JP2870431B2 - Surface morphology analyzer - Google Patents

Surface morphology analyzer

Info

Publication number
JP2870431B2
JP2870431B2 JP6312353A JP31235394A JP2870431B2 JP 2870431 B2 JP2870431 B2 JP 2870431B2 JP 6312353 A JP6312353 A JP 6312353A JP 31235394 A JP31235394 A JP 31235394A JP 2870431 B2 JP2870431 B2 JP 2870431B2
Authority
JP
Japan
Prior art keywords
projection
surface morphology
sharpness
protrusion
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6312353A
Other languages
Japanese (ja)
Other versions
JPH08146017A (en
Inventor
恵 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6312353A priority Critical patent/JP2870431B2/en
Publication of JPH08146017A publication Critical patent/JPH08146017A/en
Application granted granted Critical
Publication of JP2870431B2 publication Critical patent/JP2870431B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は試料表面の表面形態解析
装置に関し、特に摩擦・摩耗が問題とされる試料表面の
SPM(Scanning Probe Microscope;走査型プローブ
顕微鏡)を用いた表面形態解析装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface morphology analyzer for a sample surface, and more particularly to a surface morphology analyzer using a scanning probe microscope (SPM) for a sample surface where friction and wear are problematic. .

【0002】[0002]

【従来の技術】従来、試料表面の形状は、表面粗さの大
小関係によってのみ評価されていた。例えば、中心面平
均粗さRa等がそれに相当する。ここで、Raとは、積分中
心面から表面プロファイルまでの距離の平均値として定
義され、試料表面のうねりがどの程度の振幅を有してい
るかを表す指標である。
2. Description of the Related Art Heretofore, the shape of a sample surface has been evaluated only based on the magnitude relationship of the surface roughness. For example, the center plane average roughness Ra corresponds thereto. Here, Ra is defined as the average value of the distance from the integration center plane to the surface profile, and is an index indicating the amplitude of the undulation of the sample surface.

【0003】一方、試料表面形態を測定する装置に関し
ていえば、原子間力顕微鏡(AFM)に代表されるSPM
(Scanning Probe Microscope)が開発されたことによ
り、試料表面の原子構造までもが画像化できる技術が近
年著しく発達してきた。
On the other hand, regarding an apparatus for measuring a sample surface morphology, an SPM represented by an atomic force microscope (AFM) is used.
With the development of the (Scanning Probe Microscope), a technique capable of imaging even the atomic structure of the sample surface has been remarkably developed in recent years.

【0004】[0004]

【発明が解決しようとする課題】摩擦力の主たる起源
は、2物体の真実接触面に働く凝着力であり、その真実
接触面積は、2表面が接触している時の接触荷重と、2
表面のうちの軟らかい方の表面の塑性流動圧力とで大部
分が決定される。
The main origin of the frictional force is the adhesion force acting on the true contact surface of the two objects, and the true contact area is determined by the contact load when the two surfaces are in contact with each other, and the actual contact area.
The plastic flow pressure on the softer of the surfaces is largely determined.

【0005】実際のトライボロジ現象は、弾性変形をも
含む動的な現象であるため、正確な理解を得るためには
かなり複雑な解析が必要とされる。いずれにしろ、2物
体の接触面は、2表面の比較的高い突起先端部が変形す
ることによって形成されており、接触荷重や表面材料の
機械的物性値の違いによってどの程度の低さの突起まで
が接触に関与するかが決まる。
[0005] Since the actual tribological phenomenon is a dynamic phenomenon including elastic deformation, a fairly complicated analysis is required to obtain an accurate understanding. In any case, the contact surface between the two objects is formed by deforming the tip of the relatively high protrusion on the two surfaces, and how low the protrusion depends on the contact load and the difference in the mechanical properties of the surface material. Is determined to be involved in contact.

【0006】すなわち、トライボロジ現象を理解する上
では、表面粗さ等の表面全体の形状を反映する情報より
はむしろ、比較的高い突起先端部で構成される試料最表
面の幾何学的構造(突起の面内分布、突起の空間分布そ
して突起先端形状)を知る必要がある。
That is, in understanding the tribological phenomena, the geometrical structure of the outermost surface of the sample (projection) composed of relatively high projection tips, rather than information reflecting the shape of the entire surface such as surface roughness. It is necessary to know the in-plane distribution, the spatial distribution of the protrusions and the shape of the protrusion tips.

【0007】このことは、より軽荷重下でおこる微視的
現象になるほど重要性を帯びて来る。それにもかかわら
ず従来の試料表面の形状は、ほとんどの場合が単に表面
粗さの大小関係によってのみ評価されていた。
[0007] This becomes more important as the microscopic phenomenon occurs under lighter loads. Nevertheless, the shape of the conventional sample surface has been evaluated in most cases merely based on the magnitude relationship of the surface roughness.

【0008】前述したように、一方ではSPMのような
極めて微細な表面形態を測定する装置が目ざましく発達
しながらも、そこで得られた情報をトライボロジ学的に
取り扱う解析システムが乏しいために、マイクロトライ
ボロジと呼ばれるnm(ナノメータ)オーダ或はそれ以下
の微視的摩擦・摩耗現象の理解が遅れているのが現状で
ある。
As described above, on the other hand, although a device for measuring an extremely fine surface morphology such as SPM has been remarkably developed, a micro-analysis system which handles information obtained therefrom in a tribological manner is scarce. At present, understanding of microscopic friction and wear phenomena on the order of nm (nanometer) or less called tribology is delayed.

【0009】従って、本発明の目的は、上記問題点を解
消し、原子レベルの分解能を有するSPMに表面形態解
析システムを組合せることによって、トライボロジ現象
を支配する比較的高い突起先端部で構成される試料最表
面の幾何学的構造(突起の面内分布、突起の空間分布そ
して突起先端形状)の的確な把握を可能にすることにあ
る。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-mentioned problems and to combine a surface morphology analysis system with an SPM having an atomic-level resolution to form a relatively high protrusion tip that controls the tribological phenomenon. It is possible to accurately grasp the geometric structure (in-plane distribution of projections, spatial distribution of projections, and tip shape of projections) of the outermost surface of the sample.

【0010】[0010]

【課題を解決するための手段】前記目的を達成するた
め、本発明の表面形態解析装置は、その概略を述べれ
ば、SPM(Scanning Probe Microscope;走査型プロ
ーブ顕微鏡)を構成するデータ処理装置が、試料最表面
部の幾何学的構造を表わす情報として、少なくとも、試
料表面突起の面内分布、空間分布、及び突起先端形状に
関する指標を導出する表面形態解析システムを具備して
いる。
In order to achieve the above object, a surface morphology analyzer of the present invention is described in brief.
For example, a data processing device constituting an SPM (Scanning Probe Microscope) scans at least the in-plane distribution, spatial distribution, and projection of the sample surface projections as information representing the geometric structure of the outermost surface of the sample. A surface morphology analysis system for deriving an index related to the tip shape is provided.

【0011】本発明の表面形態解析装置においては、好
ましくは、SPM(Scanning ProbeMicroscope;走査型
プローブ顕微鏡)を構成するデータ処理装置が、少なく
とも、試料表面突起の面内分布、空間分布、及び突起先
端形状に関する指標を導出する表面形態解析システムを
備えてなる表面形態解析装置であって、前記表面形態解
析システムが、解析対象の試料表面のSPM像を測定
し、得られたSPM3次元プロファイルデータを基に試
料表面の突起を検出する工程であって、該突起を検出す
る際に、接触荷重及び表面材料から成る機械的物性値を
考慮して突起高さのスライスレベルを決定し、該スライ
スレベルよりも高さの高い突起のみを抽出し、抽出され
た有効突起数から突起密度(Dp)を算出する工程と、検
出された全ての突起のそれぞれについて表面プロファイ
ルの積分中心面からの突起高さと突起尖鋭度を求める工
程と、前記全ての突起に関する突起高さと突起尖鋭度の
データから、その基本統計量として平均値と標準偏差を
算出し、中心面平均突起高さ(μph)及び突起高さの標
準偏差(σph)、平均突起尖鋭度(μspn)及び突起尖
鋭度の標準偏差(σspn)と、をそれぞれ導出する工程
を含み、上記各工程より、試料最表面部の幾何学的構造
を表す形状のパラメータを導出することを特徴とする。
In the surface morphology analyzer of the present invention, preferably, an SPM (Scanning Probe Microscope; scanning type) is used.
(Probe microscope)
In each case, the in-plane distribution, spatial distribution, and tip
A surface morphology analysis system that derives an index for the edge shape
A surface morphology analysis apparatus, wherein the surface morphology analysis system measures an SPM image of the surface of the sample to be analyzed and detects protrusions on the sample surface based on the obtained SPM three-dimensional profile data. In detecting the protrusions, the slice level of the protrusion height is determined in consideration of the mechanical properties including the contact load and the surface material, and only the protrusions higher than the slice level are extracted. Calculating the projection density (Dp) from the extracted number of effective projections, obtaining the projection height and the projection sharpness from the integral center plane of the surface profile for each of all the detected projections, The average value and standard deviation are calculated as the basic statistics from the data of the protrusion height and the protrusion sharpness regarding the center plane average protrusion height (μph), the standard deviation of the protrusion height (σph), and the average protrusion. A step of deriving a sharpness (μspn) and a standard deviation (σspn) of the protrusion sharpness, respectively. Features.

【0012】[0012]

【作用】本発明によれば、原子レベルの分解能を有する
SPMを構成するコンピュータ等のデータ処理装置に表
面形態解析システムを搭載した表面形態解析装置を用い
ることにより、試料最表面部の幾何学的構造を表す5つ
の形状パラメータを得るものであり、実際のトライボロ
ジ現象を支配する比較的高い突起先端部で構成される試
料最表面の幾何学的構造(突起の面内分布、突起の空間
分布そして突起先端形状)を的確に把握することを可能
とし、2物体間の界面で生じるマイクロトライボロジ現
象の理解が極めて容易になる。
According to the present invention, by using a surface morphology analyzer equipped with a surface morphology analyzer on a data processor such as a computer constituting an SPM having an atomic level resolution, the geometrical shape of the outermost surface of the sample can be improved. Five geometric parameters representing the structure are obtained, and the geometrical structure of the outermost surface of the sample (in-plane distribution of projections, spatial distribution of projections, It is possible to accurately grasp the shape of the projection tip), and it becomes extremely easy to understand the microtribological phenomenon that occurs at the interface between two objects.

【0013】すなわち、本発明によれば、2表面の間で
生じるマイクロトライボロジ現象の解析が著しく進展
し、摩擦・摩耗が問題となる様々な機械的駆動部の耐久
性の向上及び省エネルギー化の実現に役立つ。
That is, according to the present invention, the analysis of microtribological phenomena occurring between two surfaces has remarkably progressed, and the durability and energy saving of various mechanical drive units in which friction and wear are problematic are realized. Help.

【0014】[0014]

【実施例】以下に本発明を実施例に即して一層詳しく説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in more detail with reference to embodiments.

【0015】図1に、SPMとして代表的な原子間力顕
微鏡(AFM)を用いた場合の本発明の一実施例に係る表
面形態解析装置の構成の概略を示す。
FIG. 1 schematically shows the configuration of a surface morphology analyzer according to one embodiment of the present invention when a typical atomic force microscope (AFM) is used as an SPM.

【0016】図1を参照して、本装置は、xyz-走査系
1、力−変位変換器2、光波干渉変位検出器3、及びz-
制御回路4からなるAFM本体と、コンピュータ5、そし
て表示装置6とから構成される。xyz-走査系1は、探針
のX-Y方向の2次元走査及びZ方向における試料表面と探
針との所定間隔の維持等を行なう駆動回路を備え、z-制
御回路4は探針のZ方向のサーボ制御を行なう。また、
光波干渉変位検出器3は、光の干渉を用いて力−変位変
換器2の探針の変位を検出し、力−変位変換器2を介し
てサンプル(試料)表面における原子間力を一定に保つ
ようにする。
Referring to FIG. 1, the present apparatus comprises an xyz-scanning system 1, a force-displacement converter 2, an optical interference displacement detector 3, and a z-
It comprises an AFM main body composed of a control circuit 4, a computer 5, and a display device 6. The xyz-scanning system 1 includes a drive circuit that performs two-dimensional scanning of the probe in the X and Y directions and maintains a predetermined distance between the sample surface and the probe in the Z direction. Servo control is performed. Also,
The light-wave interference displacement detector 3 detects the displacement of the probe of the force-displacement converter 2 using light interference, and makes the interatomic force on the surface of the sample (sample) constant through the force-displacement converter 2. Try to keep.

【0017】コンピュータ5は測定制御及びデータ処理
を担っており、表面形態解析用の解析システム7が組み
込まれている。
The computer 5 is responsible for measurement control and data processing, and incorporates an analysis system 7 for surface morphology analysis.

【0018】図3を参照して、本実施例に係る表面形態
解析システムの解析フローを以下に説明する。
Referring to FIG. 3, an analysis flow of the surface morphology analysis system according to the present embodiment will be described below.

【0019】(1)試料表面のSPM像を測定し(ステッ
プ301)、得られたSPM3次元プロファイルデータを
基に表面突起を検出する。この突起検出の際に、接触荷
重や表面材料の機械的物性値を考慮して突起高さのスラ
イスレベルを決め、それよりも高さの高い突起のみを抽
出する(ステップ302)。抽出された有効突起数から、
(a)突起密度Dpを算出する(ステップ303)。
(1) An SPM image of the sample surface is measured (step 301), and surface protrusions are detected based on the obtained SPM three-dimensional profile data. In detecting the protrusion, the slice level of the protrusion height is determined in consideration of the contact load and the mechanical property value of the surface material, and only protrusions higher than that are extracted (step 302). From the number of extracted effective protrusions,
(A) The projection density Dp is calculated (step 303).

【0020】(2)検出された全突起のそれぞれについて
表面プロファイルの積分中心面からの突起高さと突起尖
鋭度(突起尖鋭度の定義については後に説明する)を求
める(ステップ304)。
(2) For each of the detected projections, the projection height and the projection sharpness from the integral center plane of the surface profile (the definition of the projection sharpness will be described later) are obtained (step 304).

【0021】(3)ステップ304にて得られた突起に関する
突起高さと突起尖鋭度のデータから、それぞれの平均値
と標準偏差を算出し、(b)中心面平均突起高さμph、
(c)突起高さの標準偏差σph、(d)平均突起尖鋭度
μspn、(e)突起尖鋭度の標準偏差σspnを導出する
(ステップ305)。
(3) An average value and a standard deviation are calculated from the data of the projection height and the projection sharpness of the projection obtained in step 304, and (b) the center plane average projection height μph,
(C) The standard deviation σph of the projection height, (d) the average projection sharpness μspn, and (e) the standard deviation σspn of the projection sharpness are derived (step 305).

【0022】ここで、突起尖鋭度SPNを説明すると、図
2を参照して、突起頂点から±50nmまでの傾斜角(tan
θ)をそれぞれk+、k-とした場合、SPN′=1/2(|k+|
+|k-|)とし、SPN′をディスク等試料表面の径方向
及びこれと直交する円周方向についてそれぞれ求め、両
者の平均値を突起尖鋭度SPNとする。
Here, the protrusion sharpness SPN will be described. Referring to FIG. 2, the inclination angle (tan) from the protrusion apex to ± 50 nm is shown.
θ) are k + and k-, respectively, SPN '= 1/2 (| k + |
+ | K- |), and the SPN ′ is determined in the radial direction of the surface of the sample such as a disk and the circumferential direction orthogonal thereto, and the average value of both is defined as the projection sharpness SPN.

【0023】このようにして、試料最表面部の幾何学的
構造を的確に表す5つの形状パラメータを得る。
In this way, five shape parameters that accurately represent the geometric structure of the outermost surface of the sample are obtained.

【0024】本実施例に係る表面形態解析装置の実際の
適用例として、ハード磁気ディスク表面の表面形態を解
析した例を以下に説明する。
As an actual application example of the surface morphology analyzer according to the present embodiment, an example in which the surface morphology of the hard magnetic disk surface is analyzed will be described below.

【0025】ハード磁気ディスク装置では、コンタクト
・スタート/ストップ(CSS)と呼ばれる起動停止法を
採用している。CSS方式では、ディスク停止時には磁気
ヘッドをトレーリング・エッジに搭載した浮動ヘッドス
ライダとディスクは接触しており、ディスクが起動し回
転速度を増すにつれて浮動ヘッドスライダは接触摺動状
態から流体力学効果により完全浮上状態に移行する。こ
のため、ディスクとスライダの界面におけるトライボロ
ジ特性が装置の信頼性及び耐久性の鍵を握り、ディスク
表面形態の評価技術及び制御技術が極めて重要となる。
The hard magnetic disk device employs a start / stop method called contact start / stop (CSS). In the CSS method, when the disk is stopped, the floating head slider with the magnetic head mounted on the trailing edge is in contact with the disk, and as the disk starts up and the rotational speed increases, the floating head slider changes from the contact sliding state to the hydrodynamic effect. Transition to the complete floating state. For this reason, the tribological characteristics at the interface between the disk and the slider hold the key to the reliability and durability of the device, and the technology for evaluating and controlling the disk surface morphology is extremely important.

【0026】本実施例に係る表面形態解析装置を用いて
解析したのは、3.5インチスパッタカーボンディスクで
あり、基板表面のテクスチャ工法の異なる次の2枚のデ
ィスクからなる。1枚は基板テクスチャ加工としてダイ
ヤモンド遊離砥粒によるバフ研磨を施したもので、これ
をディスクAとする。他は上記テクスチャ加工後、更に
2段テクスチャとして所定の加工を施したもので、これ
をディスクBとする。
A 3.5-inch sputtered carbon disk analyzed using the surface morphology analyzer according to the present embodiment is composed of the following two disks having different substrate surface texture methods. One was subjected to buff polishing with diamond free abrasive grains as substrate texture processing, and this was designated as disk A. The other is obtained by performing a predetermined processing as a two-stage texture after the above-described texture processing.

【0027】まずディスクA、Bについて摩擦係数μの
測定を行った。測定はAl2O3・TIC製スライダを使用し、
ロード圧59mN、相対速度3.14m/secのもとで行った。以
下に示す摩擦係数μの結果はディスク1回転の平均のμ
である。
First, the friction coefficient μ of the disks A and B was measured. Use a slider made of Al 2 O 3 TIC for measurement,
The test was performed under a load pressure of 59 mN and a relative speed of 3.14 m / sec. The friction coefficient μ shown below is the average μ per rotation of the disk.
It is.

【0028】ディスクAの摩擦係数μは0.18であるのに
対し、ディスクBのμは0.42とディスクAの倍以上の値
を示した。
The coefficient of friction μ of the disk A was 0.18, while the coefficient μ of the disk B was 0.42, which was more than twice that of the disk A.

【0029】次に、両ディスクのAFM測定後、表面形態
解析を行った。AFM測定条件を以下に記す。測定エリア
は10×10μm2、サンプル数400×400、測定時の面内空間
分解能は25nm、また垂直空間分解能は3.052×10-3nmで
ある。解析結果を表1に示す。尚、今回の解析では、ス
ライダロード圧とスパッタカーボン保護膜の塑性流動圧
力を考慮して、突起検出のスライスレベルを相対負荷面
積率0.5%の面とした。
Next, after AFM measurement of both disks, surface morphology analysis was performed. The AFM measurement conditions are described below. The measurement area is 10 × 10 μm 2 , the number of samples is 400 × 400, the in-plane spatial resolution during measurement is 25 nm, and the vertical spatial resolution is 3.052 × 10 −3 nm. Table 1 shows the analysis results. In this analysis, in consideration of the slider load pressure and the plastic flow pressure of the sputtered carbon protective film, the slice level for detecting the protrusion was set to a surface having a relative load area ratio of 0.5%.

【0030】[0030]

【表1】 [Table 1]

【0031】表1に示した解析結果より、従来の表面形
態を表す指標であるRaにはディスクA、B間でほとんど
違いが見られず、この指標が両ディスク間の甚しい摩擦
係数μの違いを説明する情報は何等与えないことが明ら
かになった。
From the analysis results shown in Table 1, there is almost no difference between the disks A and B in the index Ra representing the conventional surface morphology, and this index indicates the significant friction coefficient μ between the two disks. It turned out that no information was given to explain the difference.

【0032】一方、本発明の表面形態解析システムによ
る形状パラメータに着目すると、突起高さの標準偏差σ
phと平均突起尖鋭度μspnにおいて両ディスク間に顕著
な違いが見られる。
On the other hand, focusing on the shape parameters obtained by the surface morphology analysis system of the present invention, the standard deviation σ
There is a remarkable difference between the two disks in ph and average protrusion sharpness μspn.

【0033】ディスクBの方がディスクAに較べ、標準
偏差σph、平均突起尖鋭度μspnとも小さい。すなわ
ち、ディスクBの方がより最表面部の突起の高さのばら
つきが小さく、また突起先端が平坦な形状を持っている
といえる。
The standard deviation σph and the average protrusion sharpness μspn of the disk B are smaller than those of the disk A. In other words, it can be said that the disc B has a smaller variation in the height of the projections on the outermost surface and the tip of the projection has a flat shape.

【0034】これらの解析結果から次のことが推定され
る。ディスクBはディスクAに較べ最表面部の突起高さ
が比較的揃っており、しかも突起先端形状がより平坦な
ためスライダとの真実接触面積が大きいこと、更に突起
先端形状の平坦性からスライダとの接触界面に存在する
液体潤滑剤や吸着水のメニスカスによる毛細管力がより
大きいことにより摩擦係数μが高くなっている。
The following is presumed from these analysis results. The protrusion height of the outermost surface portion of the disk B is relatively uniform as compared with the disk A, and since the shape of the protrusion tip is flatter, the real contact area with the slider is large. The friction coefficient μ is increased due to the larger capillary force due to the liquid lubricant or the meniscus of the adsorbed water existing at the contact interface of.

【0035】[0035]

【発明の効果】以上説明したように、本発明(請求項
1)によれば、原子レベルの分解能を有するSPMに突
起の面内分布、空間分布そして突起先端形状に関する情
報を担う形状パラメータを導出する表面形態解析システ
ムを組み合わせたことにより、実際のトライボロジ現象
を支配する比較的高い突起先端部で構成される試料最表
面の幾何学的構造を適切に表現することができる。
As described above, according to the present invention (claim 1), the SPM having the resolution of the atomic level derives the shape parameters that carry information on the in-plane distribution, the spatial distribution and the shape of the tip of the projection. By combining the surface morphology analysis system, the geometrical structure of the outermost surface of the sample composed of the relatively high protruding tip that governs the actual tribological phenomenon can be appropriately represented.

【0036】このため、本発明によれば、2表面の間で
生じるマイクロトライボロジ現象の解析が著しく進展
し、摩擦・摩耗が問題となる様々な機械的駆動部の耐久
性の向上及び省エネルギー化の実現に役立つ。
For this reason, according to the present invention, the analysis of microtribological phenomena occurring between two surfaces has remarkably progressed, and the durability and energy saving of various mechanical drive units in which friction and wear are problematic are improved. Help in realization.

【0037】また、本発明(請求項2)に記載される表
面形態解析システムを具備した場合、試料表面のSPM
像から試料最表面部の幾何学的構造を的確に表す5つの
形状パラメータが得られるため、2表面の間で生じるマ
イクロトライボロジ現象の解析を著しく容易化する。
When the surface morphological analysis system according to the present invention (claim 2) is provided, the SPM
Since five shape parameters that accurately represent the geometric structure of the outermost surface of the sample can be obtained from the image, the analysis of the microtribological phenomenon occurring between the two surfaces is significantly facilitated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例に係る表面形態解析装置の構
成を示す図であり、原子間力顕微鏡(AFM)のデータ処
理装置(コンピュータ)に表面形態解析システムを搭載
した表面形態解析装置の概略構成図である。
FIG. 1 is a diagram showing a configuration of a surface morphology analyzer according to one embodiment of the present invention, wherein a surface morphology analyzer is mounted on a data processor (computer) of an atomic force microscope (AFM). FIG.

【図2】本発明に係る表面形態解析装置に搭載されてい
る解析システムにおいて評価される突起尖鋭度の定義を
表す図である。
FIG. 2 is a diagram showing a definition of a projection sharpness evaluated by an analysis system mounted on a surface morphology analyzer according to the present invention.

【図3】本発明の一実施例に係る表面形態解析システム
の解析フローを示す流れ図である。
FIG. 3 is a flowchart showing an analysis flow of the surface morphology analysis system according to one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 xyz-走査系 2 力−変位変換器 3 光波干渉変位検出器 4 z-制御回路 5 コンピュータ(表面形態解析システム搭載) 6 表示装置 7 表面形態解析システム 1 xyz-scanning system 2 force-displacement converter 3 light wave interference displacement detector 4 z-control circuit 5 computer (with surface morphology analysis system) 6 display device 7 surface morphology analysis system

フロントページの続き (56)参考文献 特開 平8−82632(JP,A) 特開 平4−113257(JP,A) 特開 平2−311709(JP,A) “Nanometer−scale morphology of duct ile mode ground su rface of silicon c arbide ceramics wi th atomic force mi croscope”,Yoshio i chida et al.,Prog. Cut.Grinding,pp187− 192,(1992) (58)調査した分野(Int.Cl.6,DB名) G01N 37/00 G01B 21/30 JICSTファイル(JOIS)Continuation of front page (56) References JP-A-8-82632 (JP, A) JP-A-4-113257 (JP, A) JP-A-2-311709 (JP, A) “Nanometer-scale morphology of ductile” mode ground sur face of silicon carbide ceramics with atomic force microscopic ", Yoshio ichida et al. Prog. Cut. Grinding, pp187-192, (1992) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 37/00 G01B 21/30 JICST file (JOIS)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SPM(Scanning Probe Microscope;走
査型プローブ顕微鏡)を構成するデータ処理装置が、少
なくとも、試料表面突起の面内分布、空間分布、及び突
起先端形状に関する指標を導出する表面形態解析システ
ムを備えてなる表面形態解析装置であって、 前記表面形態解析システムが、解析対象の試料表面のS
PM像を測定し、得られたSPM3次元プロファイルデ
ータを基に試料表面の突起を検出する工程であって、該
突起を検出する際に、接触荷重及び表面材料から成る機
械的物性値を考慮して突起高さのスライスレベルを決定
し、該スライスレベルよりも高さの高い突起のみを抽出
し、抽出された有効突起数から突起密度(Dp)を算出す
る工程と、 検出された全ての突起のそれぞれについて表面プロファ
イルの積分中心面からの突起高さと突起尖鋭度を求める
工程と、 前記全ての突起に関する突起高さと突起尖鋭度のデータ
から、その基本統計量として平均値と標準偏差を算出
し、中心面平均突起高さ(μph)及び突起高さの標準偏
差(σph)、平均突起尖鋭度(μspn)及び突起尖鋭度
の標準偏差(σspn)と、をそれぞれ導出する工程を含
み、 上記各工程より、試料最表面部の幾何学的構造を表す形
状のパラメータを導出することを特徴とする表面形態解
析装置。
1. A surface morphology analysis system in which a data processing device constituting an SPM (Scanning Probe Microscope) derives at least indices relating to an in-plane distribution, a spatial distribution, and a projection tip shape of a sample surface projection. A surface morphology analysis apparatus comprising: a surface morphology analysis system, wherein the surface morphology analysis system performs S
A step of measuring a PM image and detecting protrusions on the sample surface based on the obtained SPM three-dimensional profile data. In detecting the protrusions, a contact load and a mechanical property value composed of a surface material are taken into consideration. Determining the slice level of the projection height, extracting only the projections higher than the slice level, and calculating the projection density (Dp) from the extracted number of effective projections; Calculating the projection height and the projection sharpness from the integral center plane of the surface profile for each of the above, from the data of the projection height and the projection sharpness of all the projections, calculate the average value and the standard deviation as basic statistics thereof. Deriving a center plane average protrusion height (μph) and a protrusion height standard deviation (σph), an average protrusion sharpness (μspn) and a protrusion sharpness standard deviation (σspn), respectively. From each step, the surface morphology analysis apparatus characterized by deriving the parameters of shapes representing the geometry of the sample outermost surface.
JP6312353A 1994-11-24 1994-11-24 Surface morphology analyzer Expired - Fee Related JP2870431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6312353A JP2870431B2 (en) 1994-11-24 1994-11-24 Surface morphology analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6312353A JP2870431B2 (en) 1994-11-24 1994-11-24 Surface morphology analyzer

Publications (2)

Publication Number Publication Date
JPH08146017A JPH08146017A (en) 1996-06-07
JP2870431B2 true JP2870431B2 (en) 1999-03-17

Family

ID=18028231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6312353A Expired - Fee Related JP2870431B2 (en) 1994-11-24 1994-11-24 Surface morphology analyzer

Country Status (1)

Country Link
JP (1) JP2870431B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686651B2 (en) * 1989-05-29 1997-12-08 キヤノン株式会社 Displacement detector
JPH04113257A (en) * 1990-09-04 1992-04-14 Mitsui Eng & Shipbuild Co Ltd Method for measuring concentration
JP3280525B2 (en) * 1994-09-12 2002-05-13 日本電信電話株式会社 Measurement method for structural dimensions of microstructures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Nanometer−scale morphology of ductile mode ground surface of silicon carbide ceramics with atomic force microscope",Yoshio ichida et al.,Prog.Cut.Grinding,pp187−192,(1992)

Also Published As

Publication number Publication date
JPH08146017A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
Bhushan et al. Atomic-scale friction measurements using friction force microscopy: part II—application to magnetic media
US5885131A (en) Interactive device for lapping transducers
JPH05114127A (en) Magnetic disk and production thereof and magnetic disk device
Bhushan et al. Role of mechanical properties and surface texture in the real area of contact of magnetic rigid disks
JP2000195042A (en) Magnetic storage medium and method of manufacturing the same
JP2000500604A (en) A method for determining low-friction non-Gaussian surfaces and optimal low-friction surface parameters
EP0230034A2 (en) Perpendicular magnetic recording medium
JPH06318381A (en) Hard disk drive device, magnetic disc and read light head
JP2870431B2 (en) Surface morphology analyzer
Ono Surface texture parameters of perpendicular recording magnetic disks
Wei et al. Nanoscale indentation hardness and wear characterization of hydrogenated carbon thin films
JP2865006B2 (en) Micro wear measurement device
Bhushan Macro-and microtribology of magnetic storage devices
Wei et al. Nanoscale indentation hardness and wear characterization of hydrogenated carbon thin films
US6552872B2 (en) Magnetic disk drive capable of preventing stiction of magnetic head
Scott et al. Pole tip recession in linear tape heads: measurement technique and influence of head materials, tape speed and tape tension
Suk The effect of disk roughness on the wear of contact recording heads
US6611400B1 (en) Texture structure for optimizing head disc interface
Yang et al. Surface roughness investigation of magnetic recording disks using STM and profilometry measurements
JP2901437B2 (en) Magnetic disk and magnetic head
Gupta et al. Characterization of the head-disk interface at nanometer dimensions
Bogy et al. Nano-hardness, nano-friction and nano-wear of ultra-thin overcoats
Tanaka et al. A scanning electron microscope with two secondary electron detectors and its application to the surface topography measurements of magnetic media
Song et al. Inspection of pole tip diamondlike carbon wear due to heater-induced head-disc contact
Nadimpalli et al. Pole tip recession: investigation of factors affecting its measurement and its variation with contact start-stop and constant speed drag testing

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080108

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090108

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100108

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees