JPH0363242B2 - - Google Patents

Info

Publication number
JPH0363242B2
JPH0363242B2 JP9262482A JP9262482A JPH0363242B2 JP H0363242 B2 JPH0363242 B2 JP H0363242B2 JP 9262482 A JP9262482 A JP 9262482A JP 9262482 A JP9262482 A JP 9262482A JP H0363242 B2 JPH0363242 B2 JP H0363242B2
Authority
JP
Japan
Prior art keywords
synthetic resin
radio wave
molded article
wave reflective
resin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9262482A
Other languages
Japanese (ja)
Other versions
JPS58209202A (en
Inventor
Tsuneo Tanaka
Keiji Koganei
Hideaki Shirogane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Mitsubishi Plastics Inc
Original Assignee
Mitsubishi Kasei Corp
Mitsubishi Plastics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Mitsubishi Plastics Inc filed Critical Mitsubishi Kasei Corp
Priority to JP9262482A priority Critical patent/JPS58209202A/en
Publication of JPS58209202A publication Critical patent/JPS58209202A/en
Publication of JPH0363242B2 publication Critical patent/JPH0363242B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Laminated Bodies (AREA)
  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 本発明は、電波を効率よく反射し、背面へ電波
を透過させない電波反射性成形物およびその製造
方法に関するものである。従来の電波通信用のパ
ラボラ反射器は、アルミニウム製あるいはFRP
製のものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radio wave reflective molded article that reflects radio waves efficiently and does not allow radio waves to pass through to the back surface thereof, and a method for manufacturing the same. Conventional parabolic reflectors for radio communications are made of aluminum or FRP.
It is made by

アルミニウム製のものは主に直径が1m以下の
小型パラボラであり、その成形はヘラ絞り成形又
は板金プレス成形である。ヘラ絞り成形の場合
は、1個づつ手作業生産であるために工業的多量
生産では数量に限りがある。また、板金プレス成
形の場合は、スプリングバツクがあり、高度のプ
レス金型設計技術が必要であるばかりでなく、直
径に対して深さが1/8〜1/5以上の絞り成形を行な
うには高度に精密設計された多段階プレス工程を
必要とする。さらに、その場合といえども、アル
ミニウム板に亀裂を発生することなしに成形する
には極めて高度な成形技術を必要とする。
Those made of aluminum are mainly small parabolas with a diameter of 1 m or less, and are formed by spatula drawing or sheet metal press forming. In the case of spatula drawing, since each piece is produced by hand, quantities are limited for industrial mass production. In addition, in the case of sheet metal press forming, there is spring back, which not only requires advanced press mold design technology, but also requires drawing with a depth of 1/8 to 1/5 or more of the diameter. requires a highly precisely designed multi-step pressing process. Furthermore, even in that case, extremely advanced forming technology is required to form the aluminum plate without causing cracks.

一方、FRP製のものは、所謂ハンドレイアツ
プあるいはスプレイアツプにより成形されるが、
これも成形作業能率が極めて悪く、工業的多量生
産では数量に限りがある。
On the other hand, FRP products are molded by hand lay-up or spray-up.
This also has extremely low molding efficiency and is limited in quantity for industrial mass production.

また、こうしたFRP製等の合成樹脂材料を用
いたものにおいては、電波反射性を付与するため
に、成形品の表面に金属熔射、スパツタリング、
金属箔貼着等により導電性膜を形成している。と
ころが、この場合は、導電性膜の形成が後加工に
なり、成形物がポリエステル、ナイロン、ポリプ
ロピレン、ポリエチレン、ABS、フエノール又
はメラミン等の場合には金属膜との接着性が悪
く、その剥離防止のために、境界面に前処理を施
こしたり、積層表面に表面被覆保護層を施こした
りしなければならず、煩雑な手数を要し、しかも
高価になる。
In addition, in products using synthetic resin materials such as FRP, metal spraying, sputtering,
A conductive film is formed by pasting metal foil or the like. However, in this case, the formation of the conductive film is a post-processing process, and if the molded product is made of polyester, nylon, polypropylene, polyethylene, ABS, phenol, or melamine, it has poor adhesion to the metal film, making it difficult to prevent its peeling. Therefore, it is necessary to pre-treat the boundary surfaces and apply a surface coating protective layer to the laminated surfaces, which is complicated and expensive.

そこで、近時、成形型に金属熔射を行ない、そ
の上から補強繊維を装填し、これに樹脂を注入し
て導電性膜を表面に一体成形する方法も開発され
た。
Therefore, a method has recently been developed in which a mold is subjected to metal spraying, reinforcing fibers are loaded onto the mold, and a resin is injected into the mold to integrally form a conductive film on the surface.

しかし、この方法の場合も、前記成形型への金
属熔射に手間どり、生産性も十分でないばかりで
なく、その際の作業環境も悪い等種々の問題があ
る。
However, this method also has various problems, such as the time-consuming process of metal spraying into the mold, insufficient productivity, and poor working environment.

本発明者等は、上述のような従来のものに比べ
て極めて生産性がよく、かつ後加工の不要な、電
波反射性の合成樹脂成形物を提供すべく種々検討
した結果、粉粒状又は細片状の導電性物質が実質
的に均一分散混合されてなる第1の合成樹脂層
と、前記導電性物質を実質的に含んでいない第2
の合成樹脂層とを積層することにより、電波反射
性をもつ複層一体構造の成形物を得ることに成功
した。
The inventors of the present invention have conducted various studies in order to provide a radio wave reflective synthetic resin molded product that is extremely productive compared to the conventional products mentioned above and does not require post-processing. a first synthetic resin layer in which flaky conductive material is substantially uniformly dispersed and mixed; and a second synthetic resin layer that does not substantially contain the conductive material.
By laminating the synthetic resin layers of

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明に用いることができるシート素材として
は、繊維強化合成樹脂シート素材が好ましく、例
えば、不飽和ポリエステルを用いたSMC、メラ
ミン含浸布、フエノール含浸布等の熱硬化性合成
樹脂と無機質充填材および補強用繊維とからなる
シート素材、あるいはナイロン、ポリプロピレ
ン、ポリサルフオン、ポリオレフイン、ABS等
の熱可塑性合成樹脂と補強用繊維とからなるシー
ト素材が挙げられる。しかし、成形物の要求強度
があまり大きくない場合は、上記補強用繊維は必
ずしも必要としない。
The sheet material that can be used in the present invention is preferably a fiber-reinforced synthetic resin sheet material, such as SMC using unsaturated polyester, a thermosetting synthetic resin such as a melamine-impregnated cloth, a phenol-impregnated cloth, and an inorganic filler. Examples include sheet materials made of reinforcing fibers, and sheet materials made of reinforcing fibers and thermoplastic synthetic resins such as nylon, polypropylene, polysulfone, polyolefin, ABS, etc. However, if the required strength of the molded product is not very high, the above-mentioned reinforcing fibers are not necessarily required.

一般に、電波を反射するためには、反射鏡面の
導電性が高く、しかも全面が電気導通状態である
方が好ましいが、しかし、必ずしも全面が電気導
通状態でなければならないというわけではなく、
反射しようとする電波の波長の1/4以下の間隔密
度で導電領域が形成されていればよいのである。
Generally, in order to reflect radio waves, it is preferable that the reflective mirror surface has high conductivity and that the entire surface is electrically conductive. However, it is not necessarily necessary that the entire surface be electrically conductive.
It is sufficient that the conductive regions are formed with a spacing density of 1/4 or less of the wavelength of the radio wave to be reflected.

したがつて、電波反射機能を有する第1の合成
樹脂層には、粉状、鱗片状、小断繊維状をしたア
ルミニウム、銅、ニツケル等の金属、あるいは、
コークス、針状コークス、カーボンフアイバー、
黒鉛粉等の導電性物質を少くとも反射しようとす
る電波の波長の1/4以下の間隔密度で分散混合す
ればよい。具体的には、第1の合成樹脂層として
不飽和ポリエステルを用いたSMCを使用する場
合は、例えば、次の通りである。
Therefore, the first synthetic resin layer having a radio wave reflecting function is made of metal such as aluminum, copper, or nickel in the form of powder, scales, or small fibers, or
Coke, needle coke, carbon fiber,
The conductive material such as graphite powder may be dispersed and mixed at a spacing density of at least 1/4 of the wavelength of the radio wave to be reflected. Specifically, when using SMC using unsaturated polyester as the first synthetic resin layer, the following is an example.

すなわち、アルミニウムフレークの場合は8〜
25wt%、アルミニウム粉(粒径2〜5μ)の場合
は20〜80wt%、針状コークス(粒径1mm以下)
の場合は15〜70wt%、カーボンフアイバー(繊
維径18μ、長さ0.7mm)の場合は10〜30wt%、黒
鉛粉(粒径1mm以下)の場合は15〜70wt%の割
合で、それぞれ分散混合すればよい。
That is, in the case of aluminum flakes, 8~
25wt%, 20-80wt% for aluminum powder (particle size 2-5μ), needle coke (particle size 1mm or less)
15-70wt% for carbon fiber (fiber diameter 18μ, length 0.7mm), 10-30wt% for carbon fiber (fiber diameter 18μ, length 0.7mm), and 15-70wt% for graphite powder (particle size 1mm or less). do it.

本発明の電波反射性成形物は、上記のような、
導電性物質が分散混合された第1の合成樹脂層
に、導電性物質を実質的に含んでいない第2の合
成樹脂層を積層して一体的に構成したものであ
り、このような複層一体構造によつて、機械的強
度においても十分な、優れた電波反射性成形物が
得られるのである。
The radio wave reflective molded article of the present invention is as described above.
A first synthetic resin layer in which a conductive substance is dispersed and mixed is integrally laminated with a second synthetic resin layer that does not substantially contain a conductive substance. Due to the integral structure, a molded product with sufficient mechanical strength and excellent radio wave reflection properties can be obtained.

すなわち、第1の合成樹脂層の機械的強度は、
導電性物質が混合されることにより、マトリツク
ス本来のもつ値よりも低下するが、本発明におい
ては、導電性物質を実質的に含んでいない第2の
合成樹脂層によつて十分な機械的強度を発現さ
せ、第1の合成樹脂層の上記機械的強度の低下を
補わんとするものである。したがつて、第1の合
成樹脂層の強度物性の低下を全く問題にすること
なく、十分な量の導電性物質を混入することがで
きるのである。かかる観点から、第2の合成樹脂
層には、成形物全体の強度物性を損わない範囲で
導電性物質を混入することもできるが、通常は、
これを全く混入していないものを使用するのが好
ましい。
That is, the mechanical strength of the first synthetic resin layer is
By mixing a conductive substance, the value is lower than the original value of the matrix, but in the present invention, sufficient mechanical strength is achieved by the second synthetic resin layer that does not substantially contain a conductive substance. This is intended to compensate for the decrease in mechanical strength of the first synthetic resin layer. Therefore, a sufficient amount of the conductive substance can be mixed in without causing any problem of deterioration of the strength and physical properties of the first synthetic resin layer. From this point of view, a conductive substance may be mixed into the second synthetic resin layer within a range that does not impair the strength and physical properties of the entire molded product, but usually,
It is preferable to use one that does not contain any of this.

また、第1の合成樹脂層と第2の合成樹脂層と
の両者を同じマトリツクスで構成すれば、両者が
完全に一体化され、剥離等の惧れのない電波反射
性層を構成することができる。したがつて、特
に、繊維強化合成樹脂により成形する場合に有利
である。
Furthermore, if both the first synthetic resin layer and the second synthetic resin layer are made of the same matrix, they can be completely integrated and form a radio wave reflective layer with no risk of peeling. can. Therefore, it is particularly advantageous when molded using fiber-reinforced synthetic resin.

次に、本発明の成形物の製造方法につき図面と
共に説明する。
Next, the method for manufacturing a molded article of the present invention will be explained with reference to the drawings.

第1図は本発明の圧縮成形方法の説明図であ
り、図中1及び2はそれぞれ加熱圧縮成形型の下
型と上型である。成形材料は型窩内に装填される
が、先ず、導電性物質が実質的に均一分散混合さ
れてなる第1のシート素材3が下型1の型窩に装
填される。そして、この第1のシート素材3の上
に、該シート素材のマトリツクスと同じマトリツ
クスではあるが、前記導電性物質を実質的に含ん
でいない第2のシート素材4が適宜枚数積層装填
され、圧縮成形される。こうすることにより、第
2図の断面図で示すように、導電性物質が混合分
散された第1の合成樹脂層3′と導電性物質を実
質的に含んでいない第2の合成樹脂層4′とが一
体積層構造をなした成形物が得られる。
FIG. 1 is an explanatory diagram of the compression molding method of the present invention, and 1 and 2 in the figure are a lower mold and an upper mold, respectively, of a heating compression molding mold. The molding material is loaded into the mold cavity, and first, the first sheet material 3 made of a substantially uniformly dispersed and mixed conductive material is loaded into the mold cavity of the lower mold 1. Then, on top of this first sheet material 3, an appropriate number of second sheet materials 4, which have the same matrix as that of the sheet material but do not substantially contain the conductive substance, are stacked and compressed. molded. By doing this, as shown in the cross-sectional view of FIG. 2, the first synthetic resin layer 3' in which the conductive substance is mixed and dispersed and the second synthetic resin layer 4 that does not substantially contain the conductive substance are formed. A molded product having a laminated structure is obtained.

上記成形物によれば、第1の合成樹脂層3′に
より電波が反射され、その背面への透過は阻止さ
れる。したがつて、回転放物線等の形状に成形を
行なえば、パラボラアンテナの反射器として最適
なものが得られる。
According to the molded article, the first synthetic resin layer 3' reflects the radio waves and prevents them from transmitting to the back surface. Therefore, if it is formed into a shape such as a parabola of revolution, an optimal reflector for a parabolic antenna can be obtained.

また、第3図は内壁面を導電性物質を混合分散
させた第1の合成樹脂層3′で形成した容器であ
る。この容器は到来する電波を外壁の第2の合成
樹脂層4′で減衰させ、第1の合成樹脂層3′で反
射するため、容器の内側へは電波が到達すること
ができず、したがつて、この中に電子機器を収容
すれば、外来電波に対する遮蔽効果を発揮するこ
とができるものである。
Further, FIG. 3 shows a container whose inner wall surface is formed of a first synthetic resin layer 3' in which a conductive substance is mixed and dispersed. Since this container attenuates incoming radio waves with the second synthetic resin layer 4' on the outer wall and reflects them with the first synthetic resin layer 3', the radio waves cannot reach the inside of the container. Therefore, if electronic equipment is housed in this, it is possible to exhibit a shielding effect against external radio waves.

第4図は外壁面を導電性物質を混合分散させた
第1の合成樹脂層3′で形成したものである。こ
の容器は、到来する電波を外壁で反射させるた
め、内側へは電波が到達することができず、した
がつて、上述と同様に電波遮蔽効果を発揮する。
In FIG. 4, the outer wall surface is formed of a first synthetic resin layer 3' in which a conductive substance is mixed and dispersed. Since this container reflects incoming radio waves on its outer wall, the radio waves cannot reach the inside, and therefore exhibits the same radio wave shielding effect as described above.

本発明において、第1の合成樹脂層は、前述の
ような成形物の表層部に形成する場合には、金属
面に接するように型窩に装填すればよいが、中間
層としたい場合には、第2の合成樹脂層を分け
て、その間に第1の合成樹脂層を積層して型窩に
装填すれば表裏に第2の合成樹脂層、中間に第1
の合成樹脂層という三層構造の電波反射性成形物
が得られる。ただし、この場合は、入来電波は先
ず表層の第2層で減衰され、次いて第1層で反射
され、更に表層の第2層で再度減衰されるから、
反射器よりも電波遮蔽器としての用途に適してい
る。
In the present invention, when the first synthetic resin layer is formed on the surface layer of the molded product as described above, it may be loaded into the mold cavity so as to be in contact with the metal surface, but when it is desired to be formed as an intermediate layer, If the second synthetic resin layer is separated and the first synthetic resin layer is laminated between them and loaded into the mold cavity, the second synthetic resin layer will be on the front and back, and the first synthetic resin layer will be in the middle.
A radio wave reflective molded product with a three-layer structure including a synthetic resin layer is obtained. However, in this case, the incoming radio waves are first attenuated by the second surface layer, then reflected by the first layer, and then attenuated again by the second surface layer.
It is more suitable for use as a radio wave shield than a reflector.

本発明の成形物は、電波を反射させるための後
加工を全く必要とせず、また、合成樹脂シート素
材を圧縮成形する本発明方法は、多量生産性に富
み、しかも作業環境も悪くならない等の利点を有
する。
The molded product of the present invention does not require any post-processing to reflect radio waves, and the method of the present invention for compression molding synthetic resin sheet material is highly productive in mass production and does not make the working environment worse. has advantages.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の成形方法を示す説明図、第2
図〜第4図は何れも本発明成形物の例を示す断面
図である。 1……下型、2……上型、3……導電性物質を
混入した第1のシート素材、4……導電性物質が
混入されていない第2のシート素材。
FIG. 1 is an explanatory diagram showing the molding method of the present invention, and FIG.
4 to 4 are sectional views showing examples of molded products of the present invention. 1... Lower mold, 2... Upper mold, 3... First sheet material mixed with a conductive substance, 4... Second sheet material not mixed with a conductive substance.

Claims (1)

【特許請求の範囲】 1 粉粒状又は細片状の導電性物質が実質的に均
一分散混合されてなる第1の合成樹脂層と前記導
電性物質を実質的に含んでいない第2の合成樹脂
層とが一体的に構成されてなることを特徴とする
電波反射性成形物。 2 特許請求の範囲第1項記載のものにおいて、
第1の合成樹脂層によつて成形物の表層が構成さ
れてなることを特徴とする電波反射性成形物。 3 特許請求の範囲第1項記載のものにおいて、
成形物の所定機械的強度が第2の合成樹脂層によ
つて実質的に発現されるようになされたことを特
徴とする電波反射性成形物。 4 特許請求の範囲第1項、第2項又は第3項記
載のものにおいて、第1及び第2の合成樹脂層の
材料マトリツクスが同一物質であることを特徴と
する電波反射性成形物。 5 電波反射性の圧縮成形物の製造方法におい
て、導電性物質が実質的に均一分散混合されてな
る第1のシート素材と、導電性物質を実質的に含
んでいない第2のシート素材とを用い、前記第1
のシート素材を金型面に接するように金型内に装
填し、これに前記第2のシート素材を積層装填し
て圧縮成形することを特徴とする電波反射性成形
物の製造方法。 6 特許請求の範囲第5項記載の方法において、
第1及び第2のシート素材としてSMCを用いる
ことを特徴とする電波反射性成形物の製造方法。 7 特許請求の範囲第5項記載の方法において、
第1及び第2のシート素材として熱可塑性合成樹
脂を用いることを特徴とする電波反射性成形物の
製造方法。 8 特許請求の範囲第7項記載の方法において、
少くとも第2のシート素材として繊維強化熱可塑
性合成樹脂を用いることを特徴とする電波反射性
成形物の製造方法。
[Scope of Claims] 1. A first synthetic resin layer formed by substantially uniformly dispersing and mixing a powder-like or strip-like conductive substance, and a second synthetic resin layer that does not substantially contain the conductive substance. A radio wave reflective molded product characterized by being formed integrally with a layer. 2. In what is stated in claim 1,
1. A radio wave reflective molded article, characterized in that a surface layer of the molded article is constituted by a first synthetic resin layer. 3 In what is stated in claim 1,
1. A radio wave reflective molded article, characterized in that a predetermined mechanical strength of the molded article is substantially expressed by a second synthetic resin layer. 4. A radio wave reflective molded article according to claim 1, 2 or 3, characterized in that the material matrices of the first and second synthetic resin layers are the same material. 5. A method for producing a radio wave reflective compression molded product, in which a first sheet material in which a conductive substance is substantially uniformly dispersed and mixed, and a second sheet material that does not substantially contain a conductive substance. using the first
A method for producing a radio wave reflective molded article, comprising: loading the sheet material into a mold so as to contact the mold surface, loading the second sheet material into the mold in a stacked manner, and compression molding the sheet material. 6. In the method described in claim 5,
A method for producing a radio wave reflective molded article, characterized in that SMC is used as the first and second sheet materials. 7 In the method described in claim 5,
A method for manufacturing a radio wave reflective molded article, characterized in that thermoplastic synthetic resin is used as the first and second sheet materials. 8. In the method described in claim 7,
A method for producing a radio wave reflective molded article, characterized in that a fiber-reinforced thermoplastic synthetic resin is used as at least the second sheet material.
JP9262482A 1982-05-31 1982-05-31 Molding having electromagnetic wave reflecting property and its manufacture Granted JPS58209202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9262482A JPS58209202A (en) 1982-05-31 1982-05-31 Molding having electromagnetic wave reflecting property and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9262482A JPS58209202A (en) 1982-05-31 1982-05-31 Molding having electromagnetic wave reflecting property and its manufacture

Publications (2)

Publication Number Publication Date
JPS58209202A JPS58209202A (en) 1983-12-06
JPH0363242B2 true JPH0363242B2 (en) 1991-09-30

Family

ID=14059593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9262482A Granted JPS58209202A (en) 1982-05-31 1982-05-31 Molding having electromagnetic wave reflecting property and its manufacture

Country Status (1)

Country Link
JP (1) JPS58209202A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5970005A (en) * 1982-10-15 1984-04-20 Toray Ind Inc Antenna
JPS60139323U (en) * 1984-02-27 1985-09-14 三菱電機株式会社 FRP reflector antenna

Also Published As

Publication number Publication date
JPS58209202A (en) 1983-12-06

Similar Documents

Publication Publication Date Title
US4162496A (en) Reactive sheets
US4784899A (en) Electroconductive nonwoven fabric-resin composite articles and method for production thereof
JPS58150203A (en) Prastic product with conductive fiber
US5089326A (en) EMI shielded composites and process of making same
US4824871A (en) Electrically conductive polymer composite and method of making same
EP0109016B1 (en) Fiber reinforced resin molded articles for electromagnetic waves and method for production thereof
US4689098A (en) Molding composition
CN113178694B (en) Self-adhesive prepreg-containing broadband radome and preparation method thereof
CN104470344A (en) Electromagnetic shielding composite material and preparation method thereof
JP2648702B2 (en) Manufacturing method of millimeter wave radio wave absorber
JPH0363242B2 (en)
KR102514826B1 (en) Composite material for shielding electromagnetic waves and its manufacturing method
JPH0419644B2 (en)
JPS6129083B2 (en)
US5840383A (en) Electromagnetic wave reflective fabric
JPS59168703A (en) Parabola antenna made of synthetic resin having high radio wave reflecting characteristic
JPH0159884B2 (en)
Kim et al. Electromagnetic wave characteristics of composite frequency selective surfaces with patch‐grid‐patch type structure fabricated by e‐beam deposition
JPS5975927A (en) Production of conductive composition material
JPS59201504A (en) Manufacture of reinforced plastic-made parabolic antenna
JPH0363243B2 (en)
JP2001077584A (en) Millimeter radio wave absorber
JPS596600A (en) Radio wave absorber
JPH0218597B2 (en)
JPH01239999A (en) Electromagnetic wave reflector