dimensional image position shift amount detection means 102 when an atomic lattice of a cleavage plane of a crystalline crystal is used. In the displacement amount detecting device of FIG.
Relative to the object 104 in the lateral direction (left and right direction in the drawing)
The object 104 is provided with a conductive probe 105, and the object 103 is provided with a conductive two-dimensional reference scale 101. Then, the probe 105 is opposed to the two-dimensional reference scale 101 and brought close to a distance of 1 nanometer or less, a bias voltage is applied between them by a bias power supply 106, and a tunnel current flowing between the two is detected as a tunnel current detection circuit 107. The vertical position control circuit for the probe so that the detected tunnel current value becomes a preset value (for example, 1 nanoampere), that is, the distance between the probe 105 and the two-dimensional reference scale 101 becomes constant. The distance between the probe 105 and the two-dimensional reference scale 101 is controlled by the 108 and the probe vertical position control means 109.

二次元上の各点における探針縦方向位置制御回路108
からの探針縦方向位置制御信号は二次元像処理手段111
においてモニタされており、したがって二次元走査手段
110により探針105を二次元基準目盛101に対して横方向
に二次元走査すると、二次元基準目盛101の二次元凹凸
分布像が二次元像処理手段111の出力として得られ、こ
れは逐次、画像記憶手段112において記憶される。対象
物103と対象物104の相対変位が生じると、すなわち、対
象物104に固定されている探針105と、対象物103に固定
されている二次元基準目盛101との間に相対変位が生じ
ると、二次元像処理手段111において得られる二次元基
準目盛101の二次元凹凸分布像に時間的な横ずれが生じ
る。第2図および第3図においてはそれぞれ、時刻t0
よびt0+Δtに得られた2次元画像情報A,Bの間にΔX,
ΔYの横ずれが生じた例を示してある。
Vertical probe position control circuit 108 at each point in two dimensions
The probe vertical position control signal from the two-dimensional image processing means 111
And is therefore monitored in a two-dimensional scanning means
When the probe 105 is two-dimensionally scanned laterally with respect to the two-dimensional reference scale 101 by the 110, a two-dimensional uneven distribution image of the two-dimensional reference scale 101 is obtained as an output of the two-dimensional image processing means 111, which is sequentially It is stored in the image storage means 112. When the relative displacement between the object 103 and the object 104 occurs, that is, the relative displacement occurs between the probe 105 fixed to the object 104 and the two-dimensional reference scale 101 fixed to the object 103. Then, the two-dimensional unevenness distribution image of the two-dimensional reference scale 101 obtained by the two-dimensional image processing means 111 has a lateral shift in time. In FIGS. 2 and 3, between the two-dimensional image information A and B obtained at times t 0 and t 0 + Δt, ΔX,
An example in which a lateral deviation of ΔY has occurred is shown.

そこで、二次元像位置ずれ量検出手段102において、
二次元像処理手段111からの時刻t0+Δtに得られた2
次元画像情報および画像記憶手段112からの時刻t0に得
られた2次元画像情報間の2次元横ずれ量ΔX,ΔYを検
出し、そして相対変位量検出手段113において、このΔ
X,ΔYと二次元走査手段110による探針105の二次元走査
量とから、実際の対象物103と対象物104との2次元の相
対変位量を検出する。ここで、二次元基準目盛101とし
て、第2図に参考例として示す金蒸着膜の微小凹凸パタ
ーンのような規則性を持たないものを用いる場合には、
探針105の基準目盛101に対する二次元走査範囲をあらか
じめ決めておくことが必要で、この既知の二次元走査範
囲における二次元像の横ずれ割合から実際の横ずれ量を
求めることができる。また、二次元基準目盛101とし
て、第3図に示す導電性結晶へき開面の原子格子のよう
な規則性を持つものを用いる場には、原子格子の周期を
基準として用いることができるため、格子一周期を単位
として、横ずれ量を求めることができる。
Therefore, in the two-dimensional image position shift amount detecting means 102,
2 obtained at the time t 0 + Δt from the two-dimensional image processing means 111
The two-dimensional lateral displacement amounts ΔX and ΔY between the two-dimensional image information and the two-dimensional image information obtained at the time t 0 from the image storage means 112 are detected, and the relative displacement amount detection means 113 detects this Δ.
Based on X, ΔY and the two-dimensional scanning amount of the probe 105 by the two-dimensional scanning means 110, the two-dimensional relative displacement amount between the actual object 103 and the object 104 is detected. Here, when the one having no regularity such as the fine concavo-convex pattern of the gold vapor deposition film shown as a reference example in FIG. 2 is used as the two-dimensional reference scale 101,
It is necessary to determine the two-dimensional scanning range of the probe 105 with respect to the reference scale 101 in advance, and the actual lateral deviation amount can be obtained from the lateral deviation ratio of the two-dimensional image in this known two-dimensional scanning range. Further, in the case where the two-dimensional reference scale 101 having regularity such as the atomic lattice of the conductive crystal cleaved surface shown in FIG. 3 is used, the period of the atomic lattice can be used as a reference. The amount of lateral deviation can be obtained with one cycle as a unit.

[発明の効果] 以上説明したように本発明によれば、2物体の相対移
動量検知を行なう変位量検出装置において、走査型トン
ネル顕微鏡の原理を応用し、探針と基準物の位置関係
を、探針先端近傍における基準物の凹凸分布の二次元画
像として得、二物体の相対変位により生じるこの二次元
画像の時間的横ずれ量を検知するようにしたため、相対
変位量検知の分解能を0.1ナノメートルとすることがで
き、かつ基準物の局所的欠陥、誤差や振動、温度ドリフ
トなどの外乱に対して安定した検出が行なえる。
[Effects of the Invention] As described above, according to the present invention, in the displacement amount detection device for detecting the relative movement amount of two objects, the principle of the scanning tunneling microscope is applied to determine the positional relationship between the probe and the reference object. , It was obtained as a two-dimensional image of the unevenness distribution of the reference object near the tip of the probe, and the time displacement of this two-dimensional image caused by the relative displacement of two objects was detected. It can be set to meters, and stable detection can be performed with respect to local defects of the reference, disturbances such as error and vibration, and temperature drift.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の一実施例に係る二次元基準目盛を用
いたトンネル電流検知による変位量検出装置の構成図、 第2図は、第1図の装置に用いられる金蒸着膜凹凸パタ
ーンによる二次元基準目盛の二次元画像を参考例として
示す概略図、 第3図は、第1図の装置に用いられる導電性結晶へき開
面原理格子による二次元基準目盛の二次元画像を示す概
略図、そして 第4図および第5図は、従来形の平行移動量検出装置を
表わす説明図である。 101:二次元基準目盛 102:二次元像位置ずれ量検出手段 103:対象物 104:対象物 105:探針 106:バイアス電源 107:トンネル電流検出回路 108:探針縦方向位置制御回路 109:探針縦方向位置制御手段 110:二次元走査手段 111:二次元像処理手段 112:画像記憶手段 113:相対変位量検出手段
FIG. 1 is a configuration diagram of a displacement amount detection device by tunneling current detection using a two-dimensional reference scale according to an embodiment of the present invention, and FIG. 2 is a gold vapor deposition film uneven pattern used in the device of FIG. FIG. 3 is a schematic view showing a two-dimensional image of a two-dimensional reference scale as a reference example, and FIG. 3 is a schematic diagram showing a two-dimensional image of a two-dimensional reference scale by a conductive crystal cleavage plane principle lattice used in the apparatus of FIG. 4 and 5 are explanatory views showing a conventional parallel movement amount detecting device. 101: Two-dimensional reference scale 102: Two-dimensional image position deviation amount detecting means 103: Object 104: Object 105: Probe 106: Bias power supply 107: Tunnel current detection circuit 108: Probe vertical position control circuit 109: Search Vertical needle position control means 110: Two-dimensional scanning means 111: Two-dimensional image processing means 112: Image storage means 113: Relative displacement amount detection means

フロントページの続き (72)発明者 小口 高弘 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (72)発明者 山野 明彦 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 平2−108913(JP,A) 特開 平2−243918(JP,A) 実開 平1−165433(JP,U)(72) Inventor Takahiro Oguchi 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (72) Inventor Akihiko Yamano 3-30-2 Shimomaruko, Ota-ku, Tokyo Canon Inc. (56) References JP-A-2-108913 (JP, A) JP-A-2-243918 (JP, A) Actual development 1-165433 (JP, U)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】第1の物体に固定された導電性の二次元表
面を有する基準物と、その二次元表面に先端を近づけて
第2の物体上に配置された導電性の探針と、この探針を
基準物の二次元表面に沿って相対的に二次元的に移動さ
せる探針移動手段と、基準物と探針との間に電圧を印加
してトンネル電流を生じさせる電源手段と、これにより
生ずるトンネル電流信号を検出する信号検出手段と、探
針移動手段による移動に際して信号検出手段により検出
されるトンネル電流に基づき基準物の二次元表面像のデ
ータを得る手段と、これによって異なる時期に得られた
2つの二次元表面像のデータに基づいてその間に生じた
第1および第2の物体間の相対変位量を検出する手段と
を具備し、前記基準物として導電性結晶の二次元の原子
格子も用いたことを特徴とする変位量検出装置。
1. A reference object having a conductive two-dimensional surface fixed to a first object, and a conductive probe arranged on a second object with its tip approaching the two-dimensional surface. A probe moving means for relatively two-dimensionally moving the probe along the two-dimensional surface of the reference object, and a power supply means for applying a voltage between the reference object and the probe to generate a tunnel current. , The signal detecting means for detecting the tunnel current signal generated thereby, and the means for obtaining the data of the two-dimensional surface image of the reference object based on the tunnel current detected by the signal detecting means when the probe moving means moves Means for detecting a relative displacement amount between the first and second objects generated between the two two-dimensional surface images obtained during the period, and the conductive crystal is used as the reference object. Using a three-dimensional atomic lattice Displacement amount detecting apparatus according to claim.
【請求項2】二次元表面像のデータを得る手段は基準物
の二次元表面と探針との間の距離を制御する手段を備
え、この距離制御手段は基準物と探針間に流れるトンネ
ル電流が一定となるように基準物と探針間の距離を制御
するものであり、二次元表面像のデータを得る手段はこ
の距離制御手段における制御量から基準物の二次元表面
像のデータを得るものである、請求項1記載の変位量検
出装置。
2. A means for obtaining data of a two-dimensional surface image comprises means for controlling a distance between a two-dimensional surface of a reference object and a probe, and this distance control means is a tunnel flowing between the reference object and the probe. The distance between the reference object and the probe is controlled so that the current is constant, and the means for obtaining the data of the two-dimensional surface image determines the data of the two-dimensional surface image of the reference object from the control amount in this distance control means. The displacement amount detecting device according to claim 1, which is obtained.
JP13283689A 1989-05-17 1989-05-29 Displacement detector Expired - Fee Related JP2686651B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13283689A JP2686651B2 (en) 1989-05-29 1989-05-29 Displacement detector
EP90109350A EP0398334B1 (en) 1989-05-17 1990-05-17 Position detecting apparatus
DE69012644T DE69012644T2 (en) 1989-05-17 1990-05-17 Device for determining a position.
US07/780,452 US5130554A (en) 1989-05-17 1991-10-22 Two-dimensional scanning device for detecting position between two relatively movable objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13283689A JP2686651B2 (en) 1989-05-29 1989-05-29 Displacement detector

Publications (2)

Publication Number Publication Date
JPH02311709A JPH02311709A (en) 1990-12-27
JP2686651B2 true JP2686651B2 (en) 1997-12-08

Family

ID=15090661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13283689A Expired - Fee Related JP2686651B2 (en) 1989-05-17 1989-05-29 Displacement detector

Country Status (1)

Country Link
JP (1) JP2686651B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870431B2 (en) * 1994-11-24 1999-03-17 日本電気株式会社 Surface morphology analyzer

Also Published As

Publication number Publication date
JPH02311709A (en) 1990-12-27

Similar Documents

Publication Publication Date Title
EP0304893B1 (en) Encoder
JP2966189B2 (en) Scanning probe microscope
US4902892A (en) Method of measurement by scanning tunneling microscope
EP0608655A1 (en) Integrated tip strain sensor for use in combination with a single axis atomic force microscope
EP0398334B1 (en) Position detecting apparatus
JP2983876B2 (en) Real-time and nanometer-scale position measurement method and apparatus
JP2775464B2 (en) Position detection device
JP3069923B2 (en) Cantilever probe, atomic force microscope, information recording / reproducing device
JP2686651B2 (en) Displacement detector
JP3859588B2 (en) Scanning probe microscope and measuring method thereof
JP3189451B2 (en) Substrate alignment method
JPH0526662A (en) Scanning type interatomic force/magnetic force microscope and analogous device thereof
JP2547334B2 (en) Position detection device
JP3042817B2 (en) Apparatus and method for relative positioning in information recording / reproducing apparatus
JPH04242061A (en) Processing method and device of surface atom and atomic memory device using such method and device
JP2794191B2 (en) Displacement amount detecting device and positioning device using the same
JPH01147317A (en) Encoder
JP3175342B2 (en) Surface shape measurement method
JP2002014025A (en) Probe scanning control device, scanning probe microscope by the same, probe scanning control method, and measuring method by the scanning control method
JP2692879B2 (en) Relative displacement measurement device
JP2995126B2 (en) Information processing device
JPH01193685A (en) Method for measuring incident angle of charge beam
JPH08226925A (en) Probe microscope and measurement method by the microscope
JPH02285202A (en) Positioning equipment
JPH09178758A (en) Scanning probe microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20070822

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees