JPH0362771B2 - - Google Patents

Info

Publication number
JPH0362771B2
JPH0362771B2 JP58091923A JP9192383A JPH0362771B2 JP H0362771 B2 JPH0362771 B2 JP H0362771B2 JP 58091923 A JP58091923 A JP 58091923A JP 9192383 A JP9192383 A JP 9192383A JP H0362771 B2 JPH0362771 B2 JP H0362771B2
Authority
JP
Japan
Prior art keywords
hot water
air
temperature
wire
carbon steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58091923A
Other languages
Japanese (ja)
Other versions
JPS59219417A (en
Inventor
Hitoshi Iwata
Yoshihiro Hashimoto
Katsuhiko Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP58091923A priority Critical patent/JPS59219417A/en
Priority to DE8484105780T priority patent/DE3473888D1/en
Priority to EP84105780A priority patent/EP0126481B1/en
Priority to AT84105780T priority patent/ATE37044T1/en
Priority to NO842021A priority patent/NO163907C/en
Priority to ZA843866A priority patent/ZA843866B/en
Priority to FI842062A priority patent/FI75867C/en
Priority to KR1019840002821A priority patent/KR890002982B1/en
Priority to BR8402479A priority patent/BR8402479A/en
Priority to CA000454956A priority patent/CA1221297A/en
Priority to MX201444A priority patent/MX161816A/en
Priority to ES532773A priority patent/ES8604314A1/en
Priority to US06/613,485 priority patent/US4526627A/en
Priority to AU28567/84A priority patent/AU560405B2/en
Publication of JPS59219417A publication Critical patent/JPS59219417A/en
Publication of JPH0362771B2 publication Critical patent/JPH0362771B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents

Description

【発明の詳細な説明】[Detailed description of the invention]

イ 産業上の利用分野 この発明は中高炭素鋼線材を温水に浸漬して行
う直接パテンチング方法及び其の装置に関するも
のである。 ロ 従来技術 鋼片を熱間圧延して製造した中高炭素鋼線材は
冷間加工性を改善し抗張力を上げるため通常伸線
加工する前に線材を微細なパーライト組織とする
パテンチング処理が行われる。この熱処理は線材
を850℃以上に加工して約450〜650℃の溶融鉛浴
に連続的に浸漬するという冷却条件で処理するい
わゆる鉛パテンチング法によつて行われるのが普
通であり、この方法で得られた線材の加工性と機
械的性能は良好である。又線材を再加熱してそれ
に冷空気を吹き付けるなどして調整冷却によりパ
テンチングするいわゆる空気パテンチング法も簡
便なため広く行われている。然しこれらの方法は
常温になつた線材を再加熱して行うのでいずれの
方法も再加熱やその作業のため別の設備、人員を
必要としコスト高である。 これに対し熱間圧延された高温の線材を直接制
御冷却することによつて再加熱してパテンチング
した線材と同等の性質を有する線材とする直接パ
テンチング方法が開発され再加熱工程を省略でき
工程を低コスト化できるので大いに用いられてい
る。 この直接パテンチング法には各種の方法がある
が、その中で圧延された線材を温水中で冷却する
方法はその設備の簡便さ、操業の低コストから高
く評価されている。温水を用いて冷却すると冷水
の場合と異なり高温の線材の表面に水蒸気の膜を
生じていわゆる膜沸騰現象となり鋼材と温水との
直接接触が避けられ冷却速度が緩和され、湯温が
適切であればパテンチング処理に適した冷却速度
が得られ微細パーライト組織の線材がえられるの
である。その公知の応用例として、中高炭素鋼線
材を沸騰水中に浸漬するパテンチング処理があ
る。 その具体的な装置の一例は第1図に示すように
仕上げ圧延機13で圧延された線材1をレイング
式巻取機2でコイル状に成形したのち、直接これ
を温水槽4の中の温水3に螺旋状になるように落
下させて温水中に浸漬し、巻取機2の直下にもう
けた水平コンベイヤー10の上にコイルの中心を
少しづつずらした連続的非同心リング状コイルと
して温水中を冷却しながら移送し、傾斜コンベイ
ヤー11、搬出コンベイヤー12によつて温水槽
外に取り出すようにしたものである。 この場合には温水の温度は浸漬される高温の線
材からの入熱によつて実際的には常にほぼ冷却液
の沸点に維持されている。 ハ 発明が解決しようとする問題点 この沸騰水を用いる直接パテンチング処理方法
は、空冷による他の処理方法より冷却速度が大き
いので、それだけ得られた線材の抗張力が高いと
いう特徴があるものの鉛パテンチング処理品には
劣り、それをカバーするために他方式のものと同
様に圧延された線材の直径を大きくし、製品線径
までの全伸線加工度を高めるという手段がとられ
ている。しかし沸騰水を用いる冷却では熱伝達率
がほぼ一定であるため、5.5mmφのような細い線
材では大きな冷却速度となるが8mmφ以上の線材
では全体としての冷却速度が小さくなり、抗張力
が低下してもはや加工度の増加では製品の性能や
コストの面からカバーし切れなくなるという問題
を抱えている。 そのためより高い抗張力ができれば鉛パテンチ
ング程度の抗張力を得るように温水パテンチング
法を改良する努力が払われている。これ迄に提案
された方式に次ぎの通りのものがある。 (a) 沸騰水に浸漬する前に材料を予備冷却する
(特公昭55−16217) (b) 温水を流動循環するようにして温水と線材と
の間に相対速度を持たせて冷却速度を高める
(特公昭54−68718) (c) 大気圧より高い圧力下で処理する(特公開54
−98915) (d) 温水温度を沸点より下の温度(サブクール状
態)で処理する。 ところがこれらの方式の中(a)は予備冷却条件の
安定化が困難で、マルテンサイトやベイナイトを
生成する危険が大きく、(b)では大きな流速を与え
ることが不可能で高い抗張力は得られない。又(c)
は設備的に問題点が多く実用化されていない。(d)
において温水の温度を1℃下げると略0.25Kg/mm2
程度の抗張力の増加があることが認められ、45℃
迄の処理は公知であるが、90℃以下では実際には
局部的にマルテンサイトやベイナイトの生成とい
う致命的現象が起こる危険性が大きくなるので、
90℃以上に保持するという提案(特願昭56−
64894号、特開昭57−177933号)に示されるよう
に実際には実用化されていない。又若し仮にマル
テンサイト等の過冷組織の発生を抑え得たとして
も、この(d)方法を直接パテンチング法に適用する
には温水の温度を沸点以下の低温に保持する必要
があるが、熱間圧延の直後に直接パテンチングす
る時には線材が単位時間に膨大な熱量を温水に持
ち込むので、著しく大量の冷水(常温或いは温水
槽内の湯温より低い温度の)を供給するか、大規
模な熱交換器によつて湯温の上昇を止める必要が
あり実用化のためにはこれらの未解決の問題を解
決せねばならない。又冷却液として温水を用いる
と水はその温度変化による熱伝達率の変化が油等
よりも著しく大きいために湯温を狭い範囲に厳格
に管理する必要があり、温水槽内の湯温を直接熱
処理の条件下で均一に保ことは困難である。 従つて現在の温水を用いる直後パテンチング法
においては実際に温水の温度(湯温)を沸点に保
ち線材が持ち込む熱量をすべて水の蒸発熱によつ
て取り除く方式で実施されている。これでも8mm
φ以下の細い線材の場合は充分な抗張力が得ら
れ、且つ湯温が沸点の近くで一定に保たれ冷却条
件が安定であり、そのため線材の抗張力のバラツ
キが小さくなるという利点があるからである。そ
して作業のスタート時には温水を沸点近く迄加熱
し、その後は温度制御することなく線材の浸漬に
よる沸騰に任せており、従つて自然冷却及び補給
水による温度低下を含めて湯温は常に95〜100℃
の範囲にあるのが実状であり、従つて沸点以下の
サブクール状態での直接パテンチングは実施され
ていない。 又本願人は特開昭55−83642号(特開昭57−
9826号)として温液体中に大量の気体を吹き込
み、強い撹拌状態とした液中に高温の金属材料を
浸漬する熱処理法を提案した。この場合には従来
の方法に比した金属物体と液体の間に大きな相対
速度を与えることができ、冷却速度を大にできる
ので、この意味では(b)の方法の改良と言えるもの
である。この発明を一般の金属材料に適用する場
合にはサブクール状態で処理しても支障はない
が、この発明を中高炭素鋼線材のパテンチングに
応用する場合、単に空気を大量に吹き込むと沸点
近くに保たれている温水槽の湯温が急速に沸点よ
り遥かに低下し線材の表面にマルテンサイトやベ
イナイトが発生すると予測され、従つてなんらか
の他の方法で温水を加熱して湯温を沸点近くに保
持して且つ20/m2秒以上の空気を吹き込みパテ
ンチングとすると約5Kg/mm2の抗張力の向上が認
められたのであり、これが特願昭−5583642号の
発明の実施例である。 以上に説明したようにこれ迄の公知の工業的な
方法ではマルテンサイトやベイナイトの発生の危
険性及び温度コントロールの困難性の面からサブ
クール状態の処理は行われず、又そのパテンチン
グ熱処理による抗張力の向上はせいぜい5Kg/mm2
程度であり、これでは未だ鉛パテンチングのレベ
ルまで達していない。 ニ 発明の開示 本発明は中高炭素鋼線材を温水中に投入する直
接パテンチング法において、高温の線材が持ち込
む熱量と平衡する熱を主として温水中に多量の空
気を吹き込むことによつて取り出し、温水の温度
を95℃以下且つ空気吹き込みによる強い撹拌によ
つて槽内の湯温を均一に保持しつつ線材をパテン
チング処理するもので、これによつて特に8mmφ
以上の太い線材においても鉛パテンチング処理と
同じ抗張力を安定して得ることができる温水直接
パテンチング方法及びその装置である。 本発明者らは前述の発明(特願昭55−83642号)
に引続き、改めて沸点に近い温水に加熱手段を用
いることなく、唯単に空気を吹き込みつつ線材を
パテンチング処理する新しい試みを中高炭素鋼線
材について実験し種々研究の結果、投入される線
材による加熱量を越える熱量を取り去りうるだけ
の空気を温水中に吹き込むと、空気量の増加にと
もなつて湯温は容易に95℃以下まで低下するこ
と、一方湯温が従来の常識ではマルテンサイトや
ベイナイトを発生する危険があつた90℃以下にな
つてもこの場合は全く過冷組織の生成が無く、更
にそれよりはるかに低い70℃近くの湯温迄安全に
パテンチング処理ができ、しかも得られた直接パ
テンチング線材の抗張力が鉛パテンチングと同レ
ベルの値となりうることを発見して本発明をなし
たものである。 本発明者らの実験によると温度が同じでも温水
中に空気を吹き込んだ場合と吹き込まない場合で
は処理した線材の表面の酸化スケールの状態が明
らかに異なつており、空気吹き込みにより線材の
表面状態が該沸騰の発生を抑制するに好都合とな
つたと考えられる。即ち空気泡によつて膜沸騰が
安定化するか、或いは局部的に発生する核沸騰を
気泡が破壊するか等の現象によつて膜沸騰が安定
すると推定され、従つて著しいサブクール状態の
温水中でもマルテンサイト、ベイナイトの発生が
無く、即ち焼きが入り難くなるものと思われる。
この発見が本発明の重要な基礎となつている。 一般に沸点に近い温水に空気を吹き込んだ場合
の温水の温度低下速度は湯温、単位時間に単位体
積当たりの温水に吹き込む空気量、その空気の温
度や湿度、気泡の大きさ等に関係する。 これらの点について以下に詳述する。 第2図の曲線aに示すように水蒸気の飽和圧は
温度によつて急激に上昇する。そこで常温で水蒸
気が飽和した空気(常温では水蒸気の蒸気圧は低
く、含まれる水蒸気は殆ど零とみなして良い。)
を吹き込んだ場合温水の底部に生じた空気泡の中
の空気は温水中を上昇するとき周囲の温水からの
水の蒸発によつて急速に温水温度の飽和圧まで水
蒸気を含んだ空気となり、その体積が急速に膨張
する。第2図の曲線bに示すようにその体積は湯
温60℃では約1.2倍程度であるが、80℃では2.4
倍、90℃で4.3倍、95℃では約7.3倍になる。即ち
この現象はそれだけ温水中から蒸発熱を奪うこと
であり温水の温度が高く沸点に近くなると急激に
空気吹き込みによる奪熱、冷却効果が増加する。
例えば30℃、相対湿度60%の空気を90℃の温水中
に吹き込むと空気1当たり最大約0.9Kcalの奪
熱がある。勿論この場合に空気泡が小さい程、蒸
発比表面積が大きくなり、泡が温水表面に浮上す
る迄に急速に気泡中の空気が水蒸気で飽和するの
で、単位空気吹き込み量での奪熱が大きい。従つ
て実際には空気泡を細かくする装置をもうけると
奪熱効率が良くなる。そのため吹き込みノツズル
の孔径、孔形を変化し、あるいは気泡の上昇径路
に回転プロペラをもうけて気泡を細核になるよう
に裁断すると良い。 又空気泡は温水中を垂直に上昇し、且つその上
昇径路において奪熱及び撹拌が行われるので、温
水の空気泡の上昇部分のみが局部的に冷却され撹
拌される利点がある。 第3図はビーカーによる実験の結果であるが温
水の低部から空気を吹き込むと100℃から80℃程
度までは急速に冷却するが湯温の低下と共に冷却
速度が減少し70℃以下では空気吹き込みの影響が
少なくなることが分かる。第4図は約100℃の温
水に常温(20℃)で水蒸気で飽和した空気(この
場合は含有水蒸気は非常に少なく問題にならない
量である)を吹き込んだ時の空気量と湯温による
温水の冷却速度の関係を示したものである。この
グラフから空気量を制御することによつて、ある
温水温度での温水の冷却速度(奪熱量)を制御す
ることが出来ることがわかる。 従つて例えば線材の入熱によつて温水が0.15
℃/秒の速度で温度上昇する場合には第4図の曲
線4の通り、湯量1当たり0.076/秒の空気
を吹き込むと湯温は95℃で安定し、その温度でパ
テンチング処理ができる。更に湯量1当たり
0.17/秒の空気量では90℃、0.44/秒では80
℃、0.89/秒では70℃に温水温度を保ちつつパ
テンチング処理をすることができる。 一方ボイラー等からの100℃以上の水蒸気と空
気を適当に混合して任意の温度ならびに湿度の空
気をつくり温水中に吹き込むことによつて容易に
温水の冷却速度、即ち温水からの奪熱量を調整す
ることができる。例えば90℃で飽和水蒸気を含む
空気を吹き込んだ場合には温水の温度が95℃でも
気泡は殆ど膨張せず温水の冷却速度は非常に小さ
い。更に温水の温度が95℃の場合は気泡は膨張せ
ず、水蒸気の蒸発も無く、従つて奪熱効果は殆ど
無く撹拌効果のみとなる。更に90℃以下の温水に
吹き込むと温水は加熱されるのである。 温水中に空気を吹き込んだ場合に上昇する空気
泡によつて温水は非常に撹拌される。この撹拌の
大きさはその場所における温水の水平断面積に対
しての空気泡の大きさ、即ち温水の表面積に対し
て吹き込み空気量を湯温と同じ温度での水蒸気飽
和空気の体積に換算した価で示される。 本発明者らの実験によれば高温の11mmφ線材を
95℃〜70℃の温水中に浸漬してパテンチング処理
を施したところ通常の温水ではマルテンサイト組
織が発生したが、上記の換算量で30/m2秒以上
の空気を温水槽の下部より吹き込んだ場合にはマ
ルテンサイト組織の発生が無く而も鉛パテンチン
グと同等の抗張力を有する線材が得られた。 直接パテンチング装置において、例えば第1図
に示すように、線材を螺旋状にリングに成形し、
これを略水平に非同心円状の状態でコンベイヤー
上に載置して温水中を移送する場合、或いは緩い
螺旋状のコイルが略垂直なリング状となるように
進行方向に螺旋を引き伸ばした形状で吊り下げな
がら温水槽中を移送する場合等において、移送さ
れる線材の進行方向と気泡の上昇方向とのなす平
面でリングを巾方向で等分割すると、線材の分割
される量は縁部で大きく、中央部で最小となるよ
うに分布する。従つて線材による入熱は縁部で最
大となり中央部では少なく、この比は実際には線
材が蛇行したりして理論通りではないが3〜4倍
に達する。従つて本発明の装置では線材の縁部に
多くの気泡が集中する構造が望ましい。 また螺旋状の線材リングが温水中を横方向に移
動しつつ冷却される場合には、その移送する長さ
方向に於いて吹き込む空気の条件を適当に変化せ
しめることができる。又移送途中の一部分に空気
を吹き込まない区間をもうけることもできる。こ
のようにして長さ方向の線材の冷却の任意の温度
勾配や温水の撹拌強度の勾配や変化を与えること
ができる。 また本発明は温水からの奪熱を主として空気の
吹き込みによつて行うものであるが、これとは別
に補助的な冷却手段或いは必要に応じて加熱手段
を併用しても良い。 即ち湯温が70℃付近となると水の飽和蒸気圧が
低くなり、従つてこの温度以下に冷却するには著
しく大量の空気を吹き込む必要がある。又湯温が
70℃以上の場合でも温水槽で処理する線材の量が
多くなると線材による入熱による温水の温度上昇
が大きくなるので吹き込む空気量が大量に必要と
なる。この場合補助的な温水冷却法を併用する方
が有利となることがある。その場合でも湯温が高
いので熱交換装置は小規模のものでよい利点があ
る。 又逆に線材による入熱が少なく、一方必要な撹
拌強さを得る為の空気吹き込みをすると湯温が所
定の温度以下になる場合には補助的な加熱方法例
えば過熱水蒸気を吹き込む等を併用するか、或い
は吹き込み空気の温度と湿度を調節して、必要な
奪熱効果と必要な撹拌効果を得るようにする。 以下に本発明を実施例を用いて更に詳しく説明
する。 ホ 実施例 実施例 1 湯槽を用いて、0.8C、0.68Mnの11mmφの高炭
素鋼線材の試験片を温水中に浸漬してパテンチン
グ処理を行い、その際湯温を変化させると共に空
気吹き込みをした場合としない場合を比較した。
その結果は第5図に示す通りであつた。即ち空気
吹き込みの無い場合でも湯温が低下するにつれ抗
張力の増加が認められるが、湯温が約90℃以下と
なると図中の×印に示すように過冷組織(マルテ
ンサイト等)が生成することがあり、その場合は
抗張力が非常に低下する。即ち湯温が90℃以下で
は過冷組織の発生の危険がある。ところが空気吹
き込み撹拌を行うと湯温の低下と共に抗張力が上
昇し、その上昇率は空気吹き込みの無い場合の略
2倍となり、湯温が80℃付近で抗張力は鉛パテン
チングと同等となる。更に湯温を70℃近く迄低下
させても過冷組織の発生が全く無く安定したパテ
ンチング処理ができた。 実施例 2 実施例1と同様の装置により同じ線材を空気を
吹き込み湯温を78±2℃に保ち、空気の吹き込み
量を変化させた場合の結果は第6図に示す通りで
あつた。 即ち空気の吹き込み量を増加すると抗張力も増
加し、湯槽の表面積1m2当たり15/秒(換算33
/秒)附近より上昇が顕著となり20/秒(換
算44/秒)以上となると鉛パテンチングと同等
レベルの抗張力が得られることが判る。 実施例 3 後述する第7図の装置を用いて、0.8℃、
0.68Mnの高炭素鋼を10mmφ、単量400Kgの線材に
圧延して直接パテンチング処理した。 その時の条件は次ぎの通りである。 (イ) 湯温83℃、空気吹き込み量6m3/分m3(湯)、
空気による撹拌強さ80/秒.m2(換算220
/秒.m2湯面) (ロ) 湯温90℃、空気吹き込み量3.6m3/分m3
(湯)、空気による撹拌強さ48/秒m2(換算
200/秒.m2湯面) いずれの場合も補助的冷却は行わなかつたが、
処理期間中湯温の実質的変化は認められなかつ
た。又温水中での浸漬時間は50秒であつた。 比較の為空気吹き込み無しで次の条件で同じ成
分の線材を次の条件で処理した。 (ハ) 湯温83℃の温水中に浸漬した。その場合1束
の線材を処理した後には湯温は87℃となつた。 (ニ) 湯温を略100℃、即ち沸点の近くで浸漬処理
した。勿論湯温の変化は無い。 以上の条件で処理した10mmφの線材をノンスリ
ツプ型8段の連続伸線機を用いて仕上げ速度145
m/分で4.0φまで(加工度84%)伸線する伸線試
験を行つた。 その結果は次の通りであつた。
B. Field of Industrial Application This invention relates to a direct patenting method and apparatus for performing direct patenting by immersing a medium-high carbon steel wire rod in hot water. B. Prior Art In order to improve cold workability and increase tensile strength of medium-high carbon steel wire rods manufactured by hot rolling steel slabs, the wire rods are usually subjected to a patenting treatment to form a fine pearlite structure before wire drawing. This heat treatment is usually carried out by the so-called lead patenting method, in which the wire is processed to a temperature of 850°C or higher and then continuously immersed in a molten lead bath of about 450 to 650°C. The processability and mechanical performance of the obtained wire are good. Also, the so-called air patenting method, in which the wire is reheated and patented by controlled cooling, such as by blowing cold air onto it, is also widely used because it is simple. However, since these methods involve reheating the wire at room temperature, each method requires separate equipment and personnel for reheating and the work, resulting in high costs. In contrast, a direct patenting method has been developed in which the hot-rolled high-temperature wire is directly controlled and cooled to produce a wire with properties equivalent to those of the patented wire by reheating it. It is widely used because it can reduce costs. There are various methods for this direct patenting method, but among these methods, the method of cooling the rolled wire rod in hot water is highly evaluated because of its simplicity of equipment and low cost of operation. Unlike cold water, cooling with hot water creates a film of water vapor on the surface of the high-temperature wire, resulting in a so-called film boiling phenomenon, which avoids direct contact between the steel and hot water and slows down the cooling rate. In this case, a cooling rate suitable for the patenting process can be obtained, and a wire rod with a fine pearlite structure can be obtained. A known example of its application is a patenting process in which medium-high carbon steel wire is immersed in boiling water. As shown in FIG. 1, a specific example of the device is to form a wire rod 1 rolled in a finishing rolling mill 13 into a coil shape in a laying type winding machine 2, and then directly feed it into hot water in a hot water tank 4. 3 and immersed in hot water in a spiral pattern, and placed on the horizontal conveyor 10 installed directly below the winder 2 as a continuous non-concentric ring-shaped coil with the center of the coil shifted little by little. The water is transferred while being cooled, and taken out of the hot water tank by an inclined conveyor 11 and a carry-out conveyor 12. In this case, the temperature of the hot water is practically always maintained approximately at the boiling point of the cooling liquid by the heat input from the hot wire being immersed. C. Problems to be Solved by the Invention This direct patenting treatment method using boiling water has a faster cooling rate than other treatment methods using air cooling, so although it has the characteristic that the tensile strength of the resulting wire is high, it is still difficult to perform lead patenting treatment. In order to compensate for this, the diameter of the rolled wire rod is increased to increase the total wire drawing process up to the product wire diameter, similar to other methods. However, in cooling using boiling water, the heat transfer coefficient is almost constant, so for thin wires such as 5.5 mmφ, the cooling rate is high, but for wires of 8 mmφ or more, the overall cooling rate is small, resulting in a decrease in tensile strength. The problem is that increasing the degree of processing is no longer sufficient to cover product performance and costs. Therefore, efforts are being made to improve the hot water patenting method so as to obtain a tensile strength comparable to that of lead patenting, if possible. The following methods have been proposed so far. (a) Pre-cooling the material before immersing it in boiling water (Japanese Patent Publication No. 55-16217) (b) Increase the cooling rate by creating a relative speed between the hot water and the wire by circulating the hot water in a fluidized manner (Japanese Patent Publication No. 54-68718) (c) Processing under pressure higher than atmospheric pressure (Japanese Patent Publication No. 54-68718)
−98915) (d) Process hot water at a temperature below the boiling point (subcooled state). However, among these methods (a), it is difficult to stabilize the pre-cooling conditions and there is a high risk of forming martensite and bainite, and in (b) it is impossible to provide a large flow velocity and high tensile strength cannot be obtained. . Also(c)
has not been put into practical use due to many problems in terms of equipment. (d)
If the temperature of hot water is lowered by 1℃, it will be approximately 0.25Kg/mm 2
It was observed that there was a slight increase in tensile strength at 45°C.
The treatment up to this point is well known, but at temperatures below 90°C there is actually a greater risk of the fatal phenomenon of locally forming martensite or bainite.
Proposal to maintain the temperature at 90℃ or above (patent application 1983-
64894, Japanese Patent Application Laid-Open No. 177933/1983), it has not been put into practical use. Even if it were possible to suppress the generation of supercooled structures such as martensite, in order to apply this method (d) directly to the patenting method, it would be necessary to maintain the temperature of the hot water at a low temperature below the boiling point. When directly patenting is performed immediately after hot rolling, the wire rod brings an enormous amount of heat into the hot water per unit time. It is necessary to stop the rise in water temperature using a heat exchanger, and these unresolved problems must be resolved for practical use. In addition, when hot water is used as a coolant, the change in heat transfer coefficient due to temperature changes is significantly greater than that of oil, so it is necessary to strictly control the water temperature within a narrow range. It is difficult to maintain uniformity under heat treatment conditions. Therefore, in the current immediate patenting method using hot water, the temperature of the hot water (water temperature) is actually kept at the boiling point and all of the heat brought in by the wire is removed by the heat of evaporation of the water. Even this is 8mm
This is because thin wire rods with a diameter of less than φ can provide sufficient tensile strength, and the cooling conditions are stable as the water temperature is kept constant near the boiling point, which has the advantage of reducing variations in the tensile strength of the wire rods. . At the start of work, the hot water is heated to near the boiling point, and after that, the temperature is not controlled and is left to boiling as the wire rods are immersed.Therefore, the water temperature is always between 95 and 100, including natural cooling and temperature reduction due to make-up water. ℃
The actual situation is that the temperature is within the range of , and therefore direct patenting in a subcooled state below the boiling point has not been carried out. In addition, the applicant has published Japanese Patent Application Publication No. 55-83642 (Japanese Patent Application Publication No. 57-83642)
No. 9826), we proposed a heat treatment method in which a large amount of gas is blown into a hot liquid and a high-temperature metal material is immersed in the liquid under strong stirring. In this case, it is possible to provide a greater relative velocity between the metal object and the liquid than in the conventional method, and the cooling rate can be increased, so in this sense it can be said to be an improvement over the method (b). When this invention is applied to general metal materials, there is no problem even if the process is performed in a subcooled state, but when this invention is applied to patenting medium-high carbon steel wire, simply blowing in a large amount of air will keep the temperature close to the boiling point. It is predicted that the temperature of the hot water in the dripping hot water tank will rapidly drop far below the boiling point and martensite and bainite will occur on the surface of the wire, so some other method will be used to heat the hot water to maintain the water temperature near the boiling point. When patenting was performed by blowing air at 20/m 2 seconds or more, an improvement in tensile strength of about 5 kg/mm 2 was observed, and this is an example of the invention of Japanese Patent Application No. 5,583,642. As explained above, in the known industrial methods to date, treatment in a subcooled state is not carried out due to the risk of generation of martensite and bainite and the difficulty of temperature control, and the tensile strength is improved by the patenting heat treatment. At most 5Kg/ mm2
This has not yet reached the level of lead patenting. D. Disclosure of the Invention The present invention uses a direct patenting method in which a medium-high carbon steel wire rod is placed in hot water, and the heat that balances the amount of heat brought in by the high-temperature wire rod is extracted mainly by blowing a large amount of air into the hot water. The wire rod is patented while maintaining the temperature of the water uniformly in the tank by keeping the temperature below 95℃ and strong stirring by air blowing.
The present invention provides a hot water direct patenting method and an apparatus therefor, which can stably obtain the same tensile strength as lead patenting treatment even in the above-mentioned thick wire. The inventors have invented the above-mentioned invention (Japanese Patent Application No. 83642/1983).
Subsequently, a new attempt was made to patent the wire rod by simply blowing air into hot water close to the boiling point without using any heating means, using medium-high carbon steel wire rods.As a result of various studies, it was determined that the amount of heating by the input wire rod could be reduced. If enough air is blown into hot water to remove the excess amount of heat, as the amount of air increases, the water temperature will easily drop to below 95°C.On the other hand, if the water temperature is conventionally known, martensite and bainite will be generated. In this case, even if the temperature drops to below 90℃, which would otherwise pose a risk of overcooling, there is no formation of supercooled structures at all, and furthermore, the patenting process can be safely performed up to a much lower temperature of nearly 70℃, and the resulting direct patenting process The present invention was made based on the discovery that the tensile strength of the wire can be on the same level as lead patenting. According to experiments conducted by the present inventors, even if the temperature is the same, the state of oxidized scale on the surface of the treated wire is clearly different when air is blown into hot water and when it is not. This is considered to be advantageous in suppressing the occurrence of boiling. In other words, it is assumed that film boiling is stabilized by phenomena such as air bubbles stabilizing film boiling, or air bubbles destroying locally generated nucleate boiling, and therefore even in hot water in a significantly subcooled state. It is thought that there is no generation of martensite or bainite, that is, it becomes difficult to cause quenching.
This discovery is an important basis for the present invention. Generally, when air is blown into hot water close to its boiling point, the rate at which the temperature of the hot water decreases is related to the water temperature, the amount of air blown into the hot water per unit volume per unit time, the temperature and humidity of the air, the size of bubbles, etc. These points will be explained in detail below. As shown by curve a in FIG. 2, the saturation pressure of water vapor increases rapidly with temperature. Therefore, air is saturated with water vapor at room temperature (at room temperature, the vapor pressure of water vapor is low, so the amount of water vapor it contains can be considered almost zero).
When the air in the air bubbles formed at the bottom of the hot water rises through the hot water, it rapidly becomes air containing water vapor up to the saturation pressure of the hot water temperature due to the evaporation of water from the surrounding hot water. Expands rapidly in volume. As shown in curve b in Figure 2, the volume is approximately 1.2 times larger when the water temperature is 60°C, but it is 2.4 times larger when the water temperature is 80°C.
4.3 times at 90℃, and about 7.3 times at 95℃. That is, this phenomenon removes the heat of evaporation from the hot water, and when the temperature of the hot water is high and approaches the boiling point, the heat removal and cooling effects due to air blowing rapidly increase.
For example, when air at a temperature of 30°C and relative humidity of 60% is blown into warm water at a temperature of 90°C, a maximum of approximately 0.9 Kcal of heat is removed per air. Of course, in this case, the smaller the air bubbles, the larger the evaporation specific surface area, and the air in the bubbles is quickly saturated with water vapor until the bubbles float to the surface of the hot water, so the heat removal per unit air blowing amount is large. Therefore, in practice, providing a device to make the air bubbles smaller will improve the heat removal efficiency. Therefore, it is recommended to change the hole diameter and shape of the blowing nozzle, or to install a rotating propeller in the upward path of the bubbles to cut the bubbles into fine nuclei. Furthermore, since the air bubbles rise vertically in the hot water and are absorbed and stirred in the rising path, there is an advantage that only the rising portion of the air bubbles in the hot water is locally cooled and stirred. Figure 3 shows the results of an experiment using a beaker.When air is blown into hot water from the lower part, it cools rapidly from 100℃ to about 80℃, but as the temperature of the water decreases, the cooling rate decreases, and below 70℃, air is blown in. It can be seen that the influence of Figure 4 shows the amount of air and water temperature when air saturated with water vapor at room temperature (20°C) is blown into hot water at about 100°C (in this case, the amount of water vapor contained is very small and not a problem). This figure shows the relationship between the cooling rate of It can be seen from this graph that by controlling the amount of air, the cooling rate (heat removal amount) of hot water at a certain hot water temperature can be controlled. Therefore, for example, due to the heat input of the wire, the temperature of hot water is 0.15
When the temperature rises at a rate of °C/sec, as shown by curve 4 in Figure 4, if air is blown at a rate of 0.076/sec per 1 volume of hot water, the temperature of the hot water stabilizes at 95 °C, and the patenting process can be performed at that temperature. Furthermore, per amount of hot water
90℃ for air flow rate of 0.17/sec, 80℃ for 0.44/sec
℃ and 0.89/sec, it is possible to perform the patenting process while maintaining the hot water temperature at 70℃. On the other hand, the cooling rate of hot water, that is, the amount of heat removed from hot water, can be easily adjusted by appropriately mixing water vapor of 100℃ or higher from a boiler, etc. with air to create air at a desired temperature and humidity, and then blowing it into hot water. can do. For example, if air containing saturated steam is blown at 90°C, the bubbles will hardly expand even if the temperature of the hot water is 95°C, and the cooling rate of the hot water will be very slow. Furthermore, when the temperature of the hot water is 95°C, the bubbles do not expand and there is no evaporation of water vapor, so there is almost no heat removal effect and only a stirring effect. Furthermore, when hot water is blown into hot water below 90℃, the hot water is heated. When air is blown into hot water, the air bubbles that rise cause the hot water to become highly agitated. The size of this stirring is the size of the air bubbles relative to the horizontal cross-sectional area of the hot water at that location, that is, the amount of air blown against the surface area of the hot water is converted to the volume of steam-saturated air at the same temperature as the water temperature. It is indicated by the value. According to experiments conducted by the inventors, high-temperature 11mmφ wire rods
When immersed in hot water of 95℃ to 70℃ and subjected to patenting treatment, a martensite structure was generated in normal hot water, but when the above converted amount of air was blown for more than 30 / m 2 seconds from the bottom of the hot water tank. In this case, a wire rod with tensile strength equivalent to that of lead patenting was obtained without the generation of martensitic structure. In a direct patenting device, for example, as shown in FIG. 1, a wire is spirally formed into a ring,
When this is placed on a conveyor in a non-concentric state approximately horizontally and transported in hot water, or when the loose spiral coil is stretched in the direction of travel so that it becomes a nearly vertical ring shape. When transferring the wire rod while suspended in a hot water tank, etc., if the ring is divided equally in the width direction on the plane formed by the traveling direction of the wire being transferred and the rising direction of the air bubbles, the amount of wire rod divided will be larger at the edges. , the distribution is such that it is minimum in the center. Therefore, the heat input by the wire is maximum at the edges and less at the center, and in reality this ratio reaches 3 to 4 times, although it is not as theoretical as the wire may meander. Therefore, it is desirable for the device of the present invention to have a structure in which many air bubbles are concentrated at the edges of the wire. Further, when the spiral wire ring is cooled while moving laterally in hot water, the conditions of the air blown into it can be changed appropriately in the length direction of the movement. It is also possible to provide a section during the transfer in which air is not blown. In this way, it is possible to provide an arbitrary temperature gradient in the cooling of the wire in the length direction and a gradient or change in the stirring intensity of the hot water. Further, in the present invention, heat is removed from the hot water mainly by blowing air, but an auxiliary cooling means or a heating means may be used in combination if necessary. That is, when the water temperature is around 70°C, the saturated vapor pressure of water becomes low, so it is necessary to blow in a significantly large amount of air to cool the water to below this temperature. Also, the temperature of the hot water
Even when the temperature is 70°C or higher, as the amount of wire rods processed in the hot water tank increases, the temperature of the hot water increases due to heat input from the wire rods, so a large amount of air is required to be blown into the tank. In this case, it may be advantageous to use an auxiliary hot water cooling method. Even in that case, since the temperature of the hot water is high, there is an advantage that the heat exchange device can be small-scale. On the other hand, if the heat input from the wire is small and the water temperature drops below the specified temperature when blowing air to obtain the necessary stirring strength, use an auxiliary heating method such as blowing superheated steam. Alternatively, the temperature and humidity of the blown air may be adjusted to obtain the necessary heat removal effect and the necessary stirring effect. The present invention will be explained in more detail below using examples. Example 1 Using a hot water bath, a test piece of 11 mmφ high carbon steel wire rod of 0.8C and 0.68Mn was immersed in hot water for patenting treatment, and at the same time, the temperature of the hot water was changed and air was blown. We compared cases with and without.
The results were as shown in FIG. In other words, even without air blowing, an increase in tensile strength is observed as the hot water temperature decreases, but when the hot water temperature drops below approximately 90°C, supercooled structures (martensite, etc.) are formed as shown by the x mark in the figure. In that case, the tensile strength will be significantly reduced. In other words, if the water temperature is below 90°C, there is a risk of overcooled tissue forming. However, when air is blown into the water and stirred, the tensile strength increases as the water temperature decreases, and the rate of increase is approximately twice that of the case without air blowing, and when the water temperature is around 80°C, the tensile strength becomes equivalent to that of lead patenting. Furthermore, even when the water temperature was lowered to nearly 70°C, stable patenting processing was possible with no generation of overcooled structures. Example 2 The same wire rod as in Example 1 was blown with air to maintain the hot water temperature at 78±2° C., and the amount of air blown was varied as shown in FIG. 6. The results were as shown in FIG. In other words, as the amount of air blown increases, the tensile strength also increases, and the tensile strength increases by 15/sec (converted to 33
/sec) The increase becomes more noticeable from the vicinity, and when it exceeds 20/sec (converted to 44/sec), it can be seen that the same level of tensile strength as lead patenting can be obtained. Example 3 Using the apparatus shown in Fig. 7 described later, the temperature was 0.8°C,
0.68Mn high carbon steel was rolled into a 10mmφ wire rod with a unit weight of 400Kg and directly patented. The conditions at that time are as follows. (b) Water temperature 83℃, air blowing amount 6m 3 /min m 3 (hot water),
Stirring strength with air is 80/sec. m 2 (conversion 220
/second. m 2 hot water surface) (b) Water temperature 90℃, air blowing amount 3.6 m 3 /min m 3
(hot water), air stirring strength 48/sec m2 (conversion
200/sec. m 2 hot water level) In both cases, supplementary cooling was not performed, but
No substantial change in hot water temperature was observed during the treatment period. The immersion time in warm water was 50 seconds. For comparison, wire rods with the same components were processed under the following conditions without air blowing. (c) Immersed in warm water with a water temperature of 83°C. In that case, after processing one bundle of wire, the temperature of the water was 87°C. (d) Immersion treatment was carried out at a water temperature of approximately 100°C, that is, near the boiling point. Of course, there is no change in the water temperature. The 10 mmφ wire processed under the above conditions was finished at a finishing speed of 145 using a non-slip 8-stage continuous wire drawing machine.
A wire drawing test was conducted in which the wire was drawn up to 4.0φ (workability: 84%) at m/min. The results were as follows.

【表】 即ち(イ)、(ロ)の本発明方法による線材による線は
(ニ)の従来の線材からの線に比し抗張力が約5乃至
10Kg/mm2上昇し且つ問題なく伸線できた。ところ
が(ハ)の空気吹き込みなしで且つ83℃の温水に浸漬
した線材は一部に焼きが入り、そのため伸線中に
断線し線に加工することができなかつた。 実施例 4 第7図は本発明を実施する装置の一例を示すも
のである。図に示すように仕上げ圧延スタンド1
3で仕上げ圧延された高温の線材1はレイング式
の巻取機2によつてリング状に成形され巻取られ
る。巻取機2の下には温水槽4がもうけられ、そ
の内部には温水3が満たされている。巻取機2の
直下には温水中に水平コンベイヤー10があり、
コンベイヤー10に続き傾斜コンベイヤー11が
もうけられ温水の上面より上に線材を導き、更に
水平の搬出コンベイヤー12によつて線材を搬出
するようになつている。水平コンベイヤー10の
下に空気室5がもうけられ、空気室5には圧力計
7、バルブ6をもうけた配管8があり、その外部
から圧縮空気がコントロールされながら空気室に
導入される。空気室5の上面には空気吹出孔9が
もうけられており、空気が温水中に吹き出すよう
になつている。高温の線材は巻取機によつてリン
グ状に成形されて螺旋状になつて温水中に落下
し、水平コンベイヤー10の上にリングが少しづ
つずれた形に整列した線材14となつて移送さ
れ、傾斜コンベイヤー11から搬出コンベイヤー
12によつて搬出される。温水中を落下し、又は
水平コンベイヤー10及び傾斜コンベイヤー11
を移動中に線材は空気吹出孔9からの吹き出し空
気によつて撹拌されている温水によつて冷却され
る。このようにして本発明の方法が実施されるの
である。 実施例 5 第8図は他の実施例を示すものである。基本的
には実施例4の場合と同様の装置であるが、巻取
機2によつてリング状となつた線材は水平な予備
コンベイヤー15の上に落下し、大気中で予備冷
却された後温水槽4の中にもうけられた水平コン
ベイヤー10の上に落下する。一方水平コンベイ
ヤー10の下には4組の空気配管8,8′,…が
もうけられバルブ6,6′…によつて各々空気量
を制御できるようになつている。空気は配管8を
通り吹き出し口16から温水中に吹き出すように
なつている。更に各空気配管8,8′…にはボイ
ラーからの水蒸気配管21がコントロールバルブ
22を通つて接続されている。 更に本装置では第9図にA−A断面図を示すよ
うに、温水中の水平コンベイヤー10の上に少し
づつずれたリング状の線材14が乗せられて移送
されるので水平コンベイヤーの移送方向と直角方
向即ち横方向に空気配管8から支管を出し、それ
にリングの縁部に密に中心部に疎になるように空
気吹き出し口16を有する空気支管17をもうけ
てある。これによりリングの中心部より縁部に大
きな撹拌を与えるようになつている。又縁部に気
泡が集中するように気泡の安内板18を取り付け
るとこの効果を増大することができる。又これに
より線材からの入熱が大きな温水の部分から大き
な奪熱を行わせることができる。この場合縁部と
中央部の配管を別系統としても良い。 この装置によればコントロールバルブ22を調
整するとによつて吹き込み空気に水蒸気を適量に
混合して奪熱量を制御して温水の温度を制御する
ことができる。一般に温水の温度及び撹拌強さの
制御はバルブ6による空気量の制御か、コントロ
ールバルブ22による水蒸気量の制御か、或いは
両者の併用によつて行うことができる。しかし実
際には温度制御は水蒸気量によるのが便利であ
り、又温水の温度をコントロールバルブ22を用
いて自動制御することもできる。例えば圧延機の
故障により線材の連続浸漬が中断した場合等では
水蒸気を大量に供給して温水の温度を所定の温度
に維持することができる。 この装置では移送中の線材に縁部により強い撹
拌をあたえ、又移送方向に冷却速度に適当な気泡
の強度分布や温度分布を与えることができ、本発
明の方法を的確に実施することができる。 実施例 6 第10図は本発明の更に他の実施例を示すもの
である。 この場合は第8図に示すものと同様の空気配管
を有する温水槽4がもうけられており、仕上げ圧
延機13で圧延された高温の線材1はレイング式
巻取機2によりリング状に成形され、螺旋状とな
つて温水3中に落下する。温水中に略水平の移送
部を有するフツクコンベイヤー19がもうけら
れ、落下する螺旋状の線材はリング毎に該コンベ
イヤー19のフツク20に逐次吊り下げられて、
温水中を水平に移動して冷却されるようになつて
いる。このようにすると線材のリングが重なるこ
となく温水中を均一に冷却されながら水平に移送
するようにすることができる。冷却された線材は
傾斜コンベイヤー11、搬出コンベイヤー12に
よつて搬出される。本装置によつても鋼線材を有
効に熱処理することができる。 以上に実施例を用いて本発明を説明したが上記
の説明から明らかなように本発明は温水が溶液、
懸濁液などでも良く、又空気の代わりに他の気体
を用いても良い。又温水槽に補助的な温水の加熱
或いは冷却装置を付属し或いは新して冷水を補充
して温水の温度調節を補助しても良い。更に本発
明の装置で線材を処理する前に例えば予備冷却を
施したり、あるいは温水槽を出た線材を目的に応
じて後処理する装置を付属することもできる。 ヘ 発明の効果 以上に詳しく説明したように本発明は温水中に
高温の線材を浸漬して熱処理する中高炭素鋼線材
の直接パテンチング方法において温水中に空気あ
るいは空気と水蒸気の混合気体を吹き込み、該気
体の量と混合比を調節することによつて湯温を任
意のサブクール(沸騰点以下の温度)状態で而も
空気吹き込みによる強い撹拌状態とした温水中に
圧延直後の高温の中高炭素鋼線材を浸漬して冷却
することを特徴とする直接パテンチング方法及び
装置であつて、設備のコスト、運転経費が安く、
而も太い線材で過冷組織を生ぜしめず抗張力の高
い良好な直接パテンチング線材を製造することが
できる有効な中高炭素鋼線材の直接パテンチング
方法及び装置である。
[Table] That is, the wire made by the method of the present invention in (a) and (b) is
(d) Tensile strength is about 5 to 50% higher than that of conventional wire
The wire was drawn at a rate of 10Kg/ mm2 without any problems. However, the wire rod immersed in hot water at 83° C. without air blowing in (c) was partially burnt, and as a result, the wire broke during wire drawing and could not be processed into wire. Embodiment 4 FIG. 7 shows an example of an apparatus for implementing the present invention. Finish rolling stand 1 as shown in the figure
The high-temperature wire rod 1 that has been finish-rolled in step 3 is formed into a ring shape and wound by a laying type winder 2. A hot water tank 4 is provided below the winder 2, and the inside thereof is filled with hot water 3. Directly below the winder 2, there is a horizontal conveyor 10 in warm water.
Following the conveyor 10, an inclined conveyor 11 is provided to guide the wire above the upper surface of the hot water, and further to transport the wire by means of a horizontal discharge conveyor 12. An air chamber 5 is provided below the horizontal conveyor 10, and the air chamber 5 has a pipe 8 having a pressure gauge 7 and a valve 6, and compressed air is introduced from the outside into the air chamber while being controlled. An air blowing hole 9 is provided in the upper surface of the air chamber 5, so that air is blown out into the hot water. The high-temperature wire rod is formed into a ring shape by a winder, becomes a spiral shape, and falls into hot water, and is transferred onto a horizontal conveyor 10 as a wire rod 14 in which the rings are arranged in a slightly shifted shape. , are carried out from the inclined conveyor 11 by the carry-out conveyor 12. Falling into warm water, or horizontal conveyor 10 and inclined conveyor 11
While moving, the wire is cooled by hot water that is stirred by the air blown from the air blowing hole 9. This is how the method of the invention is carried out. Embodiment 5 FIG. 8 shows another embodiment. Basically, the device is the same as in Example 4, but the wire rod that has been made into a ring shape by the winder 2 is dropped onto a horizontal preliminary conveyor 15, and after being preliminary cooled in the atmosphere. It falls onto a horizontal conveyor 10 provided in the hot water tank 4. On the other hand, four sets of air pipes 8, 8', . . . are provided below the horizontal conveyor 10, and the amount of air can be controlled by valves 6, 6', . Air passes through piping 8 and is blown out from an outlet 16 into the hot water. Further, a steam pipe 21 from a boiler is connected to each air pipe 8, 8', . . . through a control valve 22. Furthermore, in this device, as shown in the A-A cross-sectional view in Fig. 9, the ring-shaped wire 14 is placed on the horizontal conveyor 10 in hot water and is transferred, so that it is transferred in the same direction as the horizontal conveyor. Branch pipes extend from the air pipe 8 in the right angle direction, that is, in the lateral direction, and are provided with air branch pipes 17 having air outlet ports 16 densely arranged at the edges of the ring and sparsely arranged at the center. This provides greater agitation to the edges of the ring than to the center. Furthermore, this effect can be enhanced by attaching a bubble inner plate 18 so that the bubbles are concentrated at the edges. Moreover, this allows a large amount of heat to be removed from the hot water portion where the heat input from the wire is large. In this case, the piping for the edge and the center may be separate systems. According to this device, by adjusting the control valve 22, the temperature of hot water can be controlled by mixing an appropriate amount of steam with the blown air to control the amount of heat removed. Generally, the temperature and stirring intensity of hot water can be controlled by controlling the amount of air using the valve 6, controlling the amount of water vapor using the control valve 22, or by using both. However, in reality, it is convenient to control the temperature based on the amount of water vapor, and the temperature of the hot water can also be automatically controlled using the control valve 22. For example, if the continuous dipping of the wire is interrupted due to a failure of the rolling mill, a large amount of steam can be supplied to maintain the temperature of the hot water at a predetermined temperature. With this device, it is possible to apply stronger agitation to the edge of the wire rod being transferred, and to provide an appropriate bubble intensity distribution and temperature distribution to the cooling rate in the transfer direction, making it possible to accurately carry out the method of the present invention. . Embodiment 6 FIG. 10 shows still another embodiment of the present invention. In this case, a hot water tank 4 having air piping similar to that shown in FIG. , and falls into the hot water 3 in a spiral shape. A hook conveyor 19 having a substantially horizontal transfer section is provided in hot water, and the falling spiral wire is successively suspended from the hook 20 of the conveyor 19 ring by ring.
It is designed to be cooled by moving horizontally in warm water. In this way, the wire rings can be cooled uniformly in the hot water and transferred horizontally without overlapping. The cooled wire rod is carried out by an inclined conveyor 11 and a carry-out conveyor 12. The present apparatus can also effectively heat-treat steel wire rods. The present invention has been described above using examples, but as is clear from the above description, the present invention is applicable to hot water being a solution,
A suspension or the like may be used, and other gases may be used instead of air. In addition, an auxiliary hot water heating or cooling device may be attached to the hot water tank, or new cold water may be added to assist in regulating the temperature of the hot water. Furthermore, it is also possible to attach an apparatus for pre-cooling the wire rod before processing it with the apparatus of the present invention, or for post-processing the wire rod after leaving the hot water tank depending on the purpose. F. Effects of the Invention As explained in detail above, the present invention provides a direct patenting method for medium-high carbon steel wire rods in which a high-temperature wire rod is immersed in hot water for heat treatment. By adjusting the amount of gas and the mixing ratio, the hot water temperature can be set to an arbitrary sub-cooled state (temperature below the boiling point), while still being strongly stirred by air blowing.The high-temperature medium-high carbon steel wire rod immediately after rolling is placed in hot water. A direct patenting method and device characterized by immersing and cooling, the equipment cost and operating cost are low,
Moreover, the present invention provides an effective direct patenting method and apparatus for medium-to-high carbon steel wires, which can produce good direct patenting wires with high tensile strength without producing an overcooled structure in thick wires.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の温水による直接パテンチング装
置の断面図、第2図は水蒸気の飽和圧と気泡の膨
張率の温度との関係を示すグラフ、第3図、第4
図は温水中に空気を吹き込んだ場合の冷却曲線及
び冷却速度を示すグラフである。第5図、第6図
は本発明の方法を実施した結果を示す図表であ
り、第7図は空気吹き込み直接パテンチング装置
の一例を示し、第8図、第10図は本発明を実施
する装置の実施例を示す断面図であり、第9図は
第8図の装置A−A断面図である。 1,14:線材、2:レイング式巻取機、3:
温水、4:温水槽、5:空気室、6,6′,6″,
6:バルブ、7:圧力計、8,8′,8″,8
:空気配管、9:空気吹出孔、10:水平コン
ベイヤー、11:傾斜コンベイヤー、12:搬出
コンベイヤー、13:仕上げ圧延機、14:リン
グ状線材、15:予備冷却コンベイヤー、16:
空気吹き出し口、17:空気支管、18:案内
板、19:フツクコンベイヤー、20:フツク、
21,21′,21″,21:水蒸気配管、2
2,22′,22″,22:コントロールバル
ブ、23,23′,23″,23:圧縮空気配
管。
Figure 1 is a sectional view of a conventional direct patenting device using hot water, Figure 2 is a graph showing the relationship between water vapor saturation pressure and bubble expansion rate with temperature, Figures 3 and 4.
The figure is a graph showing a cooling curve and cooling rate when air is blown into hot water. 5 and 6 are charts showing the results of implementing the method of the present invention, FIG. 7 shows an example of an air blowing direct patenting device, and FIGS. 8 and 10 are diagrams showing the results of implementing the method of the present invention. FIG. 9 is a sectional view taken along the line AA of FIG. 8. FIG. 1, 14: Wire rod, 2: Laying type winder, 3:
Hot water, 4: Hot water tank, 5: Air chamber, 6, 6', 6'',
6: Valve, 7: Pressure gauge, 8, 8', 8'', 8
: Air piping, 9: Air outlet, 10: Horizontal conveyor, 11: Inclined conveyor, 12: Unloading conveyor, 13: Finish rolling mill, 14: Ring-shaped wire rod, 15: Pre-cooling conveyor, 16:
Air outlet, 17: Air branch pipe, 18: Guide plate, 19: Hook conveyor, 20: Hook,
21, 21', 21'', 21: Steam piping, 2
2, 22', 22'', 22: Control valve, 23, 23', 23'', 23: Compressed air piping.

Claims (1)

【特許請求の範囲】 1 熱間圧延された高温の中高炭素鋼線材を連続
的にリング状に成形し、該リングを螺旋状に温水
中に落下して展開された連続リング状として温水
中を通過させてパーライト組織へと変態するよう
に冷却する熱処理方法において、温水による全冷
却区間もしくはその一部の区間で浸漬中の線材リ
ングの下方から温水中に空気を吹き込み、且つ、
吹き込まれた空気の微細気泡の密度が該鋼線材連
続リングの縁部に於いて中央部の3〜4倍となる
ように調節し、空気量全体としては温水を60〜95
℃の所定の温度に調節することを特徴とする中高
炭素鋼線材の直接パテンテイング方法。 2 温水槽に熱交換器を附属し温水を循環するか
或は冷水を補充して補助的に温水温度の制御を行
うことを特徴とする特許請求の範囲第1項記載の
中高炭素鋼線材の直接パテンテイング方法。 3 温水に浸漬した線材の部分において、温水槽
の平面積1m2当たり30/秒以上の空気量を吹き
込むことを特徴とする特許請求の範囲第1項もし
くは第2項記載の中高炭素鋼線材の直接パテンテ
イング方法。 4 直径8mmφ以上の太い線材を熱処理すること
を特徴とする特許請求の範囲第1項乃至第3項い
ずれかに記載の中高炭素鋼線材の直接パテンテイ
ング方法。 5 圧延された高温の中高炭素鋼線材をリング状
に形成する装置、線材冷却用の温水槽、該リング
状に成形した線材を温水中を移送し且温水槽より
搬出する単数もしくは複数の装置を有し、温水中
を移送される線材の下方に空気吹き込み装置をも
うけるとともに空気吹き込み量が温水槽中を移送
される線材の進行方向と直角方向に線材の縁部に
多く、中央部に少なく供給されるように疎密の分
布をした吹き込み孔又は吹き込み口をもうけ、温
水中を移送される線材の進行方向を区分し、各区
分毎に空気の吹き込み量と条件を制御する装置を
もうけ、該制御された空気を吹き込むようにした
ことを特徴とする中高炭素鋼線材の直接パテンテ
イング装置。 6 吹き込み空気による気泡が槽内の所定の場所
に集中して上昇するように温水槽内に案内板をも
うけたことを特徴とする特許請求の範囲第5項記
載の中高炭素鋼線材の直接パテンテイング装置。 7 温水を冷却又は加熱する補助的手段を付加し
て温水の温度を制御しつつ線材を冷却することを
特徴とする特許請求の範囲第5項乃至第6項いず
れかに記載の中高炭素鋼線材の直接パテンテイン
グ装置。 8 温水槽に補助冷却水を外部あるいは循環水と
して供給し、特に線材の縁部の温水を冷却するよ
うに配管したことを特徴とする特許請求の範囲第
5項乃至第7項いずれかに記載の中高炭素鋼線材
の直接パテンテイング装置。 9 捲取機と温水槽の間に線材の予備冷却装置を
もうけたことを特徴とする特許請求の範囲第5項
乃至第8項いずれかに記載の中高炭素鋼線材の直
接パテンテイング装置。
[Claims] 1. Hot-rolled high-temperature medium-high carbon steel wire rod is continuously formed into a ring shape, and the ring is spirally dropped into hot water and expanded into a continuous ring shape. In a heat treatment method in which the wire ring is cooled to transform into a pearlite structure by passing through the hot water, air is blown into the hot water from below the wire ring being immersed in the entire cooling section or a partial section thereof, and,
Adjust the density of the fine bubbles of the blown air at the edge of the steel wire continuous ring to be 3 to 4 times that at the center, and the overall amount of air is 60 to 95 times the density of the hot water.
A direct patenting method for medium-high carbon steel wire, characterized by adjusting the temperature to a predetermined temperature of °C. 2. A medium-high carbon steel wire rod according to claim 1, characterized in that a heat exchanger is attached to the hot water tank to circulate hot water or to supplementally control the hot water temperature by replenishing cold water. Direct patenting method. 3. The medium-high carbon steel wire rod according to claim 1 or 2 , characterized in that an air volume of 30/sec or more is blown into the portion of the wire rod immersed in hot water per 1 m 2 of planar area of the hot water tank. Direct patenting method. 4. A direct patenting method for medium-high carbon steel wire according to any one of claims 1 to 3, characterized in that a thick wire with a diameter of 8 mmφ or more is heat treated. 5 A device for forming a rolled high-temperature medium-high carbon steel wire rod into a ring shape, a hot water tank for cooling the wire rod, and one or more devices for transferring the wire rod formed into a ring shape into hot water and taking it out from the hot water tank. An air blowing device is provided below the wire being transferred in hot water, and the amount of air blown is larger at the edges of the wire and less at the center in a direction perpendicular to the direction of movement of the wire being transferred in the hot water tank. A device is provided for controlling the amount and conditions of air blowing for each section, by providing blow holes or blowing ports with a sparse and dense distribution so as to divide the direction of movement of the wire being transferred in the hot water, and by providing a device for controlling the amount and conditions of air blowing for each section. This is a direct patenting device for medium-high carbon steel wire rods, which is characterized by blowing in air. 6. Direct patenting of medium-high carbon steel wire according to claim 5, characterized in that a guide plate is provided in the hot water tank so that bubbles caused by blown air concentrate at a predetermined location in the tank and rise. Device. 7. A medium-high carbon steel wire rod according to any one of claims 5 to 6, characterized in that the wire rod is cooled while controlling the temperature of the hot water by adding an auxiliary means for cooling or heating the hot water. direct patenting equipment. 8. According to any one of claims 5 to 7, the hot water tank is provided with auxiliary cooling water as external or circulating water, and piping is provided to particularly cool the hot water at the edge of the wire rod. Direct patenting equipment for medium-high carbon steel wire. 9. A direct patenting device for medium-high carbon steel wire according to any one of claims 5 to 8, characterized in that a pre-cooling device for the wire is provided between the winding machine and the hot water tank.
JP58091923A 1983-05-24 1983-05-24 Method and device for direct patenting of middle and high carbon steel wire rod Granted JPS59219417A (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP58091923A JPS59219417A (en) 1983-05-24 1983-05-24 Method and device for direct patenting of middle and high carbon steel wire rod
DE8484105780T DE3473888D1 (en) 1983-05-24 1984-05-21 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
EP84105780A EP0126481B1 (en) 1983-05-24 1984-05-21 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
AT84105780T ATE37044T1 (en) 1983-05-24 1984-05-21 PROCESS AND DEVICE FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON STEEL BARS.
NO842021A NO163907C (en) 1983-05-24 1984-05-22 PROCEDURE AND DEVICE FOR DIRECT HEAT TREATMENT OF STEEL BAR.
ZA843866A ZA843866B (en) 1983-05-24 1984-05-22 Method and apparatus for direct heat treatment of medium-to high-carbon steel rods
FI842062A FI75867C (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of a medium or high carbon steel bar
KR1019840002821A KR890002982B1 (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of medium-to-high-carbon steel rods
BR8402479A BR8402479A (en) 1983-05-24 1984-05-23 PROCESS AND EQUIPMENT FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON STEEL BARS
CA000454956A CA1221297A (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
MX201444A MX161816A (en) 1983-05-24 1984-05-24 METHOD AND APPARATUS FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON CONTENT STEEL RODS
ES532773A ES8604314A1 (en) 1983-05-24 1984-05-24 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods.
US06/613,485 US4526627A (en) 1983-05-24 1984-05-24 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
AU28567/84A AU560405B2 (en) 1983-05-24 1984-05-24 Direct heat treatment of medium- to high carbon steel rods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58091923A JPS59219417A (en) 1983-05-24 1983-05-24 Method and device for direct patenting of middle and high carbon steel wire rod

Publications (2)

Publication Number Publication Date
JPS59219417A JPS59219417A (en) 1984-12-10
JPH0362771B2 true JPH0362771B2 (en) 1991-09-27

Family

ID=14040099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58091923A Granted JPS59219417A (en) 1983-05-24 1983-05-24 Method and device for direct patenting of middle and high carbon steel wire rod

Country Status (2)

Country Link
JP (1) JPS59219417A (en)
ZA (1) ZA843866B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248824A (en) * 1984-05-24 1985-12-09 Sumitomo Electric Ind Ltd Method and device for direct heat treatment of middle and high carbon steel wire rod

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579826A (en) * 1980-06-19 1982-01-19 Sumitomo Electric Ind Ltd Method and device for heat treatment of metals
JPS57110623A (en) * 1980-12-27 1982-07-09 Kawasaki Steel Corp Production of middle and high carbon steel wire rod
JPS5845331A (en) * 1981-09-11 1983-03-16 Nippon Steel Corp Wire rod heat treatment device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579826A (en) * 1980-06-19 1982-01-19 Sumitomo Electric Ind Ltd Method and device for heat treatment of metals
JPS57110623A (en) * 1980-12-27 1982-07-09 Kawasaki Steel Corp Production of middle and high carbon steel wire rod
JPS5845331A (en) * 1981-09-11 1983-03-16 Nippon Steel Corp Wire rod heat treatment device

Also Published As

Publication number Publication date
ZA843866B (en) 1985-01-30
JPS59219417A (en) 1984-12-10

Similar Documents

Publication Publication Date Title
US10604820B2 (en) Method of continuously annealing a strip
JPS62202029A (en) Method and apparatus for treating steel wire
US3669762A (en) Method for heat-treating of hot rolled rods
US4526627A (en) Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
JPH0362771B2 (en)
KR102492108B1 (en) Lead-free patterning method and apparatus
US10400319B2 (en) Forced water cooling of thick steel wires
JPS6121289B2 (en)
JPS6184331A (en) Production of hard steel material
KR900002561B1 (en) Method and apparatus for heat treatment of steel rods
US2218354A (en) Method and apparatus for annealing strip
JPH0368087B2 (en)
JPS5839210B2 (en) Cooling method of steel strip during continuous annealing
US2602653A (en) Bright strip annealing apparatus
JPH075991B2 (en) Heat treatment method for steel wire
JPS6340850B2 (en)
JPH0160532B2 (en)
GB1566128A (en) Heat treating of hot-rolled steel rod
JPS63134633A (en) Cooling method for steel pipe
JPS58120745A (en) Continuous heat treatment for high tensile cold-rolled steel strip
JPH02232321A (en) Method for directly heat-treating steel wire rod
JPS647139B2 (en)
JPS58120747A (en) Continuous heat treatment installation for cold-rolled steel strip for working and high tensile cold-rolled steel strip
JPS6231055B2 (en)
JPS5993826A (en) Manufacture of soft sheet for tinning