JPH036318A - Method and device for cleaning molten metal - Google Patents

Method and device for cleaning molten metal

Info

Publication number
JPH036318A
JPH036318A JP13932489A JP13932489A JPH036318A JP H036318 A JPH036318 A JP H036318A JP 13932489 A JP13932489 A JP 13932489A JP 13932489 A JP13932489 A JP 13932489A JP H036318 A JPH036318 A JP H036318A
Authority
JP
Japan
Prior art keywords
molten metal
ultrasonic waves
bubbles
ultrasonic
vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13932489A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
俊夫 石井
Shunichi Sugiyama
峻一 杉山
Yoshiteru Kikuchi
良輝 菊地
Eiju Matsuno
英寿 松野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP13932489A priority Critical patent/JPH036318A/en
Publication of JPH036318A publication Critical patent/JPH036318A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To improve the effect of accelerating the rise of bubbles by ultrasonic waves by specifying the method for impressing the ultrasonic waves in the method for rapidly reducing the pressure of a molten metal in which a soluble gas is dissolved and impressing the ultrasonic waves on the molten metal during the generation of the fine bubbles. CONSTITUTION:The molten steel 3 is put into a vacuum vessel 1 which is, for example, a rectangular parallelepiped, and the vessel 1 is kept at a prescribed temp. and vacuum degree in VAD equipment. Gaseous N2 is then bubbled from the bottom of the vessel. The pressure is thereafter rapidly reduced to the prescribed vacuum degree and is rested. Ultrasonic generators 2a, 2b adjusted to resonate by parting the same at a prescribed distance are provided on the opposite surfaces 1a, 1b of this vessel 1. The ultrasonic wares of the same phase are generated from these two points and are impressed on the molten steel 3. The crossinterference of the ultrasonic waves is prevented and the aggregation and integration of the gaseous bubbles are additionally accelerated by this method. Since the floating rate of the bubbles is additionally increased, the time for the cleaning treatment of the molten metal is shortened.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は溶融金属の介在物を除去する溶融金属の清浄化
方法及びその装置に関する。 〔従来の技術〕 本発明者等は溶融金属中の介在物除去効率を高めるため
、次のような提案を行なった。即ち、溶融金属に、これ
に可溶なガスをバブリングによって溶解せしめると共に
、減圧によって該溶融金属中に微細ガス気泡を発生させ
るというものである。この方法によれば溶融金属中の介
在物は微細なものまでこの気泡にトラップされて浮上す
ることになり、介在物除去能力が非常に高いものとなる
。 更に、上記処理に要する時間を短縮化せしめるため、本
発明者等は、微細ガス気泡発生中に、溶融金属に対し超
音波を印加せしめる構成を新たに創案した。この方法は
、ある条件で散在している微粒子状のものに超音波を印
加すると、これらが集合・合体化するという超音波の特
性を前述の溶融金属の清浄化方法に適用したもので、微
細ガス気泡は溶融金属中の微細な介在物を核として発生
すると考えられるため、該超音波の印加により、介在物
と共に微細ガス気泡も集合・合体化させることができ、
その結果、気泡径の大きなものが生成されてガス気泡の
浮上速度が増大せしめられることになり、処理時間を短
縮せしめることが可能となるというものである。 〔発明が解決しようとする問題点〕 上記の超音波を印加する技術は処理時間を短縮化せしめ
るうえで非常に優れた方法であるが、−回の処理量が多
い場合には溶湯深層部からのガス気泡の上昇に依然時間
が掛っており、超音波の上記効果が充分発揮されていな
い。 本発明は以上のような問題に鑑み創案されたもので、上
記超音波の印加技術の効果を更に有効ならしめる方法及
びその実施装置を提供せんとするものである。 〔問題点を解決するための手段〕 そのため本発明は微細ガス気泡の発生時に超音波を印加
せしめる方法の実施に当り、2箇所以上から超音波を発
するようにするものである。 しかし、これらの超音波が互いに周波数の異なるもので
あったり、位相がずれたものであれば、これらの超音波
が互いに干渉し合い、上記したガス気泡の集合・合体化
効果は、当初期待していた程には高くならないことが明
らかとなった。 そのため本発明者等は2箇所以上から超音波を発した場
合に、相互干渉がなくなる条件を検討し、次に示す本発
明法とその実施装置に係る第2発明装置を創案した。 即ち、本発明法は、溶融金属に対し2箇所以上から超音
波を印加する場合に、同位相の超音3− 波を共振させながら印加するようにしたものである。 この共振によって相乗的に超音波の振幅が増大化するこ
とになり、ガス気泡の集合・合体化効果がより高まり、
放置時間を一層短縮せしめることが可能である。 又、該第1発明法を実施するに当っては、まず、溶融金
属中から減圧処理によって微細ガス気泡を発生させるこ
とが可能な処理容器を用いなければならないので、この
ような処理が実施可能な真空容器を用いることとした。 更に、該真空容器に2以上の超音波発振器を設置する場
合に、これらから発される超音波が共振現象を起こすよ
うにしなければならない。従って該共振器としては、同
位相の超音波が発せられる発振器が用いられ、又これら
の発振器の取付位置は、発せられる超音波の周波数をf
Hzとすると、前記真空容器の対向壁面に、 Q=n・ − 但し、C:音 速(m/s) 4− n: 任意の整数 の離間距離cL(m)を置いて設置するものとする。 〔実施例〕 以下本発明の具体的実施例につき説明する。 第1図及びそのX−X線水平断面を示す第2図に示され
た直方体の真空容器(1)内に溶鋼(3)50 ton
 を入れ、該容器(1)をVAD設備内で1660℃、
650 torrに保って、容器底部より10分間かけ
て6Nrr[’のN2ガスをバブリングした。 その後1 torrまで急速に減圧し、放置した。 この真空容器(1)の対向面(la) (lb)には、
0.6m程度距離を離すことで共振するよう調整した超
音波発振器(2a) (2b)が設置されており、これ
らの発振器(2a) (2b)は同期装置(図示なし)
によって同位相の超音波が発生せられるようになってい
る。本発明者等は、上記減圧処理開始1分後より、該超
音波発振器(2a) (2b)から20 K七程度の超
音波を前記溶鋼(3)に印加する本発明法についても実
施した。 更に、本発明者等は上記真空容器(1)と同様な真空容
器に超音波発振器を備えているが、該発振器の同期調整
が不十分なもの(比較例■)及び超音波発振器を1のみ
備えているもの(比較例■)を用い、上記と略同じN2
ガス溶解処理及び減圧処理を行ない、減圧開始より1分
後から超音波を溶鋼(3)に印加する実験も併せて行な
った。 第3図はこれらの処理を行なっている時の溶鋼(3)中
のT・
[Industrial Application Field] The present invention relates to a molten metal cleaning method and apparatus for removing inclusions from molten metal. [Prior Art] The present inventors have proposed the following in order to improve the efficiency of removing inclusions from molten metal. That is, a gas soluble in the molten metal is dissolved by bubbling, and fine gas bubbles are generated in the molten metal by reducing the pressure. According to this method, even minute inclusions in the molten metal are trapped by the bubbles and floated to the surface, resulting in extremely high inclusion removal ability. Furthermore, in order to shorten the time required for the above treatment, the present inventors have devised a new configuration in which ultrasonic waves are applied to the molten metal while the fine gas bubbles are being generated. This method applies the characteristic of ultrasonic waves that when ultrasonic waves are applied to dispersed fine particles under certain conditions, they aggregate and coalesce, to the method for cleaning molten metal described above. Since gas bubbles are thought to be generated with fine inclusions in molten metal as nuclei, by applying the ultrasonic waves, fine gas bubbles can be aggregated and coalesced together with the inclusions.
As a result, bubbles with larger diameters are generated and the floating speed of the gas bubbles is increased, making it possible to shorten the processing time. [Problems to be solved by the invention] The above-mentioned technique of applying ultrasonic waves is an excellent method for shortening the processing time, but when the amount of processing times is large, It still takes time for the gas bubbles to rise, and the above-mentioned effects of ultrasonic waves are not fully exhibited. The present invention was devised in view of the above-mentioned problems, and it is an object of the present invention to provide a method and an apparatus for making the effect of the above-mentioned ultrasonic wave application technique even more effective. [Means for Solving the Problems] Therefore, in carrying out a method for applying ultrasonic waves when fine gas bubbles are generated, the present invention emits ultrasonic waves from two or more locations. However, if these ultrasonic waves have different frequencies or are out of phase, they will interfere with each other, and the above-mentioned effect of aggregation and coalescence of gas bubbles will not occur as originally expected. It became clear that the price would not rise as high as expected. Therefore, the present inventors studied the conditions under which mutual interference would be eliminated when ultrasonic waves are emitted from two or more locations, and created the following method of the present invention and a second device of the invention related to the apparatus for implementing the same. That is, in the method of the present invention, when applying ultrasonic waves to molten metal from two or more locations, three ultrasonic waves of the same phase are applied while resonating. This resonance synergistically increases the amplitude of the ultrasonic waves, further enhancing the effect of aggregation and coalescence of gas bubbles.
It is possible to further shorten the standing time. In addition, in carrying out the first invention method, it is first necessary to use a processing vessel capable of generating fine gas bubbles from molten metal by decompression processing, so that such processing can be carried out. We decided to use a vacuum container. Furthermore, when two or more ultrasonic oscillators are installed in the vacuum container, it is necessary to ensure that the ultrasonic waves emitted from them cause a resonance phenomenon. Therefore, as the resonator, oscillators that emit ultrasonic waves of the same phase are used, and the mounting positions of these oscillators are such that the frequency of the emitted ultrasonic waves is f
Hz, it shall be installed on the opposite wall of the vacuum container with the following formula: Q = n - where C: speed of sound (m/s) 4 - n: an arbitrary integer distance cL (m) . [Examples] Specific examples of the present invention will be described below. 50 tons of molten steel (3) was placed in a rectangular parallelepiped vacuum vessel (1) shown in Figure 1 and Figure 2, which shows the horizontal cross section taken along the line X-X.
and heated the container (1) at 1660°C in the VAD equipment.
While maintaining the pressure at 650 torr, 6 Nrr[' of N2 gas was bubbled from the bottom of the container for 10 minutes. Thereafter, the pressure was rapidly reduced to 1 torr and left to stand. On the opposing surfaces (la) and (lb) of this vacuum container (1),
Ultrasonic oscillators (2a) (2b) adjusted to resonate at a distance of about 0.6 m are installed, and these oscillators (2a) (2b) are connected to a synchronizer (not shown).
This allows ultrasonic waves to be generated in the same phase. The present inventors also implemented the method of the present invention in which ultrasonic waves of approximately 20 K7 were applied to the molten steel (3) from the ultrasonic oscillators (2a) (2b) one minute after the start of the decompression treatment. Furthermore, the present inventors equipped a vacuum container similar to the vacuum container (1) above with an ultrasonic oscillator, but the oscillator was poorly synchronized (Comparative Example ■), and only one ultrasonic oscillator was used. Using the equipment provided (comparative example ■), approximately the same N2 as above
An experiment was also conducted in which gas dissolution treatment and depressurization treatment were performed, and ultrasonic waves were applied to the molten steel (3) from 1 minute after the start of depressurization. Figure 3 shows the T-contains in molten steel (3) during these treatments.

〔0〕の変化を示すグラフ図である。 図中A点はN2ガスバブリングを10分間行なった後に
減圧を開始した時点を、又8点は超音波印加開始時点を
夫々示している。 同図から明らかなように、本発明例の場合は、従来例及
び比較例■・■に比べ、T・
It is a graph diagram showing changes in [0]. In the figure, point A indicates the point at which depressurization was started after 10 minutes of N2 gas bubbling, and point 8 indicates the point at which ultrasonic wave application was started. As is clear from the figure, in the case of the example of the present invention, T.

〔0〕が7 ppmになる
までの減圧開始後の処理時間が2〜5分程度短縮せしめ
られている。このような処理時間の短縮効果は、2箇所
から発せられた超音波が共振して、微細介在物をトラッ
プしたガス気泡の集合・合体化効果を高め、その結果、
該ガス気泡の浮上速度が増大したことによるものと思わ
れる。 〔発明の効果〕 以上詳述したように、本発明法及びその実施装置によれ
ば、微細ガス気泡が発生した時点で溶融金属に対し2箇
所以上から超音波が印加され、しかもこれらの超音波が
共振することになるため、ガス気泡の集合・合体化がよ
り一層促進せしめられて、その浮上速度が一段と高まり
、その結果、既提案に係る溶融金属の清浄化方法に要す
る処理時間を更に短縮せしめることが可能となる。
The processing time after the start of pressure reduction until [0] becomes 7 ppm is shortened by about 2 to 5 minutes. This reduction in processing time is due to the resonance of the ultrasonic waves emitted from two locations, which enhances the aggregation and coalescence effect of gas bubbles that trap fine inclusions.
This seems to be due to an increase in the floating speed of the gas bubbles. [Effects of the Invention] As detailed above, according to the method of the present invention and the apparatus for implementing the same, ultrasonic waves are applied to the molten metal from two or more places at the time when fine gas bubbles are generated, and these ultrasonic waves As the gas bubbles resonate, the aggregation and coalescence of gas bubbles is further promoted, and their floating speed is further increased.As a result, the processing time required for the previously proposed molten metal cleaning method is further shortened. It becomes possible to force them.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法の実施に用いられる第2発明装置の実
施例設備を示す概略断面図、第2図は前回X−X線水平
断面図、第3図は本発明例と従来例及び比較例I・■の
実施中における溶鋼中のT・
FIG. 1 is a schematic cross-sectional view showing an embodiment of the equipment of the second inventive device used for carrying out the method of the present invention, FIG. 2 is a horizontal cross-sectional view taken along the line X-X from the previous time, and FIG. T・ in the molten steel during the implementation of Comparative Example I・■

〔0〕の変化を示すグラフ
図である。 図中、(1)は真空容器、(la) (lb)は対向面
、(2a) (2b)は超音波発振器、(3)は溶鋼を
各示す。 7− −8=   LL ト α
It is a graph diagram showing changes in [0]. In the figure, (1) shows a vacuum vessel, (la) and (lb) show opposing surfaces, (2a) and (2b) show an ultrasonic oscillator, and (3) shows molten steel. 7- -8= LL to α

Claims (2)

【特許請求の範囲】[Claims] (1)溶融金属に、これに可溶なガスを溶解せしめ、そ
の後急速に減圧して溶融金属中に微細ガス気泡を発生さ
せ、溶融金属中に浮遊する介在物をトラップし、浮上後
除去する溶融金属の清浄化方法を実施するに当り、微細
ガス気泡が発生した後、該溶融金属に対し2箇所以上か
ら同位相の超音波を共振させながら印加するようにした
ことを特徴とする溶融金属の清浄化方法。
(1) Dissolve soluble gas in the molten metal, then rapidly reduce the pressure to generate fine gas bubbles in the molten metal, trap inclusions floating in the molten metal, and remove them after floating. A molten metal characterized in that, in performing a molten metal cleaning method, after fine gas bubbles are generated, ultrasonic waves of the same phase are applied to the molten metal from two or more locations while resonating. cleaning method.
(2)溶融金属を保持したまま減圧処理が実施でき、そ
れによって該溶融金属中から可溶ガスを微細ガス気泡と
して発生せしめることが可能な真空容器と、該容器の対
向壁面に、下式に示す距離lを置いて周波数fの同位相
の超音波を発する超音波発振器を夫々設けたことを特徴
とする溶融金属の清浄化装置 l=n・c/f 但し、l:離間距離 f:超音波の周波数 c:音速 n:任意の整数
(2) A vacuum container capable of carrying out depressurization treatment while holding the molten metal, thereby generating soluble gas from the molten metal as fine gas bubbles, and a vacuum container on the opposite wall of the container according to the following formula. A molten metal cleaning device l=n・c/f, characterized in that ultrasonic oscillators that emit ultrasonic waves of frequency f and the same phase are provided at a distance l shown in FIG. Sound wave frequency c: Sound speed n: Any integer
JP13932489A 1989-06-02 1989-06-02 Method and device for cleaning molten metal Pending JPH036318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13932489A JPH036318A (en) 1989-06-02 1989-06-02 Method and device for cleaning molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13932489A JPH036318A (en) 1989-06-02 1989-06-02 Method and device for cleaning molten metal

Publications (1)

Publication Number Publication Date
JPH036318A true JPH036318A (en) 1991-01-11

Family

ID=15242662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13932489A Pending JPH036318A (en) 1989-06-02 1989-06-02 Method and device for cleaning molten metal

Country Status (1)

Country Link
JP (1) JPH036318A (en)

Similar Documents

Publication Publication Date Title
JP2644169B2 (en) Cleaning by cavitation in liquefied gas
ATE536086T1 (en) METHOD FOR GENERATING PLASMA USING A PLASMA CATALYST
JP3336323B2 (en) Ultrasonic cleaning method and apparatus
ATA271288A (en) METHOD AND DEVICE FOR SEPARATING PARTICLES DISPERSED IN A DISPERSION AGENT
JPH036318A (en) Method and device for cleaning molten metal
WO2002060634A1 (en) Laser welding process
JP3093572B2 (en) Dry etching method
JPS63104620A (en) Defoaming method
JPH0751645A (en) Megasonic cleaning system using compressed and condensed case
US2798832A (en) Method of hardening ferrous metals
Škorić et al. Higher electron non-linearities in the dynamics of Langmuir collapse
JPH03190131A (en) Cleaning device of semiconductor substrate
SU1096305A1 (en) Method for removing corrosion products from metal products
JPS6254557B2 (en)
GB479933A (en) Treatment of molten metals and alloys
JPH03264682A (en) Method and apparatus for cleaning metallic material
JPH07263397A (en) Ultrasonic cleaning method
JPS59142885A (en) Ultrasonic treating method and apparatus
JPH04286187A (en) Removing method for flux of printed board unit
KR100247863B1 (en) Method for the surface treatment of a metallic product in a reactive solution
SU787119A1 (en) Method of high-amplitude ultrasonic cleaning
Nakamura et al. Experiments on explosive instability in an ion beam-plasma system
SU1362526A1 (en) Method and apparatus for stripping wire from scale
Polockii Lowering Residual Welding Stresses by Ultrasonic Treatment
Dolinsky HEAT TRANSFER HI GAS-LIQUID DISPERSE SYSTEMS AT DISCRETE-PULSE ENERGY INJECTION