JPS647139B2 - - Google Patents

Info

Publication number
JPS647139B2
JPS647139B2 JP20316083A JP20316083A JPS647139B2 JP S647139 B2 JPS647139 B2 JP S647139B2 JP 20316083 A JP20316083 A JP 20316083A JP 20316083 A JP20316083 A JP 20316083A JP S647139 B2 JPS647139 B2 JP S647139B2
Authority
JP
Japan
Prior art keywords
temperature
refrigerant
air
steel wire
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20316083A
Other languages
Japanese (ja)
Other versions
JPS6096726A (en
Inventor
Katsuhiko Yamada
Yoshihiro Hashimoto
Hitoshi Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20316083A priority Critical patent/JPS6096726A/en
Priority to EP84105780A priority patent/EP0126481B1/en
Priority to AT84105780T priority patent/ATE37044T1/en
Priority to DE8484105780T priority patent/DE3473888D1/en
Priority to NO842021A priority patent/NO163907C/en
Priority to CA000454956A priority patent/CA1221297A/en
Priority to FI842062A priority patent/FI75867C/en
Priority to KR1019840002821A priority patent/KR890002982B1/en
Priority to BR8402479A priority patent/BR8402479A/en
Priority to ES532773A priority patent/ES8604314A1/en
Priority to AU28567/84A priority patent/AU560405B2/en
Priority to US06/613,485 priority patent/US4526627A/en
Priority to MX201444A priority patent/MX161816A/en
Publication of JPS6096726A publication Critical patent/JPS6096726A/en
Publication of JPS647139B2 publication Critical patent/JPS647139B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、例えばばね、PC(プレストレスト・
コンクリート用)鋼線、PC鋼より線等に使用さ
れる鋼線材を製造する際、熱間圧延された高温状
態にある鋼線材を冷媒により調整冷却し、主とし
て伸線加工性のすぐれた線材を得る、いわゆる直
接熱処理方法の改良に関するものである。
[Detailed Description of the Invention] (Technical Field) The present invention is applicable to springs, PCs (prestressed
When manufacturing steel wire rods used for concrete (for concrete) steel wires, prestressed steel stranded wires, etc., hot-rolled steel wire rods in a high temperature state are adjusted and cooled with a refrigerant to produce wire rods with excellent wire drawability. This invention relates to improvements in the so-called direct heat treatment method.

(背景技術) 鋼線材の直接熱処理方法の目的は、例えば熱間
圧延直後の鋼線材(以下、単に線材と称す)を適
切な冷却速度で、かつコイル全長をほぼ均一に冷
却し、その金属組織を微細なパーライト主体とな
らしめ、強度および伸線加工性を鉛パテンテイン
グ処理と同様にすることである。この線材を使用
することにより、線材径や製品品質仕様によつて
はパテンテイング工程が省略される。しかし従来
の直接熱処理方法では、例えばPC用等で、線材
径が大きく、かつ高強度を要求される場合には、
鉛パテンテイングに比べ抗張力が約10Kg/mm2低い
上に、強度のばらつきについても劣るので、鉛パ
テンテイングの省略が成されていない現状であ
る。
(Background Art) The purpose of the direct heat treatment method for steel wire is, for example, to cool the steel wire immediately after hot rolling (hereinafter simply referred to as wire) at an appropriate cooling rate and almost uniformly over the entire length of the coil, thereby improving its metallographic structure. The purpose is to make the wire mainly composed of fine pearlite, and to make the strength and wire drawability similar to that of lead patenting treatment. By using this wire, the patenting process can be omitted depending on the wire diameter and product quality specifications. However, with the conventional direct heat treatment method, for example, when the wire diameter is large and high strength is required, such as for PC,
The tensile strength is about 10 kg/mm 2 lower than that of lead patenting, and the variation in strength is also inferior, so lead patenting cannot be omitted at present.

従来、線材の直接熱処理方法として種々の方法
が提案されているが、それぞれ次のような損失が
ある。
Conventionally, various methods have been proposed as direct heat treatment methods for wire rods, but each method has the following losses.

リング状コイルを水平コンベア上で展開した形
で強制空冷するステルマー法(特公昭42―15463
号)では、局所的急冷部がなく、かなり均質な線
材が得られるが、冷却力が弱く、強度不足であ
る。これは強風により或る程度強度は上昇する
が、リングの重なり部は効果なく、そのため不均
一を誘発する。
Stelmer method in which ring-shaped coils are forcedly air-cooled while being rolled out on a horizontal conveyor (Special Publication No. 42-15463)
No.), there is no localized quenching section and a fairly homogeneous wire can be obtained, but the cooling power is weak and the strength is insufficient. Although this strength increases to some extent due to strong winds, the overlapping portions of the rings are ineffective and therefore induce non-uniformity.

又線材をリング状コイルに成形し、温水中に巻
取るか(特公昭45―85336号)、又は水平コンベア
で移送しながら温水中に浸漬する(特公昭46―
8089号)温水中冷却方式では、沸騰水中冷却にお
いて均質な線材が得られるが、強度不足(鉛パテ
ンテイングより抗張力が10Kg/mm2低い)で、空気
を吹込んで強力に撹乱してもやはり抗張力が5〜
7Kg/mm2低い。又過冷沸騰冷却(水温、95℃以
下)では、強度は上昇するが、膜沸騰が不安定
で、高温でも核沸騰を誘発し、局所的急冷が発生
し、そのためマルテンサイト組織が発生し、不良
となる。
Alternatively, the wire rod is formed into a ring-shaped coil and wound up in hot water (Special Publication No. 85336, 1972), or immersed in hot water while being transferred on a horizontal conveyor (Special Publication No. 1977-85336).
No. 8089) With the hot water cooling method, a homogeneous wire can be obtained by cooling in boiling water, but it lacks strength (tensile strength is 10 kg/ mm2 lower than lead patenting), and the tensile strength remains low even after strong agitation by blowing air. 5~
7Kg/mm 2 low. In addition, with supercooled boiling cooling (water temperature, 95℃ or less), the strength increases, but film boiling is unstable, nucleate boiling is induced even at high temperatures, localized rapid cooling occurs, and a martensitic structure is generated. It becomes defective.

(発明の開示) 本発明は、上述の問題点を解決するため成され
たもので、過冷沸騰冷却においても核沸騰を誘発
せず、膜沸騰のみで必要、充分な冷却速度を得、
強度が鉛パテンテイングによるものと同等で、ば
らつきが少なく、均質で、かつ伸線加工性良好な
鋼線材を製造し得る直接熱処理方法を提供せんと
するものである。
(Disclosure of the Invention) The present invention has been made to solve the above-mentioned problems, and does not induce nucleate boiling even in supercooled boiling cooling, obtains a necessary and sufficient cooling rate only by film boiling,
It is an object of the present invention to provide a direct heat treatment method capable of producing a steel wire rod having strength equivalent to that obtained by lead patenting, less variation, homogeneity, and good wire drawability.

本発明は、熱間圧延して金属組織がオーステナ
イトを呈する高温にある鋼線材のリング状コイル
を、水平に展開した形で連続的に移送しながら、
パーライト組織に変態させるように調整冷却して
直接熱処理する方法において、水平に展開した鋼
線材のリング状コイルを空気中にて3〜20秒間放
冷して表面を酸化せしめ、その後直ちに、空塔速
度が3〜20cm/秒、気体混相率が0.1〜0.35で、
かつ気泡中の酸素濃度Y(%)が冷媒温度X℃と
した時、 Y−1/3X+35 である70〜95℃の間の所定の温度に保持され撹乱
状態の気水混相流体よりなる冷媒中に浸漬し、通
過させることを特徴とする鋼線材の直接熱処理方
法である。
The present invention involves continuously transporting a ring-shaped coil of hot-rolled steel wire at a high temperature with an austenitic metallographic structure in a horizontally expanded form.
In the method of controlled cooling and direct heat treatment to transform into a pearlite structure, a ring-shaped coil of steel wire spread horizontally is left to cool in the air for 3 to 20 seconds to oxidize the surface, and then immediately The speed is 3 to 20 cm/sec, the gas mixed phase ratio is 0.1 to 0.35,
When the oxygen concentration Y (%) in the bubbles is the refrigerant temperature X°C, the refrigerant is maintained at a predetermined temperature between 70 and 95°C, which is Y - 1/3 This is a direct heat treatment method for steel wire, which is characterized by immersing it in and passing it through.

本発明において高温にある鋼線材とは、炭素鋼
又はこれにNi,Cr,V,Mo,W等の合金元素の
少量を添加した合金鋼より成り、熱間圧延された
高温状態にある線材を意味し、合金組織がオース
テナテトを呈するものである。
In the present invention, the steel wire rod at high temperature refers to a wire rod that is hot-rolled and is made of carbon steel or alloy steel to which a small amount of alloying elements such as Ni, Cr, V, Mo, or W is added. This means that the alloy structure exhibits an austenate structure.

本発明者等は、鉛パテンテイング並みの強度を
得るための所定の冷却速度を得、かつ核沸騰の誘
発を防止し、均一な冷却を与えるため、種々の表
面処理条件、冷媒の条件について検討した結果、
線材の表面を酸化させ、酸化性気泡を含む95℃以
下の気水混相流体からなる冷媒中に浸漬するこ
と、即ち表面化学処理と冷却処理を同時に行なう
ことにより、所期の目的を達成し得ることを見出
したものである。
The present inventors investigated various surface treatment conditions and refrigerant conditions in order to obtain a predetermined cooling rate to obtain a strength comparable to that of lead patenting, prevent the induction of nucleate boiling, and provide uniform cooling. result,
The desired purpose can be achieved by oxidizing the surface of the wire and immersing it in a refrigerant consisting of an air-water multiphase fluid containing oxidizing bubbles at 95°C or below, that is, by performing surface chemical treatment and cooling treatment at the same time. This is what I discovered.

以下、本発明を図面を用いて実施例により説明
する。
Hereinafter, the present invention will be explained by examples using the drawings.

第1図、第2図は本発明方法の実施例に用いら
れる直接熱処理装置の例を示す図で、第1図は縦
断面図、第2図は横断面図である。図において、
1は高温圧延された鋼線材をレイイングヘツド
(図示せず)により所定のリング径に成形したリ
ング状コイル(以下、コイルと称す)で、コンベ
ア2により非同心連続リング状で移送され、空気
中で放冷される。
1 and 2 are diagrams showing an example of a direct heat treatment apparatus used in an embodiment of the method of the present invention, with FIG. 1 being a longitudinal cross-sectional view and FIG. 2 being a cross-sectional view. In the figure,
Reference numeral 1 denotes a ring-shaped coil (hereinafter referred to as a coil) formed by forming high-temperature rolled steel wire into a predetermined ring diameter using a laying head (not shown). It is left to cool inside.

このコンベア2上でコイル1の表面は空気酸化
される。これは、次の冷媒中の浸漬時、表面酸化
皮膜により核沸騰の誘発を防止し、膜沸騰段階で
の冷却速度を向上させるためで、後述のように3
〜20秒が必要である。
On this conveyor 2, the surface of the coil 1 is air oxidized. This is to prevent the induction of nucleate boiling due to the surface oxide film during the next immersion in the refrigerant, and to improve the cooling rate at the film boiling stage.
~20 seconds is required.

予備空冷による表面酸化後、コイル1は熱処理
槽4中の水平コンベア3上に落下し、水平に展開
した形で移送される。熱処理槽4には気水混相流
体からなる冷媒5が収容され、これにコンベア3
上のコイル1が所定時間浸漬される。
After surface oxidation by preliminary air cooling, the coil 1 falls onto the horizontal conveyor 3 in the heat treatment tank 4 and is transferred in a horizontally developed form. The heat treatment tank 4 contains a refrigerant 5 made of air-water multiphase fluid, and a conveyor 3 is connected to the refrigerant 5.
The upper coil 1 is immersed for a predetermined time.

冷媒5は強力な撹拌状態にあり、かつ温水中に
酸化性気泡6を多量に含有させて気水混合状態と
し、95℃以下70℃までの温度に保持されたもので
ある。酸化性気泡6としては、例えば酸素、酸素
富化空気、空気等の酸素を含む気体よりなるもの
が用いられる。
The refrigerant 5 is in a state of strong stirring, contains a large amount of oxidizing bubbles 6 in hot water to form a mixed state of air and water, and is maintained at a temperature of 95°C to 70°C. The oxidizing bubbles 6 may be made of a gas containing oxygen, such as oxygen, oxygen-enriched air, or air.

温水中に酸化性気泡6を多量に含有させるた
め、図では気体供給系7により、例えばエアー8
を温水の上部より吹きこんで気泡状にする。
In order to contain a large amount of oxidizing bubbles 6 in hot water, for example, air 8 is supplied by a gas supply system 7 in the figure.
Blow into the top of the warm water to create bubbles.

なお、この気体の吹きこみは温水の底部又は側
部より行なつても良い。又熱処理槽4の外部で酸
化性気泡を多量に含有させた気水混相流体を作成
し、これを槽4の上部、側部又は底部より槽内に
供給しても良い。
Note that this gas may be blown in from the bottom or side of the hot water. Alternatively, a gas/water mixed phase fluid containing a large amount of oxidizing bubbles may be prepared outside the heat treatment tank 4 and supplied into the tank from the top, side, or bottom of the tank 4.

かような冷媒5は複数台の撹拌機9により槽内
全体に亘つて強力に撹拌され、コイル1は強力な
撹拌状態にある気水混相流体で冷却されることに
より、所定の調整冷却を受ける。この場合の冷
媒、撹乱の条件については後述する。
Such refrigerant 5 is strongly agitated throughout the tank by a plurality of agitators 9, and the coil 1 is cooled with the air-water multiphase fluid in a strongly agitated state, thereby receiving a predetermined controlled cooling. . The refrigerant and disturbance conditions in this case will be described later.

又水平に展開された形のコイル1は、走行方向
に直角な方向の両端部は重なり具合が密となつて
おり、冷却速度を均一化するため、この部分の冷
却を優先的に強くするような方策が採られる。例
えばこの部分の撹拌を強くするか、又は気泡の含
有を多くする。
In addition, the horizontally deployed coil 1 has dense overlapping at both ends in the direction perpendicular to the running direction, and in order to equalize the cooling rate, the cooling of this part is preferentially strengthened. measures will be taken. For example, increase the agitation in this part or increase the inclusion of air bubbles.

所定時間調整冷却されたコイル1は、例えば搬
出用の傾斜コンベア10により冷媒5中より引き
上げられ、集束機(図示せず)に集束される。
The coil 1 that has been cooled for a predetermined period of time is lifted out of the refrigerant 5 by, for example, an inclined conveyor 10 for carrying out, and is collected into a collection machine (not shown).

次に本発明の方法における各種条件について次
のような実験を行なつた。
Next, the following experiments were conducted under various conditions in the method of the present invention.

(実験例) 鋼線材試料としては11.0mmφのC0.8%,Si0.2
%,Mn0.7%のSWRH82B(JIS規格)の線材を用
い、950℃まで無酸化雰囲気で加熱後、空気中で
種々の時間放冷して空気酸化させた後、各種冷媒
中に浸漬し、調整冷却実験を行なつた。
(Experiment example) The steel wire sample is 11.0mmφ, C0.8%, Si0.2
%, Mn0.7% SWRH82B (JIS standard) wire rod, heated to 950℃ in a non-oxidizing atmosphere, left to cool in air for various times to air oxidation, then immersed in various refrigerants, A controlled cooling experiment was conducted.

(1) 冷媒として、(a)温水(従来法)および(b)気水
混相流体(冷媒温度95℃以下の場合は本発明
法、温水中に空気を吹きこんだもの。ただし冷
媒温度100℃では吹きこみなし。) 冷媒浸漬前の空気酸化時間を0.5秒以下、3
〜5秒、10秒、15秒とし、70〜100℃に保持さ
れた冷媒中に100秒間浸漬した後引げた。
(1) As a refrigerant, (a) hot water (conventional method) and (b) air-water multiphase fluid (invention method if the refrigerant temperature is 95°C or lower, air blown into hot water. However, the refrigerant temperature is 100°C) (No blowing in.) Air oxidation time before refrigerant immersion is 0.5 seconds or less, 3
It was immersed in a refrigerant maintained at 70 to 100°C for 100 seconds for 5 seconds, 10 seconds, and 15 seconds, and then pulled out.

各空気酸化時間のものの冷媒温度と処理後の
線材の引張強さの関係は第3図に示す通りであ
る。
The relationship between the refrigerant temperature and the tensile strength of the treated wire at each air oxidation time is shown in FIG.

第3図より次のことが分る。 The following can be seen from Figure 3.

(イ) 本発明の気水混相流体によるものは、温水
によるものに比べ強度が大きい。
(a) The material using the air-water multiphase fluid of the present invention has greater strength than the material using hot water.

(ロ) 気水混相流体では、空気酸化時間5秒以下
の場合、75℃以上で変態完了前に核沸騰が発
生せず、安定した膜沸騰が得られ、強度の高
い線材が得られ、80℃近辺で引張強さ125
Kg/mm2という鉛パテンテイング並みの強度が
得られ、又温度が低くなる程強度が上昇し、
その増加率は温水冷却より大きい。これに対
し、温水冷却では、空気酸化時間3秒以上の
場合、90℃以下で変態完了前に核沸騰を誘発
し、局所的急冷によるマルテンサイト組織が
発生し、強度が劣化し、又空気酸化時間0.5
秒以下では、稍々良く。80℃でもマルテンサ
イト組織が発生しない。
(b) In air-water mixed-phase fluids, when the air oxidation time is 5 seconds or less, nucleate boiling does not occur before the transformation is completed at temperatures above 75°C, stable film boiling is obtained, and a wire with high strength can be obtained. Tensile strength around ℃ 125
The strength of Kg/mm 2 is comparable to that of lead patenting, and the lower the temperature, the higher the strength.
Its increase rate is greater than hot water cooling. On the other hand, with hot water cooling, if the air oxidation time is 3 seconds or more, nucleate boiling will be induced before the transformation is completed at temperatures below 90°C, a martensitic structure will occur due to local rapid cooling, the strength will deteriorate, and the air oxidation time 0.5
In seconds or less, it's a little better. Martensitic structure does not occur even at 80℃.

(ハ) 気水混相流体では、浸漬前の空気酸化時間
が長い程、強度の上昇が大きい。
(c) In air-water mixed phase fluids, the longer the air oxidation time before immersion, the greater the increase in strength.

これらの結果より、冷媒の温度は70〜95℃
が適当で、好ましくは75〜90℃である。70℃
未満では核沸騰が発生し易く、マルテンサイ
ト組織を生じて強度が劣化し、又95℃を越え
ると強度が不充分となる。又75℃未満では核
沸騰発生の恐れがあり、90℃を越えると鉛パ
テンテイング並みの強度が得られない。
Based on these results, the temperature of the refrigerant is 70 to 95℃.
is suitable, preferably 75 to 90°C. 70℃
If it is less than 95°C, nucleate boiling tends to occur, martensitic structure is formed and the strength is deteriorated, and if it exceeds 95°C, the strength becomes insufficient. Also, if it is below 75°C, there is a risk of nucleate boiling, and if it exceeds 90°C, it will not be possible to obtain the same strength as lead patenting.

又、冷媒浸漬前の空気酸化時間は3〜20秒
間が適当である。なおこの空気中放冷は、通
常圧延機を出てからコイル成形、冷媒浸漬ま
での間で行なわれるので、必ずしも放冷のた
めの装置(コンベア等)を設けなくても良
い。時間が20秒を越えると、強度上昇が飽和
すると共に、時間がかかり、不経済である。
Further, the appropriate time for air oxidation before immersion in the refrigerant is 3 to 20 seconds. Note that this cooling in the air is normally performed after exiting the rolling mill until coil forming and refrigerant immersion, so it is not necessarily necessary to provide a device for cooling (such as a conveyor). If the time exceeds 20 seconds, the increase in strength will be saturated, and it will be time consuming and uneconomical.

(2) 空気酸化時間4秒の試料を、80℃に保持した
第1項と同じ冷媒(a)温水(従来法)および(b)気
水混相流体(本発明法)に浸漬し、冷却速度を
調査した。浸漬前の試料の温度は950℃とした。
(2) A sample with an air oxidation time of 4 seconds was immersed in the same refrigerants as in item 1 held at 80°C: (a) hot water (conventional method) and (b) air-water multiphase fluid (invention method), and the cooling rate was measured. investigated. The temperature of the sample before immersion was 950°C.

浸漬経過時間と線材の温度の関係は第4図に
示す通りである。
The relationship between the elapsed immersion time and the temperature of the wire is shown in FIG.

第4図より、気水混相流体では、冷却が極め
て安定し、所期の冷却速度が得られ、かつ核沸
騰は常に500℃以下で発生するので問題ないこ
とが分る。これに対し、温水冷却では、冷却速
度はテスト毎に大きく変動し、再現性が小さ
い。これは核沸騰が起こり易く、その起こる温
度も一定しないことが観察される。
From FIG. 4, it can be seen that with the air-water mixed phase fluid, cooling is extremely stable, the desired cooling rate can be obtained, and nucleate boiling always occurs below 500°C, so there is no problem. In contrast, with hot water cooling, the cooling rate varies greatly from test to test, and reproducibility is low. It is observed that nucleate boiling is likely to occur, and the temperature at which it occurs is not constant.

(3) 本発明における気水混相流体の特徴は、気泡
が時々刻々浮力により流体から脱出するため、
その物理的、化学的性質は空塔速度(気体の単
位時間、単位面積当りの通過容積)に影響され
るので、空塔速度が線材の強度に及ぼす影響に
ついて調査した。
(3) The feature of the air-water multiphase fluid in the present invention is that the air bubbles escape from the fluid due to buoyancy from time to time.
Since its physical and chemical properties are affected by superficial velocity (volume of gas passing per unit time and unit area), we investigated the influence of superficial velocity on the strength of the wire.

冷媒として、(b)酸化性気体混入流体および(c)
窒素ガス混入流体(温水中に窒素ガスを吹き込
きこんだもの)を用い(ただし空塔速度0では
気体吹きこみなし)、82℃に保持した。空気酸
化時間4秒の試料を、空塔速度0〜10cm/sec
とした各冷媒中に100秒間浸漬、処理した。
As a refrigerant, (b) an oxidizing gas-entrained fluid and (c)
A nitrogen gas-containing fluid (nitrogen gas blown into hot water) was used (no gas blown at superficial velocity 0) and maintained at 82°C. A sample with an air oxidation time of 4 seconds was processed at a superficial velocity of 0 to 10 cm/sec.
The specimens were immersed and treated in each refrigerant for 100 seconds.

空塔速度と線材の引張強さの関係は第5図に
示す通りである。
The relationship between the superficial velocity and the tensile strength of the wire is as shown in FIG.

第5図より、本発明の(b)流体によるものは、
空塔速度が1cm/gsec以上になると膜沸騰が安
定するとともに、(c)流体によるものに比し、引
張強さが格段に高く、空塔速度が増すにつれて
引張さが増加することが分る。これは、空塔速
度が増すと撹乱が大きくなり、熱伝達係数が増
し、冷却速度が上がるためである。即ち、空塔
速度が十分に大きい場合には、線材周辺の水温
が常に設定温度に保持され、設定温度に対応し
た高引張強さの線材が得られる。これに対し、
空塔速度が小さくなると、線材周辺の温水の環
流が悪化、滞流するようになり、線材から供給
される熱流束により、水温が上昇する。このた
め線材の冷却速度が低下し、得られた線材の引
張強さも低下するものと考えられる。
From FIG. 5, it can be seen that (b) the fluid-based method of the present invention is
When the superficial velocity increases to 1 cm/gsec or more, film boiling becomes stable, and (c) the tensile strength is much higher than that using fluid, and it can be seen that the tensile strength increases as the superficial velocity increases. . This is because increasing superficial velocity increases disturbance, increases the heat transfer coefficient, and increases the cooling rate. That is, when the superficial velocity is sufficiently high, the water temperature around the wire is always maintained at the set temperature, and a wire with a high tensile strength corresponding to the set temperature can be obtained. In contrast,
When the superficial velocity decreases, the circulation of hot water around the wire worsens and stagnation occurs, and the water temperature increases due to the heat flux supplied from the wire. It is thought that for this reason, the cooling rate of the wire rod decreases, and the tensile strength of the obtained wire rod also decreases.

これに対し、(c)流体によるものは、引張強さ
が極端に低い。これは核沸騰が発生し易く、異
常に冷却速度が大きくなつてマルテンサイト組
織を生じたためである。
On the other hand, (c) one using fluid has extremely low tensile strength. This is because nucleate boiling is likely to occur and the cooling rate becomes abnormally high, resulting in the formation of a martensitic structure.

これらの結果より、気水混相流体の空塔速度
は3〜20cm/秒が適当である。3cm/秒未満で
は強度向上効果が不足し、20cm/秒を越えると
「吹抜け」(気泡合体による単相化)が発生して
良くない。
From these results, it is appropriate that the superficial velocity of the air-water mixed phase fluid is 3 to 20 cm/sec. If it is less than 3 cm/sec, the strength improvement effect will be insufficient, and if it exceeds 20 cm/sec, "blow-through" (single phase formation due to bubble coalescence) will occur, which is not good.

(4) 気水混相流体(b)より成る冷媒を用い、機械撹
拌ありおよびなしの場合の空塔速度と、ガスホ
ールド、アツプ(気水混相率)および近似撹乱
強度の関係を示すと、第6図に示す通りであ
る。
(4) Using a refrigerant consisting of air-water multiphase fluid (b), the relationship between superficial velocity, gas hold, up (air-water mixed phase ratio), and approximate disturbance strength with and without mechanical stirring is as follows. As shown in Figure 6.

第6図より、前述の必要空塔速度3〜20cm/
秒では気水混相率は0.1〜0.35であり、近似撹
乱強度は5〜7×103erg/cm3である。
From Figure 6, the above-mentioned required superficial velocity is 3 to 20 cm/
In seconds, the air-water mixed phase ratio is 0.1 to 0.35, and the approximate disturbance intensity is 5 to 7×10 3 erg/cm 3 .

これらの範囲未満では強度向上効果が不足
し、範囲を越えると「吹抜け」が発生する。
If it is less than these ranges, the strength improvement effect will be insufficient, and if it exceeds these ranges, "blow-through" will occur.

(5) 気水混相流体(b)より成る冷媒を用い、冷媒温
度70〜100℃における酸素濃度および気泡膨張
率を調査した結果は第7図に示す通りである。
(5) Using a refrigerant made of air-water multiphase fluid (b), the oxygen concentration and bubble expansion coefficient at a refrigerant temperature of 70 to 100°C were investigated, and the results are shown in FIG.

第7図より、酸化性気泡中の適当な酸素濃度
は冷媒温度75℃において10%以上、90℃におい
て5%以上である。この間の関係を式で表わす
と、酸素濃度をY%、冷媒温度をX℃とすれ
ば、 Y−1/3X+35 に近似される。
From FIG. 7, an appropriate oxygen concentration in the oxidizing bubbles is 10% or more at a refrigerant temperature of 75°C, and 5% or more at a refrigerant temperature of 90°C. Expressing this relationship using a formula, if the oxygen concentration is Y% and the refrigerant temperature is X°C, it is approximated as Y-1/3X+35.

上式は次のとおり求めたものである。 The above formula was obtained as follows.

(1) 空気中の飽和水蒸気分圧は温度T(K)とする
と、次の(1)式で表わされる。
(1) The saturated water vapor partial pressure in the air is expressed by the following equation (1), where the temperature is T(K).

P=8.071×105・exp(−5073/T) …(1) (2) 温水T(K)中に乾燥空気(To=273K)を
吹き込んだ場合の気泡体積Vは次の(2)式で表わ
される。
P = 8.071 It is expressed as

V=T/To(1−P)・Vo …(2) 但しVoは吹き込み空気体積 (3) 体積膨張によるO2の希釈は空気中酸素濃度
Yを21%として次のとおり計算する。
V=T/To(1-P)・Vo (2) where Vo is the volume of blown air (3) The dilution of O 2 due to volume expansion is calculated as follows, assuming the air oxygen concentration Y is 21%.

Y =21/(V/Vo) X1=70℃ Y1=21/1.807=11.6% X2=90℃ Y2=21/4.92=4.27% Y =AX+Bとして、 A,Bを求めると、A=0.334、B=34.98これ
から上記式が求まる。
Y = 21 / (V / Vo ) X 1 = 70℃ Y 1 = 21 / 1.807 = 11.6% =0.334, B=34.98 From this, the above formula can be found.

気水混相流体よりなる冷媒を作るに当つて温水
中に空気を混入させた場合、直ちに水蒸気未飽和
気泡中に水蒸気が蒸発し、飽和する。その結果、
実効空塔速度、即ち撹乱力が大きくなる一方、酸
素濃度は希釈される。これは撹拌力や気泡混合率
には有利だが、酸化力には不利であるから、空気
を温水中に混入させる際、必要により酸素濃度を
上げるには、上式により酸素ガスを混入すればよ
い。実際結果では上述の範囲で所定の膜沸騰が安
定して得られた。
When air is mixed into hot water to produce a refrigerant made of a gas-water multiphase fluid, water vapor immediately evaporates into unsaturated water vapor bubbles and saturates them. the result,
While the effective superficial velocity, ie the disturbance force, increases, the oxygen concentration becomes diluted. This is advantageous for stirring power and bubble mixing ratio, but is disadvantageous for oxidizing power, so when mixing air into hot water, to increase the oxygen concentration if necessary, you can mix oxygen gas using the above formula. . In actual results, a predetermined film boiling was stably obtained within the above range.

次に、線材の冷却速度は、上述の実験例(1)、(3)
〜(5)で得た必要条件を適切に組合せ、第4図に示
すように線材温度900〜650℃の範囲で15〜25℃/
秒、変態が終了した後630〜500℃の範囲で10〜15
℃/秒に制御されることが好ましい。900〜650℃
の範囲で15℃/秒未満では、変態温度が高温にず
れ、強度不足となり、25℃/秒を越えると、変態
温度が低温にずれ、場合によりパーライト変態で
なく一部マルテンサイト変態が生じて良くない。
又630〜500℃の範囲で10℃/秒未満では未変態オ
ーステナイトが余り微細でないパーライト組織に
変態し、強度不足となり、20℃/秒を越えると通
常問題はないが偏析のある材料ではマルテンサイ
ト組織が発生し易く、良くない。なお、合金元素
を添加した線材では、鋼の焼入性が大きくなり、
上述の条件は低冷却速度側にずれる。
Next, the cooling rate of the wire rod is determined by the above experimental examples (1) and (3).
By appropriately combining the necessary conditions obtained in ~(5), the wire temperature is 15~25℃ in the range of 900~650℃ as shown in Figure 4.
10-15 seconds, in the range of 630-500℃ after metamorphosis is finished
Preferably, the temperature is controlled at ℃/second. 900~650℃
If the temperature is less than 15℃/sec, the transformation temperature will shift to a high temperature, resulting in insufficient strength; if it exceeds 25℃/sec, the transformation temperature will shift to a low temperature, and in some cases, some martensitic transformation will occur instead of pearlite transformation. not good.
In addition, if the temperature is less than 10℃/sec in the range of 630 to 500℃, untransformed austenite transforms into a pearlite structure that is not very fine, resulting in insufficient strength.If the temperature exceeds 20℃/sec, there is usually no problem, but in materials with segregation, martensite Tissues tend to form, which is not good. In addition, the hardenability of steel increases with wire rods containing alloying elements,
The above conditions are shifted to the lower cooling rate side.

又パーライト変態は600℃付近で始まり、この
時2〜3Kcal/Kgsecの割合で冷却しなければな
らない。2Kcal/Kgsec未満では変態温度が高温
まで上昇し、強度不足となり、3Kcal/Kgsecを
越えると変態温度が低温にずれ、マルテンサイト
変態を誘発し易い。
Also, pearlite transformation begins at around 600°C, and at this time it must be cooled at a rate of 2 to 3 Kcal/Kgsec. If it is less than 2Kcal/Kgsec, the transformation temperature will rise to a high temperature, resulting in insufficient strength, and if it exceeds 3Kcal/Kgsec, the transformation temperature will shift to a low temperature, easily inducing martensitic transformation.

上述の実験例より得た本発明方法において好ま
しい条件は、線材の鋼種、サイズ、コイルサイ
ズ、線速、冷媒の容量、酸化性気体の種類、槽の
長さ等により左右されるので、それらに応じ適当
に選択される。
The preferred conditions for the method of the present invention obtained from the above experimental examples depend on the steel type of the wire rod, size, coil size, wire speed, refrigerant capacity, type of oxidizing gas, tank length, etc. be selected accordingly.

(実施例) 熱間圧延された11.0mmφのC0.82%、Mn0.72
%、Si0.22%のSWRH82B(JIS規格)の鋼線材を
第1図、第2図に示す装置を用いて本発明方法に
より直接熱処理を施した。
(Example) Hot rolled 11.0mmφ C0.82%, Mn0.72
%, Si0.22% SWRH82B (JIS standard) steel wire was directly heat treated by the method of the present invention using the apparatus shown in FIGS. 1 and 2.

線材の圧延速度は9m/秒、圧延直後の線材温
度は920℃で、リング径1050mmのコイルに成形し
た。冷媒として温水に空気を吹きこんだ気水混相
流体を用い、82℃の温度に保持し、空塔速度は10
cm/秒、気体混合率は約0.2であつた。
The rolling speed of the wire was 9 m/sec, the wire temperature immediately after rolling was 920°C, and the wire was formed into a coil with a ring diameter of 1050 mm. A steam-water multiphase fluid, which is made by blowing air into hot water, is used as a refrigerant, and the temperature is maintained at 82℃, and the superficial velocity is 10.
cm/sec, and the gas mixing ratio was approximately 0.2.

線材温度920℃より850℃まで水冷ノズルにより
全長均等に予備冷却し、約10秒間空気酸化した
後、熱処理槽4に浸漬し、約25秒処理した後槽4
より引上げ、直接熱処理を施した。
The wire temperature was pre-cooled uniformly over the entire length from 920℃ to 850℃ using a water cooling nozzle, air oxidized for about 10 seconds, then immersed in heat treatment tank 4, treated for about 25 seconds, and then transferred to tank 4.
It was then pulled up and directly heat treated.

比較のため、同じ熱間圧延線材を98℃に保持さ
れた温水に浸漬冷却し、従来法による直接熱処理
を施した。得られたコイルを長さ40cm毎に連続し
てサンプリングし、引張強さを測定した。
For comparison, the same hot-rolled wire rod was cooled by immersion in hot water maintained at 98°C and then directly heat-treated using the conventional method. The resulting coil was sampled continuously at intervals of 40 cm, and the tensile strength was measured.

本発明方法および従来法による引張強さの分布
は第8図に示す通りである。
The distribution of tensile strength according to the method of the present invention and the conventional method is as shown in FIG.

第8図より本発明によるものは、鉛パテンテイ
ング並みの平均125.9Kg/mm2の引張強さが得られ、
正規分布を示すことが分る。
From FIG. 8, the product according to the present invention has an average tensile strength of 125.9 Kg/mm 2 , which is comparable to lead patenting.
It can be seen that it shows a normal distribution.

これに対し、従来法によるものは引張強さが約
11Kg/mm2低い。
In contrast, the conventional method has a tensile strength of approximately
11Kg/mm 2 low.

(発明の効果) 上述のように構成された本発明の鋼線材の直接
熱処理方法は次のような効果がある。
(Effects of the Invention) The method for direct heat treatment of steel wire of the present invention configured as described above has the following effects.

(イ) 調整冷却が、強力な撹拌状態にあり、かつ酸
化性気泡を多量に含有する95℃以下の温度に保
持された気水混相流体からなる冷媒中に前記鋼
線材を浸漬通過せしめて行なわれるから、圧延
直後の空気中露出又は空気中放冷および冷媒中
の酸化性気泡により線材表面が酸化されて酸化
皮膜が形成された状態で、酸化性気泡を含む気
水混相流体に浸漬されるため、過冷沸騰冷却に
おいても核沸騰を誘発せず、所期の冷却速度が
極めて安定して得られるので、鉛パテンテイン
グ並みの強度で、ばらつきが少なく、かつ伸線
加工性のすぐれた鋼線材を製造し得る。
(a) Adjusted cooling is performed by immersing and passing the steel wire through a refrigerant consisting of a gas-water multiphase fluid that is under strong stirring and that is maintained at a temperature of 95°C or lower and contains a large amount of oxidizing bubbles. Therefore, the wire surface is oxidized by exposure to the air immediately after rolling or cooling in the air and oxidizing bubbles in the refrigerant to form an oxide film, and then the wire is immersed in an air-water multiphase fluid containing oxidizing bubbles. As a result, nucleate boiling does not occur even during subcooled boiling cooling, and the desired cooling rate can be achieved extremely stably, resulting in a steel wire with strength comparable to lead patenting, less variation, and excellent wire drawability. can be manufactured.

(ロ) 酸化性気泡を多量に含む気水混相流体を用い
ることにより、水蒸気未飽和の気体を大量に混
入させると、平衡蒸気圧に向つて大量の水蒸気
が気泡中に蒸発し、その結果冷媒の温度が下が
るため、冷媒が自己冷却性を保有し、これを冷
媒温度制御に効果的に利用することができるの
で、冷媒の温度保持が経済的にできる。なおこ
の冷却能は線材の処理能力(T/時)と冷媒の
温度の比により容易に計算できる。
(b) When a gas/water multiphase fluid containing a large amount of oxidizing bubbles is used and a large amount of gas unsaturated with water vapor is mixed in, a large amount of water vapor evaporates into the bubbles toward equilibrium vapor pressure, and as a result, the refrigerant Since the temperature of the refrigerant decreases, the refrigerant has self-cooling properties, and this can be effectively used to control the refrigerant temperature, so that the temperature of the refrigerant can be maintained economically. Note that this cooling capacity can be easily calculated from the ratio of the processing capacity of the wire (T/hour) and the temperature of the refrigerant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明方法の実施例に用
いられる直接熱処理装置の例を示す図で、第1図
は縦断面図、第2図は横断面図である。第3図〜
第7図は本発明の実験例において得られた結果を
示す図で、第3図は各空気酸化時間のものの冷媒
温度と処理後の線材の引張強さの関係を、第4図
は各種冷媒における冷却曲線を、第5図は各種冷
媒の空塔速度と線材の引張強さの関係を、第6図
は冷媒の空塔速度と気体混相率の関係を、第7図
は冷媒温度70〜100℃における酸素濃度および気
泡膨張率を示す。第8図は本発明方法の実施例お
よび従来法により製造された鋼線材の引張強さ分
布を示す図である。 1…リング状コイル、2,3,10…コンベ
ア、4…熱処理槽、5…冷媒、6…酸化性気泡、
7…気体供給系、8…エアー、9…撹拌機。
1 and 2 are diagrams showing an example of a direct heat treatment apparatus used in an embodiment of the method of the present invention, with FIG. 1 being a longitudinal cross-sectional view and FIG. 2 being a cross-sectional view. Figure 3~
Figure 7 is a diagram showing the results obtained in the experimental examples of the present invention, Figure 3 shows the relationship between the refrigerant temperature and the tensile strength of the wire rod after treatment for each air oxidation time, and Figure 4 shows the relationship between various refrigerant Figure 5 shows the relationship between the superficial velocity of various refrigerants and the tensile strength of the wire, Figure 6 shows the relationship between the superficial velocity of the refrigerant and the gas mixed phase ratio, and Figure 7 shows the relationship between the superficial velocity of the refrigerant and the gas mixed phase ratio. Oxygen concentration and bubble expansion rate at 100°C are shown. FIG. 8 is a diagram showing the tensile strength distribution of steel wire rods manufactured by an example of the method of the present invention and a conventional method. DESCRIPTION OF SYMBOLS 1... Ring-shaped coil, 2, 3, 10... Conveyor, 4... Heat treatment tank, 5... Refrigerant, 6... Oxidizing bubbles,
7... Gas supply system, 8... Air, 9... Stirrer.

Claims (1)

【特許請求の範囲】 1 熱間圧延されて金属組織がオーステナイトを
呈する高温にある鋼線材のリング状コイルを、水
平に展開した形で連続的に移送しながらパーライ
ト組織に変態させるように調整冷却して直接熱処
理する方法において、水平に展開した鋼線材のリ
ング状コイルを空気中にて3〜20秒間放冷して表
面を酸化せしめ、その後直ちに、空塔速度が3〜
20cm/秒、気体混相率0.1〜0.35、かつ気泡中の
酸素濃度Y(%)が冷媒温度X℃とした時、 Y―1/3X+35 である70〜95℃の間の所定の温度に保持された撹
乱状態の気水混相流体よりなる冷媒中に浸漬し、
通過させることを特徴とする鋼線材の直接熱処理
方法。 2 調整冷却が、鋼線材の冷却速度を、900〜650
℃の範囲で15〜25℃/秒、変態がほぼ終了した後
630〜500℃の範囲で10〜15℃/秒に制御して行な
われることを特徴とする特許請求の範囲第1項記
載の鋼線材の直接熱処理方法。
[Claims] 1. A ring-shaped coil of hot-rolled steel wire at a high temperature with an austenite metal structure is continuously transported in a horizontally expanded form and cooled in an adjusted manner so as to transform it into a pearlite structure. In the direct heat treatment method, a horizontally developed ring-shaped coil of steel wire is left to cool in the air for 3 to 20 seconds to oxidize the surface, and then immediately after the superficial velocity reaches 3 to 20 seconds.
When the temperature is 20cm/sec, the gas mixed phase ratio is 0.1 to 0.35, and the oxygen concentration Y (%) in the bubbles is the refrigerant temperature of X℃, it is maintained at a predetermined temperature between 70 and 95℃, which is Y - 1/3X + 35. immersed in a refrigerant consisting of a disturbed air-water multiphase fluid,
A method for direct heat treatment of steel wire, characterized by passing it through. 2 Adjusted cooling increases the cooling rate of steel wire from 900 to 650
15-25℃/sec in the range of ℃, after the metamorphosis is almost completed
A method for direct heat treatment of steel wire according to claim 1, characterized in that the heat treatment is carried out at a temperature of 630 to 500°C and controlled at a rate of 10 to 15°C/sec.
JP20316083A 1983-05-24 1983-10-28 Direct heat treatment of steel wire material Granted JPS6096726A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP20316083A JPS6096726A (en) 1983-10-28 1983-10-28 Direct heat treatment of steel wire material
EP84105780A EP0126481B1 (en) 1983-05-24 1984-05-21 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
AT84105780T ATE37044T1 (en) 1983-05-24 1984-05-21 PROCESS AND DEVICE FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON STEEL BARS.
DE8484105780T DE3473888D1 (en) 1983-05-24 1984-05-21 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
NO842021A NO163907C (en) 1983-05-24 1984-05-22 PROCEDURE AND DEVICE FOR DIRECT HEAT TREATMENT OF STEEL BAR.
CA000454956A CA1221297A (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
FI842062A FI75867C (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of a medium or high carbon steel bar
KR1019840002821A KR890002982B1 (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of medium-to-high-carbon steel rods
BR8402479A BR8402479A (en) 1983-05-24 1984-05-23 PROCESS AND EQUIPMENT FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON STEEL BARS
ES532773A ES8604314A1 (en) 1983-05-24 1984-05-24 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods.
AU28567/84A AU560405B2 (en) 1983-05-24 1984-05-24 Direct heat treatment of medium- to high carbon steel rods
US06/613,485 US4526627A (en) 1983-05-24 1984-05-24 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
MX201444A MX161816A (en) 1983-05-24 1984-05-24 METHOD AND APPARATUS FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON CONTENT STEEL RODS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20316083A JPS6096726A (en) 1983-10-28 1983-10-28 Direct heat treatment of steel wire material

Publications (2)

Publication Number Publication Date
JPS6096726A JPS6096726A (en) 1985-05-30
JPS647139B2 true JPS647139B2 (en) 1989-02-07

Family

ID=16469427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20316083A Granted JPS6096726A (en) 1983-05-24 1983-10-28 Direct heat treatment of steel wire material

Country Status (1)

Country Link
JP (1) JPS6096726A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248824A (en) * 1984-05-24 1985-12-09 Sumitomo Electric Ind Ltd Method and device for direct heat treatment of middle and high carbon steel wire rod
JPH02232321A (en) * 1989-03-06 1990-09-14 Sumitomo Electric Ind Ltd Method for directly heat-treating steel wire rod

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579826A (en) * 1980-06-19 1982-01-19 Sumitomo Electric Ind Ltd Method and device for heat treatment of metals
JPS583930A (en) * 1981-06-30 1983-01-10 Nippon Steel Corp Continuous hardening method for wire rod

Also Published As

Publication number Publication date
JPS6096726A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
US20160355903A1 (en) Apparatus for continuous annealing of strip and method for continuous annealing of same
US4526627A (en) Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
US4146411A (en) Hot bar cooling
JP2004027286A (en) Direct heat treatment method for hot-rolled wire rod
JPS647139B2 (en)
JPS6340850B2 (en)
US4770722A (en) Methods for heat treatment of steel rods
JP2020514540A (en) Lead-free patenting process and equipment
JPH075991B2 (en) Heat treatment method for steel wire
JPS5830938B2 (en) Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing
JPS6431920A (en) Method for preventing decarbonization after spheroidizing heat treatment and heat treating furnace
JPH06100934A (en) Production of high carbon steel wire stock for wire drawing
JPS6343445B2 (en)
JP2815695B2 (en) Fluidized bed patenting method for high carbon steel wire
JP3393677B2 (en) Direct heat treatment method for wire rod
JP2682604B2 (en) Direct heat treatment method and equipment for steel wire
GB1566128A (en) Heat treating of hot-rolled steel rod
RU2032750C1 (en) Method of thermal treatment of rolling
JPH05117762A (en) Manufacture of bainite wire rod
JPH07268464A (en) Production of bainitic wire rod or steel wire for wiredrawing
JPS6324048B2 (en)
JPH0578754A (en) Treatment of fluidized bed patenting for cr-containing high carbon steel wire
JPS61106726A (en) Direct hardening and tempering method of hot rolled wire
JPH02232321A (en) Method for directly heat-treating steel wire rod
JPS6056215B2 (en) Heat treatment method for wire rod