JPH02104441A - Vacuum cleaning method of molten metal - Google Patents

Vacuum cleaning method of molten metal

Info

Publication number
JPH02104441A
JPH02104441A JP25206288A JP25206288A JPH02104441A JP H02104441 A JPH02104441 A JP H02104441A JP 25206288 A JP25206288 A JP 25206288A JP 25206288 A JP25206288 A JP 25206288A JP H02104441 A JPH02104441 A JP H02104441A
Authority
JP
Japan
Prior art keywords
molten metal
bubbling
gas
inclusions
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25206288A
Other languages
Japanese (ja)
Inventor
Toshio Ishii
俊夫 石井
Shunichi Sugiyama
峻一 杉山
Yoshiteru Kikuchi
良輝 菊地
Hidetoshi Matsuno
松野 秀寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25206288A priority Critical patent/JPH02104441A/en
Publication of JPH02104441A publication Critical patent/JPH02104441A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the capacity of the cleaning treatment of a molten metal by applying an electromagnetic force to the molten metal during bubbling and stirring and heating the molten metal. CONSTITUTION:The molten steel 2 is put into a vessel 1 and after the atmosphere therein is substd. with gaseous Ar, the molten steel is bubbled by blowing a prescribed gaseous mixture composed of gaseous Ar and gaseous H2 into the vessel 1 from the bottom thereof under the atmosphere pressure. The electromagnetic stirring of the molten steel 2 is executed by simultaneously applying the electromagnetic force to the molten steel by an electromagnetic coil 3 installed around the vessel 1 at this time. The gas bubbling and electromagnetic stirring are thereafter stopped and the pressure in the vessel 1 is rapidly reduced by a control valve, then the molten steel is rested in this state. As a result, the collision of the inclusions against each other is increased by the electromagnetic stirring and the inclusions relatively increased in the size float during the bubbling. The intrusion of these inclusions again into the molten metal due to the reduced pressure 2 is prevented and, therefor, the efficiency of removing the inclusions is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、溶融金属中に浮遊する介在物を除去する溶
融金属の減圧清浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for vacuum cleaning molten metal for removing inclusions floating in the molten metal.

〔従来の技術〕[Conventional technology]

溶融金属中に浮遊する介在物(例えば溶鋼中のアルミナ
系介在物)は、製・品品質欠陥の原因となるため、その
低減・除去方法が種々提案されている。
Inclusions floating in molten metal (for example, alumina inclusions in molten steel) cause product quality defects, and various methods have been proposed to reduce and remove them.

本発明者等は、高級材製造を目的とした場合、溶鋼中の
トータル酸素量は15ppm以下に抑える必要があると
の要請に鑑み、次のような提案を行なった。即ち、加圧
状態にした溶融金属を、それに可溶なガスでバブリング
して該溶融金属中にガスを溶解せしめ、その後急速に減
圧して溶融金属中に微細ガス気泡を発生させるというも
のである。この方法によれば溶融金属中の通常の介在物
は最初のバブリングでそのガス気泡にトラップされ浮上
せしめられることになる。
The present inventors made the following proposal in view of the requirement that the total amount of oxygen in molten steel should be suppressed to 15 ppm or less for the purpose of producing high-grade materials. That is, pressurized molten metal is bubbled with soluble gas to dissolve the gas in the molten metal, and then the pressure is rapidly reduced to generate fine gas bubbles in the molten metal. . According to this method, normal inclusions in the molten metal are trapped in the gas bubbles and floated to the surface during the initial bubbling.

他方、このバブリングは加圧した溶融金属に対して行な
われるため、バブリングガスが多量に溶融金属中に溶け
込むことになる。その後の急速な減圧で、溶融金属中に
溶け込んでいたガスが微細なガス気泡となって溶融金属
全域から発生する。この時、微細な介在物は該ガス気泡
にトラップされて浮上する。
On the other hand, since this bubbling is performed on pressurized molten metal, a large amount of bubbling gas dissolves into the molten metal. Due to the subsequent rapid depressurization, the gas dissolved in the molten metal becomes fine gas bubbles and is generated from the entire area of the molten metal. At this time, fine inclusions are trapped by the gas bubbles and float up.

このように溶融金属中の介在物を除去するには極めて効
率の良い優れた方法ではあるが、減圧後の放置時間が短
い場合には溶融金属中に前記バブリングガスが多量に溶
け残ることになるため、当該処理終了後、更に脱ガスを
行なう必要があった。
Although this is an extremely efficient and excellent method for removing inclusions in molten metal, if the time left after depressurization is short, a large amount of the bubbling gas will remain dissolved in the molten metal. Therefore, it was necessary to further degas after the completion of the treatment.

そこで本発明者等は、上記方法のうちバブリングガスが
溶け残る原因となっていた。バブリング時の溶融金属の
加圧処理を止め、大気圧もしくはそれ以下の状態で該バ
ブリングを行ない、その後に減圧処理を行なう新たな溶
融金属の清浄化方法を提案した。この改良型の方法では
減圧処理によって微細ガス気泡が発生せしめられるだけ
でなく、溶融金属中の脱ガスも一緒に行なわれることに
なる。
Therefore, the present inventors found that in the above method, the bubbling gas was the cause of remaining undissolved. We have proposed a new method for cleaning molten metal in which the pressure treatment of the molten metal during bubbling is stopped, the bubbling is performed at atmospheric pressure or lower, and then the depressurization treatment is performed. In this improved method, the vacuum treatment not only generates fine gas bubbles, but also degasses the molten metal.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、このように改良された方法ではあっても、バブ
リング後、減圧してしばらく放置しなければ、トラップ
された介在物が完全に浮上ってこないため、処理時間が
長くかかり、処理能力の面で問題があった。
However, even with this improved method, the trapped inclusions do not come to the surface completely unless the pressure is reduced and left for a while after bubbling, which takes a long time and reduces processing capacity. There was a problem.

本発明は、このような問題に鑑み創案されたもので、上
記の方法を更に改良し、その処理能力の改善を図らんと
するものである。
The present invention was devised in view of such problems, and aims to further improve the above-described method and improve its processing performance.

〔問題点を解決するための手段〕[Means for solving problems]

そのため本発明法は、上記した溶融金属の減圧清浄化方
法を実施するにあたり、バブリング中に溶融金属に電磁
力をかけてこれを撹拌・加熱するよう−にしたものであ
る。
Therefore, in the method of the present invention, when implementing the above-described vacuum cleaning method for molten metal, electromagnetic force is applied to the molten metal during bubbling to stir and heat the molten metal.

本発明者等は処理能力向上を目的に各種実験を行なった
が、減圧後の放置時間を短くすると、微小介在物の除去
が思うように進まないことがわかった。そこでそれ以前
に行なわれるバブリングによる通常介在物の除去効率を
向上せしめようとすることになった。
The present inventors conducted various experiments with the aim of improving processing capacity, but found that if the standing time after depressurization was shortened, the removal of minute inclusions did not proceed as expected. Therefore, attempts have been made to improve the efficiency of removing normal inclusions by bubbling, which is performed prior to bubbling.

その後の実験結果から、バブリング中に溶融金属に対し
て低周波の電磁力をかけ、主に該溶融金属の積極的な撹
拌を行なわしめることにより、バブリングによる介在物
の除去効率を上げる構成が考案された。これは、撹拌に
より介在物同士の衝突が増え、比較的大きくなった介在
物がバブリング中に浮上することによるものと思われる
。又、この強制撹拌によりバブリングガスの溶け込み量
の増加も見込めるため、減圧による微細ガス気泡の発生
量も増え、微細介在物の除去効率向上も望めるようにな
った。
Based on subsequent experimental results, a configuration was devised to increase the efficiency of removing inclusions through bubbling by applying a low-frequency electromagnetic force to the molten metal during bubbling, mainly to actively stir the molten metal. It was done. This seems to be because collisions between inclusions increase due to stirring, and relatively large inclusions float to the surface during bubbling. In addition, because this forced stirring is expected to increase the amount of bubbling gas dissolved, the amount of fine gas bubbles generated due to pressure reduction will also increase, and it is also expected to improve the removal efficiency of fine inclusions.

更にガスバブリング時間がたつにつれて、当然湯温か次
第に低くなり、そのため、バブリングガスの溶け込み量
が低下する。又、溶融金属の流動性も低下するため、バ
ブリングによる撹拌効果も次第に低くなる。このような
時は、バブリング中に溶融金属に対し高周波の電磁力を
かけ、発生する誘導電流によるジュール発熱によって主
に該溶融金属の加熱を積極的に行なわしめるように本発
明法を実施しても良い。
Furthermore, as the gas bubbling time progresses, the temperature of the hot water naturally becomes lower, and as a result, the amount of bubbling gas dissolved in the water decreases. Furthermore, since the fluidity of the molten metal also decreases, the stirring effect due to bubbling also gradually decreases. In such cases, the method of the present invention is implemented so that high-frequency electromagnetic force is applied to the molten metal during bubbling, and the molten metal is actively heated mainly by Joule heat generated by the generated induced current. Also good.

尚、電磁力を印加する時期をバブリング中にのみ限定し
たのは、減圧後−旦浮上した介在物を電磁撹拌により再
□び溶融金属中に混入せしめてしまうことがないように
するためである。
The reason why the electromagnetic force is applied is limited to only during bubbling is to prevent inclusions that have surfaced after depressurization from being mixed into the molten metal again due to electromagnetic stirring. .

第2発明では、減圧処理以後の溶融金属の撹拌を不活性
ガスのバブリングによって行なわしめるものである。上
述のように、減圧処理後も電磁撹拌を継続すれば、浮上
した介在物を溶融金属中に再び取り込んでしまう虞れが
あるが、上記ガスバブリングによれば、電磁撹拌を用い
たときのような介在物の巻き込みの心配はない。
In the second invention, stirring of the molten metal after the depressurization treatment is performed by bubbling an inert gas. As mentioned above, if electromagnetic stirring is continued even after depressurization treatment, there is a risk that floating inclusions will be reintroduced into the molten metal. There is no need to worry about inclusions.

又、溶融金属の減圧清浄化方法では、浴深が深い程、W
i融金金属自重が静圧としてかかるため、減圧時に浴深
部における脱ガスを行なうことが難しくなる。従って上
記のようなガスバブリングによる撹拌を行なえば、減圧
による脱ガス効率を高めることにもなる。
In addition, in the vacuum cleaning method for molten metal, the deeper the bath depth, the lower the W
Since the weight of the welding metal is applied as static pressure, it becomes difficult to degas the deep part of the bath when the pressure is reduced. Therefore, stirring by gas bubbling as described above also increases the efficiency of degassing by reducing the pressure.

〔実施例〕〔Example〕

以下本発明の具体的実施例につき説明する。 Specific examples of the present invention will be described below.

第1図は、本発明法を実施するための装置構成の概要を
示している。本実施例では容器(1)内に50tonの
溶鋼(2)を入れ、内部雰囲気をArガスに置換せしめ
た後、大気圧下でArガス=70%、11、lガス:3
0%の混合ガスを使って容器(1)底面より200Q/
minの吹込み速度で吹込み、20分間ガスバブリング
した。この時、同時に容器(1)周りに設置された電磁
コイル(3)によって溶鋼(2)に′+1!磁力を加え
、電磁撹拌を行なった。この後ガスバブリング及びfi
電磁撹拌止め、且つ容器(1)内を調圧弁(図示なし)
により急激に減圧し、そのまま20分間放置した。又、
当該実施例に対する比較例として、バブリング中の電磁
撹拌を行なわずに50tonの溶鋼に対し、他の条件を
同じにして同様な処理を行なった。
FIG. 1 shows an outline of an apparatus configuration for carrying out the method of the present invention. In this example, 50 tons of molten steel (2) is placed in a container (1), and after replacing the internal atmosphere with Ar gas, Ar gas = 70%, 11, l gas: 3 under atmospheric pressure.
200Q/ from the bottom of container (1) using 0% mixed gas
Gas was bubbled for 20 minutes by blowing at a blowing speed of min. At this time, at the same time, the electromagnetic coil (3) installed around the container (1) turns the molten steel (2) into a '+1! Magnetic force was applied and electromagnetic stirring was performed. After this, gas bubbling and fi
Electromagnetic stirring stopper and pressure regulating valve (not shown) inside the container (1)
The pressure was rapidly reduced and the mixture was left as it was for 20 minutes. or,
As a comparative example to this example, 50 tons of molten steel was subjected to the same treatment without electromagnetic stirring during bubbling under the same other conditions.

第2図は、本実施例(図中イ))及び比較例(図中(ロ
))による溶鋼中のトータル酸素量の変化を時間の経過
と共に示したものである。
FIG. 2 shows changes in the total amount of oxygen in molten steel over time according to the present example (a) in the figure) and the comparative example (b) in the figure.

本実施例では電磁撹拌によって混合ガスバブリング時に
既に溶鋼(2)中のトータル酸素量がかなり減少してい
る。これは、バブリング中の撹拌で介在物同士の衝突が
増え、比較的大きくなった介在物がこのバブリング中に
浮上して溶鋼(2)中のトータル酸素量が減ったものと
思われる。又、全工程終了後のトータル酸素量も本実施
例の方が低い。これはバブリング時の撹拌で、比較的小
さい介在物もある程度衝突して大きくなり、気泡ガスに
;−ラップされ易くなっていること及び撹拌によるガス
溶け込み量が多くなって減圧時に微細ガス気泡の発生量
が増加することによるものと思われる。
In this example, the total amount of oxygen in the molten steel (2) has already been considerably reduced during mixed gas bubbling due to electromagnetic stirring. This is thought to be because collisions between inclusions increased due to stirring during bubbling, and relatively large inclusions rose to the surface during this bubbling, reducing the total amount of oxygen in the molten steel (2). Furthermore, the total amount of oxygen after all steps were completed was also lower in this example. This is due to the agitation during bubbling, which causes relatively small inclusions to collide to some extent and become larger, becoming gas bubbles. This seems to be due to an increase in the amount.

従って、比較例により処理された溶鋼を、本実施例で処
理された溶鋼(2)と同程度のトータル酸素量にするた
めには、減圧後の放置時間をもう少し長くとる必要があ
り、処理能力の面で本実施例の方が優れていることがわ
かる。
Therefore, in order to make the molten steel treated in the comparative example have the same total oxygen content as the molten steel (2) treated in the present example, it is necessary to allow the molten steel to stand for a little longer after depressurization, and the processing capacity It can be seen that this example is superior in terms of.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明法によれば、ガスバブリン
グによる介在物の除去効率を向上せしめることができる
ため、上述した溶融金属の減圧清浄化方法による溶融金
属の清浄化の処理能力をアップさせることができること
となる。
As detailed above, according to the method of the present invention, it is possible to improve the efficiency of removing inclusions by gas bubbling, thereby increasing the throughput of cleaning molten metal by the vacuum cleaning method for molten metal described above. This means that it is possible to do so.

更に本願第2発明法によれば、減圧処理以後にも不活性
ガスバブリングによる溶融金属の撹拌が行なえることに
なって、−mの処理能力向上を期待でき、特に浴深が深
くなればその処理能力の向上は顕著になる。
Furthermore, according to the second invention method of the present application, it is possible to stir the molten metal by inert gas bubbling even after the depressurization treatment, and it is expected that the treatment capacity of -m will be improved, especially when the bath depth becomes deep. The improvement in processing power will be significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法を実施するための装置構成の概要を示
す説明図、第2図は本実施例と比較例による溶鋼中のト
ータル酸素量の推移を示すグラフ図である。 図中、(1)は容器、(2)は溶鋼、(3)は電磁コイ
ルを各示す。
FIG. 1 is an explanatory diagram showing an overview of the configuration of an apparatus for implementing the method of the present invention, and FIG. 2 is a graph diagram showing changes in the total oxygen content in molten steel according to the present example and a comparative example. In the figure, (1) shows the container, (2) shows the molten steel, and (3) shows the electromagnetic coil.

Claims (1)

【特許請求の範囲】 1、大気圧もしくはそれ以下の状態で溶融金属をそれに
可溶なガスでバブリングして該溶融金属中にガスを溶解
せしめ、その後急速に減圧して溶融金属中に微細ガス気
泡を発生させると共に、この減圧で該溶融金属中に溶け
残っているバブリングガスの脱ガスを合わせて行ない、
溶融金属中に浮遊する介在物をバブリングによるガス気
泡及び減圧により発生した微細ガス気泡にトラップせし
めて、浮上後これを除去する溶融金属の減圧清浄化方法
を実施するに当り、バブリング中に溶融金属に電磁力を
かけてこれを撹拌・加熱することを特徴とする溶融金属
の減圧清浄化方法。 2、大気圧もしくはそれ以下の状態で溶融金属をそれに
可溶なガスでバブリングして該溶融金属中にガスを溶解
せしめ、その後急速に減圧して溶融金属中に微細ガス気
泡を発生させると共に、この減圧で該溶融金属中に溶け
残っているバブリングガスの脱ガスを合わせて行ない、
溶融金属中に浮遊する介在物をバブリングによるガス気
泡及び減圧により発生した微細ガス気泡にトラップせし
めて、浮上後これを除去する溶融金属の減圧清浄化方法
を実施するに当り、バブリング中に溶融金属に電磁力を
かけてこれを撹拌・加熱すると共に、減圧処理以後は溶
融金属中に不活性ガスをバブリングせしめて該溶融金属
を撹拌することを特徴とする溶融金属の減圧清浄化方法
[Claims] 1. The gas is dissolved in the molten metal by bubbling the molten metal with a gas soluble in the molten metal at atmospheric pressure or lower, and then the pressure is rapidly reduced to form a fine gas in the molten metal. Generating bubbles and degassing the bubbling gas remaining dissolved in the molten metal using this reduced pressure,
In carrying out a vacuum cleaning method for molten metal in which inclusions floating in molten metal are trapped in gas bubbles caused by bubbling and fine gas bubbles generated by depressurization and removed after floating, the molten metal is removed during bubbling. A vacuum cleaning method for molten metal characterized by stirring and heating it by applying electromagnetic force to it. 2. Bubbling the molten metal with a gas soluble in it at atmospheric pressure or lower to dissolve the gas in the molten metal, and then rapidly reducing the pressure to generate fine gas bubbles in the molten metal, At this reduced pressure, the bubbling gas remaining dissolved in the molten metal is degassed,
In carrying out a vacuum cleaning method for molten metal in which inclusions floating in molten metal are trapped in gas bubbles caused by bubbling and fine gas bubbles generated by depressurization and removed after floating, the molten metal is removed during bubbling. A vacuum cleaning method for molten metal, which comprises stirring and heating the molten metal by applying an electromagnetic force to the molten metal, and stirring the molten metal by bubbling an inert gas into the molten metal after the vacuum treatment.
JP25206288A 1988-10-07 1988-10-07 Vacuum cleaning method of molten metal Pending JPH02104441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25206288A JPH02104441A (en) 1988-10-07 1988-10-07 Vacuum cleaning method of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25206288A JPH02104441A (en) 1988-10-07 1988-10-07 Vacuum cleaning method of molten metal

Publications (1)

Publication Number Publication Date
JPH02104441A true JPH02104441A (en) 1990-04-17

Family

ID=17232027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25206288A Pending JPH02104441A (en) 1988-10-07 1988-10-07 Vacuum cleaning method of molten metal

Country Status (1)

Country Link
JP (1) JPH02104441A (en)

Similar Documents

Publication Publication Date Title
JP6593233B2 (en) Manufacturing method of high clean steel
JPH02104441A (en) Vacuum cleaning method of molten metal
JPH01188619A (en) Method for rh vacuum degasification
JP6686838B2 (en) Highly clean steel manufacturing method
JP2629225B2 (en) Method for cleaning molten metal
KR101282598B1 (en) A method for recycling aluminium alloys chip and scrap by using hydropulse
KR930009387B1 (en) Method of and apparatus for removing non-metallic inclusions from molten metal
JP2709554B2 (en) Ladle electrode heating and refining method for molten steel
JPH01127624A (en) Method and apparatus for refining molten metal by ultrasonic wave
JP2003207283A (en) Method and device for mixing molten metal
KR920006578B1 (en) Method for cleaning molten metal and apparatus therefor
KR930005065B1 (en) Method for cleaning molten metal and apparatus therefor
JP3654248B2 (en) Method for refining molten metal
CN108504822A (en) A kind of method of small particle aluminate pattern in control ultra-low-carbon steel
JPH055576B2 (en)
JPH0299264A (en) Method for cleaning molten metal
JP5010086B2 (en) Vacuum processing of molten metal with simultaneous stripping by helium injection.
JPH02104440A (en) Vacuum cleaning method for molten metal
JPH05271748A (en) Vacuum degassing method
JPH0299263A (en) Method for cleaning molten metal under reduced pressure
JPH02285037A (en) Slag refining method for molten metal
JP2600656B2 (en) Drop degassing of molten steel
JPH036315A (en) Method for cleaning molten metal
JPH05311226A (en) Reduced pressure-vacuum degassing refining method for molten metal
JPH036317A (en) Method and device for ladle refining