JPH036315A - Method for cleaning molten metal - Google Patents

Method for cleaning molten metal

Info

Publication number
JPH036315A
JPH036315A JP13932389A JP13932389A JPH036315A JP H036315 A JPH036315 A JP H036315A JP 13932389 A JP13932389 A JP 13932389A JP 13932389 A JP13932389 A JP 13932389A JP H036315 A JPH036315 A JP H036315A
Authority
JP
Japan
Prior art keywords
molten metal
bubbles
pressure reduction
molten steel
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13932389A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
俊夫 石井
Shunichi Sugiyama
峻一 杉山
Yoshiteru Kikuchi
良輝 菊地
Eiju Matsuno
英寿 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13932389A priority Critical patent/JPH036315A/en
Publication of JPH036315A publication Critical patent/JPH036315A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To increase the floating speed of bubbles and to improve treatment efficiency by applying ultrasonic waves to a molten metal after the generation of bubbles in a method for subjecting a molten metal in which soluble gas is dissolved to pressure reduction and generation fine bubbles in the molten metal. CONSTITUTION:For example, a molten steel is put into VAD equipment by 50 tons and held at 1660 deg.C and 650torr, and N2 gas of 6Nm<3> is allowed to bubble from the bottom of a ladle by means of a porous plug in 10min, followed by rapid pressure reduction down to 1torr. Subsequently, at the point of time when 2min have passed after the initiation of pressure reduction, an ultrasonic generator provided on the wall surface of the ladle radiates ultrasonic wave of 20kHz to the molten steel. By this method, the length of time necessary for the cleaning treatment of the molten steel can be shortened.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は溶融金属の介在物を除去する清浄化方法に関す
る。 〔従来の技術〕 本発明者等は溶融金属中の介在物除去効率を高めるため
、次のような提案を行なった。即ち、溶融金属に、これ
に可溶なガスをバブリングによって溶解せしめると共に
、減圧によって該溶融金属中に微細ガス気泡を発生させ
るというものである。この方法によれば溶融金属中の介
在物は微細なものまでこの気泡にトラップされて浮上す
ることになり、介在物除去能力が非常に高いものとなる
。 〔発明が解決しようとする問題点〕 しかし、微細ガス気泡の浮上には、ストークスの法則等
から明らかなように、非常に時間が掛かり、その浮上速
度を大きくすることは不可能なため、減圧後該ガス気泡
浮上に要する時間が結局その処理能力を左右することに
なり、処理効率は当初の期待より低いものに止まってい
た。 本発明は以上のような問題に鑑み創案されたもので、上
記ガス気泡の浮上速度を上げてその処理効率を向上せし
めんとするものである。 〔問題点を解決するだめの手段〕 そのため本発明は、上述した溶融金属の清浄化方法を実
施するに当り、微細ガス気泡が発生した後、この溶融金
属に超音波を印加することを基本的特徴としている。 〔作  用〕 ある条件で散在している微粒子状のものに超音波を印加
すると、これらが集合・合体化することが知られている
。本発明はこのような超音波の特性を、上記溶融金属の
清浄化方法に応用することにより成り立つもので、微細
ガス気泡は溶融金属中の微細な介在物を核として発生す
ると考えられるため、上記した超音波の印加により、介
在物と共にこれらの微細ガス気泡も集合・合体化させる
ことができ、気泡径の大きなものが生成される。そのた
め、ガス気泡の浮上速度も増大せしめることが可能とな
る。 〔実施例〕 以下本発明の具体的実施例につき説明する。 50 ton V A D設備内に溶鋼50 tonを
入れ、1660℃で650 torrに保ち、取鍋底部
よりポーラスプラグで10分間かけ6Nrri’のN2
ガスをバブリングした。その後1 torrまで急速に
減圧し、放置した。 更に本発明者等は上記と全く同様な処理を行ない、減圧
開始後2分経過した時点で取鍋壁面に設置された超音波
発振器から溶鋼中に20KHz、50 ’xh及び10
0 KHzの超音波を放射する本発明例についても夫々
実施した。 添付図面はこれらの処理を行なっている時の溶鋼中のT
[Industrial Application Field] The present invention relates to a cleaning method for removing inclusions from molten metal. [Prior Art] The present inventors have proposed the following in order to improve the efficiency of removing inclusions from molten metal. That is, a gas soluble in the molten metal is dissolved by bubbling, and fine gas bubbles are generated in the molten metal by reducing the pressure. According to this method, even minute inclusions in the molten metal are trapped by the bubbles and floated to the surface, resulting in extremely high inclusion removal ability. [Problem to be solved by the invention] However, as is clear from Stokes' law, etc., it takes a very long time for microscopic gas bubbles to float, and it is impossible to increase the floating speed. The time required for the gas bubbles to float after that ultimately determines the processing capacity, and the processing efficiency remains lower than originally expected. The present invention was devised in view of the above-mentioned problems, and aims to increase the floating speed of the gas bubbles and improve the processing efficiency thereof. [Means for Solving the Problems] Therefore, in carrying out the above-described molten metal cleaning method, the present invention basically involves applying ultrasonic waves to the molten metal after the generation of fine gas bubbles. It is a feature. [Operation] It is known that when ultrasonic waves are applied to dispersed particles under certain conditions, they aggregate and coalesce. The present invention is realized by applying the characteristics of ultrasonic waves to the above-mentioned molten metal cleaning method, and since it is thought that fine gas bubbles are generated with fine inclusions in the molten metal as nuclei, the above-mentioned By applying the ultrasonic waves, these fine gas bubbles can be aggregated and coalesced together with the inclusions, and bubbles with a large diameter are generated. Therefore, it is possible to increase the floating speed of gas bubbles. [Examples] Specific examples of the present invention will be described below. 50 tons of molten steel was placed in a 50 ton V A D facility, kept at 1660°C and 650 torr, and heated with 6 Nri' of N2 from the bottom of the ladle using a porous plug for 10 minutes.
Bubbled gas. Thereafter, the pressure was rapidly reduced to 1 torr and left to stand. Furthermore, the present inventors carried out a process completely similar to the above, and two minutes after the start of depressurization, an ultrasonic oscillator installed on the wall of the ladle transmitted 20 KHz, 50' x h and 10 kHz into the molten steel.
Examples of the present invention in which ultrasonic waves of 0 KHz are emitted were also implemented. The attached drawing shows the T content in molten steel during these treatments.

〔0〕の変化を示すグラフ図である。 図中A点はN2ガスバブリングを10分間行なった後に
減圧を開始した時点を、又8点は超音波印加開始時点を
夫々示している。同図から明らかなように、該8点より
超音波放射を行なったX (20K玉) 、y 、(5
o KH2)及びZ (100KHz)の本発明例の場
合は、何も行なわないで、そのまま放置した比較例Hの
場合に比べ、T・
It is a graph diagram showing changes in [0]. In the figure, point A indicates the point at which depressurization was started after 10 minutes of N2 gas bubbling, and point 8 indicates the point at which ultrasonic wave application was started. As is clear from the figure, ultrasonic waves were radiated from the eight points: X (20K ball), y, (5
o In the case of the present invention example of KH2) and Z (100KHz), T・

〔0〕の変化を示す曲線の勾配が急に
なり、溶鋼中のT・
The slope of the curve showing the change in [0] becomes steeper, and T・

〔0〕 が7 ppmになるまでに
、Xの場合で5分、Yの場合で4分、又2の場合で3分
、比較例Hに比べ速まることになる。 〔発明の効果〕 以上詳述したように本発明法によれば、微細− 4− ガス気泡が発生した時点で溶融金属中に超音波を印加し
、該ガス気泡を集合・合体化させて浮上せしめることが
できるため、ガス気泡の浮上速度が高まり、その結果、
既提案に係る溶融金属の清浄化方法の処理時間を短縮せ
しめることが可能となる。
[0] becomes 7 ppm in 5 minutes in the case of X, 4 minutes in the case of Y, and 3 minutes in the case of 2, which is faster than in Comparative Example H. [Effects of the Invention] As detailed above, according to the method of the present invention, ultrasonic waves are applied to the molten metal at the time when fine gas bubbles are generated, and the gas bubbles are aggregated and coalesced to float. This increases the floating speed of gas bubbles, resulting in
It becomes possible to shorten the processing time of the previously proposed molten metal cleaning method.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明例と比較例の実施による溶鋼中のT・〔0
〕の変化を示すグラフ図である。
The drawings show T [0
] is a graph diagram showing changes in .

Claims (1)

【特許請求の範囲】 溶融金属に、これに可溶なガスを溶解せし め、その後急速に減圧して溶融金属中に微細ガス気泡を
発生させ、溶融金属中に浮遊する介在物をトラップし、
浮上後除去する溶融金属の清浄化方法を実施するに当り
、微細ガス気泡が発生した後、この溶融金属に超音波を
印加することを特徴とする溶融金属の清浄化方法。
[Claims] Dissolve a gas soluble in the molten metal, and then rapidly reduce the pressure to generate fine gas bubbles in the molten metal to trap inclusions floating in the molten metal,
A method for cleaning molten metal, which comprises applying ultrasonic waves to the molten metal after fine gas bubbles are generated in performing the method for cleaning molten metal to be removed after floating.
JP13932389A 1989-06-02 1989-06-02 Method for cleaning molten metal Pending JPH036315A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13932389A JPH036315A (en) 1989-06-02 1989-06-02 Method for cleaning molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13932389A JPH036315A (en) 1989-06-02 1989-06-02 Method for cleaning molten metal

Publications (1)

Publication Number Publication Date
JPH036315A true JPH036315A (en) 1991-01-11

Family

ID=15242637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13932389A Pending JPH036315A (en) 1989-06-02 1989-06-02 Method for cleaning molten metal

Country Status (1)

Country Link
JP (1) JPH036315A (en)

Similar Documents

Publication Publication Date Title
JPH036315A (en) Method for cleaning molten metal
JPH04197433A (en) Ultrasonic treatment method
JPH01127624A (en) Method and apparatus for refining molten metal by ultrasonic wave
US6481449B1 (en) Ultrasonic metal finishing
JP3521393B2 (en) Wet processing method and processing apparatus
KR930009387B1 (en) Method of and apparatus for removing non-metallic inclusions from molten metal
JPH01188619A (en) Method for rh vacuum degasification
KR101282598B1 (en) A method for recycling aluminium alloys chip and scrap by using hydropulse
JPS61279311A (en) Pickling method for hot rolled steel sheet
JP3185925B2 (en) Method for promoting coagulation of solids in shochu distillation lees and coagulation promoter
JP3487526B2 (en) Wet processing method and processing apparatus
JP2001262218A (en) Method for producing high cleanliness steel
FR2708873A1 (en) Process for washing granular and / or particulate materials
JP2629225B2 (en) Method for cleaning molten metal
JPH02104441A (en) Vacuum cleaning method of molten metal
RU1805881C (en) Fruit juice clarification method
JPH01132369A (en) Degassing of sparkling drink
JPH036318A (en) Method and device for cleaning molten metal
AU605949B2 (en) Method for cleaning molten metal and apparatus therefor
JPH02290929A (en) Vacuum refining method for molten metal
JPS60187311A (en) Treatment of waste liquid of water-soluble lubricant
JP3153048B2 (en) Melting method of low nitrogen steel by low vacuum refining
JPH0299263A (en) Method for cleaning molten metal under reduced pressure
RU2065548C1 (en) Method of treating highly paraffin oil
JP2780342B2 (en) Vacuum degassing method for molten metal