JPS6096726A - Direct heat treatment of steel wire material - Google Patents

Direct heat treatment of steel wire material

Info

Publication number
JPS6096726A
JPS6096726A JP20316083A JP20316083A JPS6096726A JP S6096726 A JPS6096726 A JP S6096726A JP 20316083 A JP20316083 A JP 20316083A JP 20316083 A JP20316083 A JP 20316083A JP S6096726 A JPS6096726 A JP S6096726A
Authority
JP
Japan
Prior art keywords
steel wire
heat treatment
air
refrigerant
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20316083A
Other languages
Japanese (ja)
Other versions
JPS647139B2 (en
Inventor
Katsuhiko Yamada
勝彦 山田
Yoshihiro Hashimoto
義弘 橋本
Hitoshi Iwata
岩田 斎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20316083A priority Critical patent/JPS6096726A/en
Priority to EP84105780A priority patent/EP0126481B1/en
Priority to DE8484105780T priority patent/DE3473888D1/en
Priority to AT84105780T priority patent/ATE37044T1/en
Priority to NO842021A priority patent/NO163907C/en
Priority to FI842062A priority patent/FI75867C/en
Priority to KR1019840002821A priority patent/KR890002982B1/en
Priority to BR8402479A priority patent/BR8402479A/en
Priority to CA000454956A priority patent/CA1221297A/en
Priority to ES532773A priority patent/ES8604314A1/en
Priority to MX201444A priority patent/MX161816A/en
Priority to US06/613,485 priority patent/US4526627A/en
Priority to AU28567/84A priority patent/AU560405B2/en
Publication of JPS6096726A publication Critical patent/JPS6096726A/en
Publication of JPS647139B2 publication Critical patent/JPS647139B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5732Continuous furnaces for strip or wire with cooling of wires; of rods

Abstract

PURPOSE:To enhance strength and wire drawing processability, by applying control cooling to a high temp. steel wire material by using an air-water mixing phase fluid containing a large amount of oxidative air bubbles in a strongly agitated state and held to a predetermined temp. CONSTITUTION:The cooling medium 5 in a heat treatment tank 4 is held at 95 deg.C or less and a large amount of oxidative air bubbles 6 are contained in said cooling medium 5 to form an air-water mixing phase fluid under a strongly agitated state. A ring shaped coil comprising a high temp. steel wire material, of which the metal structure shows austenite, is continuously transferred through the cooling medium 5 under this state in a horizontally developed state to perform control cooling. By this method, the strength and wire drawing processability are enhanced.

Description

【発明の詳細な説明】 (技術分身) 本発明は、例えばばね、pc(プレヌトレスト、コンク
リート用)鋼線、pc鋼よシ線等に使用される鋼線イン
を製造する際、熱間圧延された高温状態にある鋼線材、
又は伸線途中のサイズで高温に加熱された鋼線材を冷媒
によシ調整冷却し、主として伸線加工性のすぐれた線材
を得る、いわゆる直接熱処理方法の改良に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Technical alter ego) The present invention provides a method for producing hot-rolled steel wires used in springs, PC (pre-nutrest, concrete) steel wires, PC steel wires, etc. steel wire under high temperature,
Alternatively, the present invention relates to an improvement in a so-called direct heat treatment method in which a steel wire heated to a high temperature at a size in the middle of being wire-drawn is controlled and cooled with a refrigerant to obtain a wire with excellent wire-drawability.

(背景技術) 直接熱処理方法の条件は、例えば熱間圧延直後の鋼線イ
ン(以下、単に線材と称す)を適切な冷却速度で、かつ
コイル全長をほぼ均一に冷却し、その金属組織を微細な
パーライト主体とならしめ、強度および伸線加工性をパ
テンティング処理と同様にすることである。この線材を
使用することによシ、線材径や製品品質仕様によっては
パテンティング工程が省略される。しかし従来の直接熱
処理方法では、例えばpc用等で、線拐径が大きく、か
つ高強度を要求される場合には、鉛パテンテイングに比
べ抗張力が約] Okg/rnTl低い上に、強度のば
らつきについても劣るので、鉛パテンテイングの省略が
成されていない現状である。
(Background Art) The conditions for the direct heat treatment method are, for example, to cool the steel wire (hereinafter simply referred to as wire rod) immediately after hot rolling at an appropriate cooling rate and almost uniformly over the entire length of the coil, and to finely refine the metal structure. The method is to make the wire mainly composed of pearlite, and to make the strength and wire drawability similar to that of patenting treatment. By using this wire, the patenting process can be omitted depending on the wire diameter and product quality specifications. However, with the conventional direct heat treatment method, for example, when the wire diameter is large and high strength is required, such as for PC, the tensile strength is lower than that of lead patenting. Currently, lead patenting cannot be omitted because the lead patenting is also inferior.

従来、線材の直接熱処理方法として種々の方法が提案さ
れているが、それぞれ次のような損失がある。
Conventionally, various methods have been proposed as direct heat treatment methods for wire rods, but each method has the following losses.

リング状コイルを水平コンベア上で展開した形で強制空
冷するヌチルマー法(特公昭42−15463号)では
、局所的急冷部がなく、がなシ均質な線材が得られるが
、冷却力が弱く、強度不足である。
The Nutilmer method (Japanese Patent Publication No. 15463/1973), in which a ring-shaped coil is spread out on a horizontal conveyor and forcedly air-cooled, has no localized quenching sections and can produce a uniform wire rod, but the cooling power is weak and It is not strong enough.

これは強風によシ成る程度強度は上昇するが、リングの
重なシ部は効果なく、そのため不均一を誘発する。
Although the strength increases depending on the strength of strong winds, the overlapping edges of the rings are ineffective and therefore induce non-uniformity.

又線材をリング状コイ/1/に成形し、温水中に巻取る
か(特公昭45−8536号)、又は水平コンベアで移
送しながら温水中に浸漬する(特公昭46−8089号
)温水中冷却方式では、肌脱水中冷却において均質な線
(才が得られるが、強度不足(船パテンティングよシ抗
張カがI OkV/7ml低い)で、空気を吹込んで強
力に撹乱しても吟はシ抗張カが5〜71+/in低い。
Alternatively, the wire rod is formed into a ring-shaped coil and wound up in hot water (Special Publication No. 45-8536), or immersed in hot water while being transferred on a horizontal conveyor (Special Publication No. 46-8089). With the cooling method, a homogeneous line can be obtained in skin dehydration cooling, but the strength is insufficient (the tensile force is lower than that of ship patenting), and even if air is blown in and strongly disturbed, it will not work. The tensile force is 5-71+/in lower.

又湯冷沸騰冷却(水温、95“″C以下)でば、強度は
上昇するが、膜沸騰が不安定で、高温でも核沸騰を誘発
し、局所的急冷が発生し、そのためマルテンザイト組織
が発生し、不良となる。
In addition, the strength increases with hot water boiling cooling (water temperature, below 95""C), but film boiling is unstable, nucleate boiling is induced even at high temperatures, localized rapid cooling occurs, and the martenzite structure deteriorates. occurs and becomes defective.

(発明の開示) 本発明は、上述の問題点を解決するだめ成されたもので
、湯冷沸騰冷却においても核沸騰を誘発せず、膜沸j旋
のみて必要、充分な冷却速度を得、強度が鉛パテンテイ
ングによるものと同等で、ばらつきが少なく、均質で、
かつ伸線加工性良好な鋼線材を製造し得る直接熱処理方
法を提供せんとするものである。
(Disclosure of the Invention) The present invention has been made to solve the above-mentioned problems, and does not induce nucleate boiling even in water-cooled boiling cooling, and achieves a necessary and sufficient cooling rate only by film boiling rotation. , the strength is equivalent to that of lead patenting, less variation, homogeneous,
The present invention also aims to provide a direct heat treatment method that can produce a steel wire rod with good wire drawability.

本発明は、金属組織がオーステナイトを呈する高温にあ
る鋼線制のリング状コイルを、水平に展開した形で連続
的に移送しながら調整冷却して直接熱処理する方法にお
いて、調整冷却が、強力な撹乱状態にあシ、かつ酸化性
気泡を多量に含有する95°C以下の温度に保持された
気水混相流体からなる冷媒中に前記鋼線材を浸漬通過せ
しめて行なわれることを特徴とする鋼線材の直接熱処理
方法である。
The present invention is a method in which a steel wire ring-shaped coil at a high temperature with an austenitic metallographic structure is controlled and directly heat-treated by being continuously transferred in a horizontally expanded form. The steel wire rod is immersed and passed through a refrigerant consisting of an air-water multiphase fluid maintained at a temperature of 95° C. or lower, which is in a disturbed state and contains a large amount of oxidizing bubbles. This is a direct heat treatment method for wire rods.

本発明において高温にある鋼線材とは、炭素鋼又はこれ
にNi、Cr、V、Mo、W等の合金元素の少量を添加
した合金鋼よシ成シ、熱間圧延された高温状態にある線
材、又は伸線途中のサイズで加熱された高温の線材を意
味し、金属組織がオーステナイトを呈するものである。
In the present invention, the steel wire at high temperature refers to carbon steel or alloy steel to which a small amount of alloying elements such as Ni, Cr, V, Mo, and W are added, and is hot-rolled in a high-temperature state. It means a wire rod or a wire rod heated to a high temperature during wire drawing, and the metal structure exhibits austenite.

以下、熱間圧延された線伺を例にとって説明するが、本
発明はこれに限定されるものではない。
Hereinafter, a hot-rolled wire rail will be explained as an example, but the present invention is not limited thereto.

本発明者等は、鉛パテンテイング並みの強度を得るだめ
の所定の冷却速度を得、かっ核沸1流の誘発を防止し、
均一な冷却を与えるため、種々の表面処理条件、冷媒の
条件について検問した結果、線GJの表面を酸化させ、
酸化性気泡を含む95°C以下の気水混相流体からなる
冷媒中に浸漬すること、即ち表面化学処理と冷却処理を
同時に行なうことによシ、所期の目的を達成し得ること
を見出したものである。
The present inventors obtained a predetermined cooling rate to obtain a strength comparable to that of lead patenting, and prevented the induction of nucleation flow.
In order to provide uniform cooling, we investigated various surface treatment conditions and refrigerant conditions, and found that the surface of wire GJ was oxidized,
It has been discovered that the intended purpose can be achieved by immersing the material in a refrigerant consisting of a multiphase fluid of air and water at 95°C or less containing oxidizing bubbles, that is, by performing surface chemical treatment and cooling treatment simultaneously. It is something.

以下、本発明を図面を用いて実施例により説明する。Hereinafter, the present invention will be explained by examples using the drawings.

第1図、第2図は本発明方法の実施例に用いられる直接
熱処理装置の例を示す図で、第1図は縦断面図、第2図
は横断面図である。図において、1は高温圧延された鋼
線材をレイイングヘッド(図示せず)によシ所定のリン
グ径に成形したリング状コイル(以下、コイルと称す)
で、コンベア2によシ非同心連続リング状で移送され、
空気中で放冷される。
1 and 2 are diagrams showing an example of a direct heat treatment apparatus used in an embodiment of the method of the present invention, with FIG. 1 being a longitudinal cross-sectional view and FIG. 2 being a cross-sectional view. In the figure, 1 is a ring-shaped coil (hereinafter referred to as a coil) formed from high-temperature rolled steel wire to a predetermined ring diameter using a laying head (not shown).
Then, it is transferred to the conveyor 2 in a non-concentric continuous ring,
It is left to cool in the air.

このコンベア2上でコイ/l/ lの表面は空気酸化さ
れる。これは、次の冷媒中の浸漬時、表面酸化皮膜によ
シ核沸騰の誘発を防止し、膜沸騰段階での冷却速度を向
上させるためで、後述のように3〜20秒が好ましい。
On this conveyor 2, the surface of the carp/l/l is air oxidized. This is to prevent the induction of nucleate boiling due to the surface oxide film during the next immersion in the refrigerant, and to improve the cooling rate at the film boiling stage, and is preferably 3 to 20 seconds as described below.

予備空冷後、コイ/l/、1は熱処理槽4中の水平コン
ベア3上に落下し、水平に展開した形で移送される。熱
処理槽4には気水混相流体からなる冷媒5が収容され、
これにコンベア3上のコイル1が所定時間浸漬される。
After preliminary air cooling, the carp/l/,1 falls onto the horizontal conveyor 3 in the heat treatment tank 4 and is transported in a horizontally developed form. The heat treatment tank 4 accommodates a refrigerant 5 made of air-water multiphase fluid,
The coil 1 on the conveyor 3 is immersed in this for a predetermined time.

冷媒5は、強力な攪拌状態にあシ、かつ温水中に酸化性
気泡6を多量に含有させて気水混合状態とし、95℃以
下の温度に保持されたものである。酸化性気泡6として
は、例えば酸素、酸素富化空気、空気等の酸素を含む気
体よシなるものが用いられる。
The refrigerant 5 is a mixture of air and water by strongly stirring reeds and containing a large amount of oxidizing bubbles 6 in hot water, and is maintained at a temperature of 95° C. or lower. As the oxidizing bubbles 6, for example, a gas containing oxygen such as oxygen, oxygen-enriched air, or air is used.

温水中に酸化性気泡6を多量に含有させるため、図でに
気体供給系7により、例えばエアー8を温水の上部より
吹きこんで気泡状にする。
In order to contain a large amount of oxidizing bubbles 6 in the hot water, for example, air 8 is blown into the hot water from above using a gas supply system 7 as shown in the figure to form bubbles.

なお、この気体の吹きこみは温水の底部又は側部より行
なっても良い。又熱処理槽4の外部で酸化性気泡を多量
に含有させだ気水混合流体を作成し、これを槽4の上部
、側部又は底部よりイ)す1内に供給しても良い。
Note that this gas may be blown in from the bottom or side of the hot water. Alternatively, an air/water mixed fluid containing a large amount of oxidizing bubbles may be prepared outside the heat treatment tank 4, and this may be supplied into (a) 1 from the top, side, or bottom of the tank 4.

かような冷媒5は複数台の抗拌機9により槽内全体に回
って強力に攪拌され、コイ4し1は強力X Fs、、3
拌状態にある気水混合流体で冷却されることにより、所
定の調整冷却を受ける。この場合の冷媒、撹乱の条件に
ついでは後述する。
Such a refrigerant 5 is circulated throughout the tank by a plurality of anti-stirring machines 9 and is strongly stirred, and the coils 4 and 1 are strongly stirred.
By being cooled with a mixed air-water fluid in an agitated state, it receives a predetermined controlled cooling. The refrigerant and disturbance conditions in this case will be described later.

又水平に展開された形のコイル1は、走行方向に直角な
方向の両側部、は重なり具合が密となっており、冷却速
度を均一化するため、この部分のと)−却を優先的に強
くするような方策が採られる。例えばこの部分の攪拌を
強くするか、又は気泡の含有を多くする。
In addition, the horizontally deployed coil 1 has dense overlapping on both sides in the direction perpendicular to the running direction, and in order to equalize the cooling rate, priority is given to cooling in this part. Measures will be taken to strengthen the situation. For example, increase the agitation in this area or increase the amount of air bubbles.

所定時間調整冷却されたコイ)v]は、例えば搬出用の
傾斜コンベア10によシ冷媒5中よシ引き上げられ、集
束機(図示せず)に集束される。
The carp (carp) v] that has been cooled for a predetermined period of time is pulled up into the refrigerant 5 by, for example, an inclined conveyor 10 for carrying out, and is collected into a collection machine (not shown).

次に、本発明方法における各種条件について次のような
実験を行なった。
Next, the following experiments were conducted under various conditions in the method of the present invention.

(実験例) 鋼線材試料として]1.OmmφのCO,8%、Si0
.2%。
(Experiment example) As a steel wire sample] 1. Ommφ CO, 8%, Si0
.. 2%.

Mn 0.7%の5WRH82B (JIS規格)の線
利を用い、950°Cまで無酸化雰囲気で加熱後、空気
中で種々の時間放冷して空気酸化させた後、各種冷媒中
に浸漬し、調整冷却実験を行なった。
Using a wire density of 5WRH82B (JIS standard) with Mn 0.7%, it was heated to 950°C in a non-oxidizing atmosphere, left to cool in the air for various times to be air oxidized, and then immersed in various refrigerants. , conducted a controlled cooling experiment.

(1)冷媒として、(a)温水(従来法)および(b)
気水混相流体(冷媒温度95°C以下の場合は本発明法
、温水中に空気を吹きこんだもの。ただし、冷媒温度1
00°Cでは吹きこみなし。) 冷媒浸漬前の空気酸化時間を05秒以下、3〜5秒、1
0秒、15秒とし、70〜100°Cに保持された冷媒
中に100秒間浸演浸漬後引上げた。
(1) As a refrigerant, (a) hot water (conventional method) and (b)
Air-water multiphase fluid (if the refrigerant temperature is 95°C or lower, the method of the present invention is used; air is blown into hot water. However, if the refrigerant temperature is 1
No blowing at 00°C. ) Air oxidation time before refrigerant immersion: 05 seconds or less, 3 to 5 seconds, 1
It was immersed for 100 seconds in a refrigerant maintained at 70 to 100°C, and then pulled out.

各空気酸化時間のものの冷媒温度と処即後の線(詞の引
張強さの関係は第3図に示す辿りである。
The relationship between the refrigerant temperature and the tensile strength immediately after treatment is shown in FIG. 3 for each air oxidation time.

第3図よ9次のことが分る。Figure 3 shows the 9th order.

(イ)本発明の気水混(゛目流体によるものは、温水に
よるものに比べ強度が大きい。
(a) The air-water mixture of the present invention (2) The strength of the fluid is greater than that of hot water.

(ロ)気水混相流体では、空気酸化時間5秒以下O場合
、75℃以上で灰塵完了前に核沸騰が発生せず、安定し
た1摸沸j旋が得られ、強度の高い線材が得られ、80
℃近辺で引張強さI 25 kq/mtAという鉛ノ々
テφ ンテイング硝フ強度が得られ、又湿度が低くなる程強度
が上昇し、その増加率は温水冷却より大きい。これに対
し、温水冷却では、空気酸化時間3秒以上の場合、90
°C以下で変態完了1)11に核沸1擬を誘発し、局所
的急冷によるマルテンサイl−組織が発生し、強度が劣
化し、又空気酸化時間05秒以上では、稍々良<、80
°CでもマルテンサイI・組織が発生しない。
(b) For air-water multiphase fluids, when the air oxidation time is 5 seconds or less, nucleate boiling does not occur before the dust is completed at temperatures above 75°C, stable one-boiling rotation can be obtained, and a wire rod with high strength can be obtained. 80
A tensile strength of I 25 kq/mtA is obtained at temperatures around 0.degree. C., and the strength increases as the humidity decreases, and the rate of increase is greater than that of hot water cooling. On the other hand, with hot water cooling, if the air oxidation time is 3 seconds or more, the
Transformation is completed below 1) 1) Nucleic boiling is induced at 11, martensitic l-structure is generated due to local rapid cooling, and the strength is deteriorated.
Even at °C, martensi I tissue does not occur.

(ハ)気水混相流体では、浸が〔前の空気酸化11δ間
が長い程、強度の上昇が大きい。
(c) In air-water multiphase fluids, the longer the period of immersion (before air oxidation 11δ), the greater the increase in strength.

これらの結果よシ、冷媒の洛1度は70〜95”Cか適
当で、好ましくは75〜90℃である。70℃未満では
核沸騰が発生し易く、マルテンサイト組織を生じて強度
が劣化し、又95℃を越えると強度が不充分となる。又
75℃未満では核沸騰発生の恐れがアシ、90℃を鷹え
ると鉛パテンティング並みの強度が得られない。
According to these results, the refrigerant temperature is 70 to 95"C, preferably 75 to 90 degrees Celsius. Below 70 degrees Celsius, nucleate boiling tends to occur, forming a martensitic structure and reducing strength. However, if the temperature exceeds 95°C, the strength will be insufficient.If the temperature is lower than 75°C, there is a risk of nucleate boiling, and if the temperature exceeds 90°C, the strength comparable to that of lead patenting cannot be obtained.

又冷媒浸漬前の空気酸化時間は3〜20秒間が適当であ
る。なおこの空気中放冷は、通常圧延機を出てからコイ
ル成形、冷媒浸@までの間で行なわれるので、必ずしも
放冷のための装置(コンベア等)を設けなくても良い。
The appropriate time for air oxidation before immersion in the refrigerant is 3 to 20 seconds. Note that this cooling in the air is normally performed after exiting the rolling mill until coil forming and refrigerant immersion, so it is not necessarily necessary to provide a cooling device (such as a conveyor).

時間が20秒を越えると、強度上昇が飽和すると共に、
時間がかかシ、不怪済である。
When the time exceeds 20 seconds, the strength increase reaches saturation and
It's time consuming and unfortunate.

(2)空気酸化時間4秒の試料を、80℃に保持した第
+I+項と同じ冷媒(a)温水(従来法)および(b)
気水混相流体(本発明法)に浸漬し、冷却速度を調査し
た。浸漬前の試料の温度は950°Cとした。
(2) A sample with air oxidation time of 4 seconds was held at 80°C using the same refrigerant as in the +I+ term (a) hot water (conventional method) and (b)
The cooling rate was investigated by immersing it in an air-water multiphase fluid (method of the present invention). The temperature of the sample before immersion was 950°C.

浸漬経過時間と線材の温度の関係は第4図に示す通シで
ある。
The relationship between the elapsed immersion time and the temperature of the wire is shown in FIG.

第4図よシ、気水混相流体では、冷却が極めて安定し、
所期の冷却速度が得られ、かつ核沸騰は常に500℃以
下で発生するので問題ないことが分る。
As shown in Figure 4, cooling is extremely stable in air-water multiphase fluids.
It can be seen that there is no problem because the desired cooling rate can be obtained and nucleate boiling always occurs below 500°C.

これに対し、温水冷却では、冷却速度はテスト毎に大き
く変動し、再現性が小さい。これは核沸騰が起こり易く
、その起こる温度も一定しないことが観察される。
In contrast, with hot water cooling, the cooling rate varies greatly from test to test, and reproducibility is low. It is observed that nucleate boiling is likely to occur, and the temperature at which it occurs is not constant.

(3)本発明における気水混相流体の特徴は、気泡が時
々刻々浮力によ多流体から脱出するため、その物理的、
化学的性質は空塔速度(気体の単位時間、単位面積尚シ
の通過容積)に影響されるので、空塔速度が線材の強度
に及ぼす影響について調査した。
(3) The characteristic feature of the air-water multiphase fluid in the present invention is that the air bubbles escape from the multi-fluid every moment due to buoyancy.
Since chemical properties are affected by superficial velocity (volume of gas passing through unit time and unit area), we investigated the influence of superficial velocity on the strength of the wire.

冷媒として、(b) e化性気体混入流体(本発明法、
第(1)項の(b)と同じ)および(c)窒素ガス混入
流体(温水中に窒素ガスを吹きこんだもの)を用い(た
だし空塔速度0では気体吹きこみなし)、82℃に保持
した。空気酸化時間4秒の試料を、空塔速度0〜10σ
/就とした各冷媒中に100秒間浸漬、処理した。
As a refrigerant, (b) e-formable gas-containing fluid (method of the present invention,
(same as (b) in section (1)) and (c) using a nitrogen gas-containing fluid (nitrogen gas blown into hot water) (no gas blown at superficial velocity 0) and heated to 82℃. held. A sample with an air oxidation time of 4 seconds was subjected to a superficial velocity of 0 to 10σ.
/ immersed in each refrigerant for 100 seconds and treated.

空塔速度と線材の引張強さの関係は第5図に示す通シで
ある。
The relationship between the superficial velocity and the tensile strength of the wire is shown in FIG.

第5図より、本発明の(b)流体によるものは、(c)
流体によるものに比し、引張強さが格段に高く、空塔速
度が増すにつれて引張強さが増加することがと 分る。これは、空塔速度が増すも撹乱が大きくなり、熱
伝達係数が噌し、冷却速度が上がるためである。即ち、
空塔速度が十分に大きい場合には、線材周辺の水温が常
に設定温度に保持され、設定温度に対応した高引張強さ
の線材が得られる。これに対し、空塔速度が小さくなる
と、線材周辺の温水の環流が悪化、滞流するようになシ
、線材から供給される熱流束によシ、水温が上昇する。
From FIG. 5, it can be seen that (b) the fluid-based method of the present invention is (c)
It can be seen that the tensile strength is much higher than that using fluid, and that the tensile strength increases as the superficial velocity increases. This is because although the superficial velocity increases, the disturbance increases, the heat transfer coefficient decreases, and the cooling rate increases. That is,
When the superficial velocity is sufficiently high, the water temperature around the wire is always maintained at the set temperature, and a wire with high tensile strength corresponding to the set temperature can be obtained. On the other hand, when the superficial velocity decreases, the circulation of hot water around the wire worsens and stagnation occurs, and the water temperature increases due to the heat flux supplied from the wire.

このため線材の冷却速度が低下し、得られた線利の引張
強さも低下するものと考えられる。
It is thought that for this reason, the cooling rate of the wire rod decreases, and the tensile strength of the obtained wire rod also decreases.

これに対し、(c)流体によるものは、引張強さが極端
に低い。これは核沸騰が発生し易く、異常に冷却速度が
大きくなってマルテンサイト組織を生シただめである。
On the other hand, the one using (c) fluid has extremely low tensile strength. This tends to cause nucleate boiling, and the cooling rate becomes abnormally high, resulting in the formation of a martensitic structure.

これらの結果よシ、気水混相流体の空塔速度は3〜20
礪/秒が適当である。3ひ7秒未満では強度向上効果が
不足し、2oα/秒を越えると「吹抜け」(気泡合体に
よる単相化)が発生して良くない。
According to these results, the superficial velocity of the air-water multiphase fluid is 3 to 20.
1/sec is appropriate. If it is less than 3 to 7 seconds, the strength-improving effect will be insufficient, and if it exceeds 2oα/second, "blow-through" (single phase formation due to bubble coalescence) will occur, which is not good.

(4)気水混相流体(b)(第[1j項の(b)と同じ
)よシ成る冷媒を用い、機l?ll′攪拌あシおよびな
しの場合の空筒速度と、ガスホールド、アップ(気体混
相率)および近似撹乱強度の関係を示すと、第6図圀示
す通シである。
(4) Using a refrigerant consisting of air-water multiphase fluid (b) (same as (b) in item 1j), The relationship between the cylinder velocity, gas hold, up (gas mixed phase ratio), and approximate disturbance intensity with and without stirring foot is shown in FIG.

第6図よシ、前述の必要空塔速度3〜20 cm7秒で
は気体混相率は01〜0.35で□′あシ、近似撹乱強
度は5〜7 X I O3erg層である。
As shown in FIG. 6, at the above-mentioned required superficial velocity of 3 to 20 cm and 7 seconds, the gas mixed phase ratio is 01 to 0.35, and the approximate disturbance intensity is 5 to 7 X I O3 erg layer.

これらの範囲未満では強度向上効果が不足し、範囲を越
えると「吹抜け」が発生する。
Below these ranges, the strength-improving effect is insufficient, and above these ranges, "blow-through" occurs.

!51気水混相流体(b)(第(1)項の(b)に同じ
)よシ成る冷媒を用い、冷媒温度70〜I OO”Cに
おける酸素濃度および気泡膨張率を調査した結果は第7
表に示す通シである。
! 51 Using a refrigerant consisting of a gas-water multiphase fluid (b) (same as (b) in section (1)), the results of investigating the oxygen concentration and bubble expansion coefficient at a refrigerant temperature of 70 to IOO''C are shown in Section 7.
The rules are shown in the table.

゛第7図よシ、酸化性気泡中の適当な酸素濃度は冷媒温
度75℃において10%以上、90’Cにおいて5%以
上である。この間の関係を式で表わすと、酸素濃度をy
%、冷媒温度をx ”cとすれば、y会−−x +35 3 に近似される。
According to FIG. 7, a suitable oxygen concentration in the oxidizing bubbles is 10% or more at a refrigerant temperature of 75°C, and 5% or more at a refrigerant temperature of 90'C. Expressing the relationship between these in a formula, the oxygen concentration is y
%, and if the refrigerant temperature is x''c, it is approximated as y-x+353.

気水混相流体よシなる冷媒を作るに当って温水中に空気
を混入させた場合、直ちに水蒸気未飽和気泡中に水蒸気
が蒸発し、飽和する。その結果、実効空塔速度、即ち撹
乱力が大きくなる一方、酸素濃度は希釈される。これは
攪拌力や気泡混合率には有利だが、酸化力には不利であ
る。実験結果では上述の範囲で所定の騰沸騰が安定して
得られた。
When air is mixed into hot water to produce a refrigerant such as a gas-water multiphase fluid, water vapor immediately evaporates into unsaturated water vapor bubbles and becomes saturated. As a result, the effective superficial velocity, ie, the disturbance force, increases, while the oxygen concentration is diluted. Although this is advantageous for stirring power and bubble mixing ratio, it is disadvantageous for oxidizing power. According to the experimental results, a predetermined boiling temperature was stably obtained within the above range.

次に、線材の冷却速度は、上述の実験例(1)、(3)
〜(6)で得た必要条件を適切に組合せ、第4図に示す
ように線材温度900〜650″Cの範囲で15〜b秒
、変態が終了した後630〜500″Cの範囲で10〜
b 650℃の範囲で15℃/秒未満では、変態温度が高温
にずれ、強度不足となシ、25℃/秒を越えると、変態
温度が低温にずれ、場合にょシバ−ライト変態でなく一
部マルチンサイト変態が生じて良くない。又630〜5
00”Cの範囲でlo℃/秒未満では未変態オーヌテナ
イトが余シ轍軸でないパーライト組織に変態し、強度不
足となシ、20゛C/秒を越えると通常問題はないが偏
析のある材料ではマルテンサイト組織が発生し易く、良
くない。なお、合金元素を添加した線材では、鋼の焼入
性が大きくなり、上述の条件は低冷却速度側にずれる。
Next, the cooling rate of the wire rod is determined by the above experimental examples (1) and (3).
By appropriately combining the necessary conditions obtained in (6) to ~
b If the temperature is less than 15°C/sec in the range of 650°C, the transformation temperature will shift to a high temperature and the strength will be insufficient. Partial martinsite metamorphosis occurs, which is not good. Also 630~5
If the temperature is less than 0°C/sec in the range of 00°C, untransformed autenite will transform into a non-rutted pearlite structure, resulting in insufficient strength; if the temperature exceeds 20°C/sec, there will usually be no problem, but the material will be segregated. In this case, a martensitic structure is likely to occur, which is not good.In addition, in the case of a wire rod to which an alloying element is added, the hardenability of the steel increases, and the above-mentioned conditions shift to the lower cooling rate side.

又パーライト変態は600°C近辺で始まシ、この時2
〜3 u/# seeの割合で冷却しなければならない
Also, pearlite transformation begins at around 600°C, at which point 2
Must be cooled at a rate of ~3 u/#see.

2u/kg sec未満では変態温度が高温まで上昇し
、強度不足となフ、3θ/kg secを越えると変態
温度が低温にずれ、マルテンサイト変態を誘発し易い。
If it is less than 2u/kg sec, the transformation temperature will rise to a high temperature, resulting in insufficient strength, and if it exceeds 3θ/kg sec, the transformation temperature will shift to a low temperature, easily inducing martensitic transformation.

上述の実験例よシ得た本発明方法において好ましい条件
は、線材の鋼種、サイズ、コイルサイズ、線速、冷媒の
容量、酸化性気体の種類、槽の長さ等によシ左右される
ので、それらに応じ適当に選択される。
The preferred conditions for the method of the present invention obtained from the above experimental examples depend on the steel type of the wire, size, coil size, wire speed, refrigerant capacity, type of oxidizing gas, tank length, etc. , are selected accordingly.

(実施例) 熱間圧延された11.o+xmφのC0,82%、Mn
0.72%、Si0.22%の5WRH82B (J 
I S規格)の鋼線(Aを第1図、第2図に示す装置を
用いて本発明方法により直接熱処理を施した。
(Example) Hot rolled 11. C0,82% of o+xmφ, Mn
5WRH82B (J
IS standard) steel wire (A) was directly heat-treated by the method of the present invention using the apparatus shown in FIGS. 1 and 2.

線材の圧延速度は9m/秒、圧延直後の線材温度は92
0℃で、リング径1050 tnmのコイルに成形した
The rolling speed of the wire rod is 9 m/s, and the wire rod temperature immediately after rolling is 92
It was molded into a coil with a ring diameter of 1050 tnm at 0°C.

冷媒として温水に空気を吹きこんだ気水混相流体を用い
、82℃の温度に保持し、空塔速度はl0cm/秒、気
体混合率は約02であった。
A gas-water multiphase fluid in which air was blown into hot water was used as a refrigerant, and the temperature was maintained at 82° C., the superficial velocity was 10 cm/sec, and the gas mixing ratio was about 0.02 cm/sec.

線材温度920℃よシ850’Cまで水冷ノズルによシ
引上げ、直接熱処理を施しだ。
The wire was pulled up to a temperature of 920°C to 850'C through a water-cooled nozzle and directly heat treated.

比較のため、同じ熱間圧延線材を98℃に保持された温
水に浸漬冷却し、従来法による直接熱処理を施した。得
られたコイルを長さ40cm毎に連続してサンプリング
し、引張強さを測定した。
For comparison, the same hot-rolled wire rod was cooled by immersion in hot water maintained at 98° C., and then directly heat-treated using a conventional method. The obtained coil was sampled continuously at intervals of 40 cm, and the tensile strength was measured.

本発明方法および従来法による引張強さの分布は第8図
に示す通シである。
The distribution of tensile strength according to the method of the present invention and the conventional method is as shown in FIG.

第8図よシ本発明によるものは、鉛パテンティング並み
の平均+ i1! 5.9 kyA−の引張強さが得ら
れ、正規分布を示すことが分る。
As shown in FIG. 8, the product according to the present invention has an average of +i1! which is comparable to that of lead patenting. It can be seen that a tensile strength of 5.9 kyA- is obtained and shows a normal distribution.

これに対し、従来法によるものは引張強さ力i約11k
g/−低い。
In contrast, the conventional method has a tensile strength force i of approximately 11k.
g/-low.

(発明の効果) 上述のように構成された本発明の鋼線材の直接熱処理方
法は次のような効果がある。
(Effects of the Invention) The method for direct heat treatment of steel wire of the present invention configured as described above has the following effects.

(イ)調整冷却が、強力な攪拌状態にあシ、かつ酸化性
気泡を多量に含有する95℃以下のI!li’1度に保
持された気水混相流体からなる冷媒中に1」1■記鋼、
前月を浸漬通過せしめて行なわれるから、圧延直後の空
気中露出又は空気中放冷および冷媒中の酸化性気泡によ
シ線材表面が酸化されて酸化皮膜が形成された状態で、
酸化性気泡を含む気水混イ1]流体に浸漬されるため、
湯冷沸騰冷却においでも核?A’、 lW&を誘発せず
、所期の冷却速度が(ヴめて安定し又r)られるので、
鉛パテンティング並みの強度で、ばらつきが少なく、か
つ伸線加工性のすぐれた鋼線材を製造し得る。
(a) Adjusted cooling is performed at temperatures below 95°C with strong stirring and a large amount of oxidizing bubbles. 1'' steel in a refrigerant consisting of a gas-water multiphase fluid maintained at 1 degree,
Because the process is carried out by immersing the wire for the previous month, the surface of the wire is oxidized by exposure to the air or cooling in the air immediately after rolling, and oxidizing bubbles in the refrigerant, forming an oxide film.
Air/water mixture containing oxidizing bubbles 1] Because it is immersed in a fluid,
Is it nuclear even in hot water, cooling, boiling, and cooling? Since the desired cooling rate is achieved without inducing A', lW&,
It is possible to produce a steel wire rod with strength comparable to that of lead patenting, less variation, and excellent wire drawability.

(ロ)酸化性気泡を多量に含む気水混相流体ケ用いるこ
とによシ、水蒸気未飽和の気体を大量に混入させると、
平衡′蒸気圧に向って大mの水蒸気が気泡中に蒸発し、
その結果冷媒の温度が下がるため、冷媒が白う冷却性を
保有し、これを冷媒温度制御に効果的に利用することが
できるので、冷媒の温度保持が経済的にできる。なおこ
の冷却能は線材の処理能ノ’:)CT/時)と冷媒の温
度と量の比により容易に計算できる。
(b) By using a gas-water multiphase fluid containing a large amount of oxidizing bubbles, if a large amount of gas unsaturated with water vapor is mixed in,
A large amount of water vapor evaporates into bubbles toward the equilibrium 'vapor pressure,
As a result, the temperature of the refrigerant decreases, so that the refrigerant has white cooling properties, which can be effectively used to control the refrigerant temperature, so that the temperature of the refrigerant can be maintained economically. Note that this cooling capacity can be easily calculated from the ratio of the processing capacity of the wire (CT/hour) and the temperature and amount of the refrigerant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明方法の実施例に用水 いられる直接熱処理装置の例を零す図で、第1図は縦断
面図、第2図は横断面図である。 第3図〜第7図は本発明の実験例において得られた結果
を示す図で、第3図は各空気酸化時間のものの冷媒温度
と処理後の線利の引張強さの関係を、第4図は各種冷媒
における冷却曲線を、第5図は各種冷媒の空塔速度と線
材の引張強さの関係を、第6図は冷媒の空塔速度と気体
混4目率の関係を、第7図は冷媒温度70〜100°C
における酸素濃度および気泡膨張率を示す。 第8図は本発明方法の実施例および従来法によ勺製造さ
れた鋼線材の引張強さ分布を示す図である。 l・・・リンク状コイル、2.3.10・・コンベア、
4・・・然処理権、5・・・冷媒、6・・酸化性気泡、
7・・気体供給系、8・・・エアー、9・・・攪拌機。 祈1図 芳2図 第3図 冷媒温度(0C) 片4図 絃鏝時南(4つ ”Z 5ir−LIL (C”/5eC)茸6図 学跡を度(Cm/5ee) 穴7図 4謀渇失(0c)
1 and 2 are diagrams illustrating an example of a direct heat treatment apparatus that uses water in an embodiment of the method of the present invention, in which FIG. 1 is a longitudinal cross-sectional view and FIG. 2 is a cross-sectional view. Figures 3 to 7 are diagrams showing the results obtained in experimental examples of the present invention, and Figure 3 shows the relationship between the refrigerant temperature and the tensile strength of the wire after treatment for each air oxidation time. Figure 4 shows the cooling curves for various refrigerants, Figure 5 shows the relationship between the superficial velocity of various refrigerants and the tensile strength of the wire, Figure 6 shows the relationship between the superficial velocity of the refrigerant and the gas mixture ratio, and Figure 6 shows the relationship between the superficial velocity of the refrigerant and the gas mixture ratio. Figure 7 shows refrigerant temperature 70 to 100°C
The oxygen concentration and bubble expansion rate are shown. FIG. 8 is a diagram showing the tensile strength distribution of steel wire rods manufactured by an example of the method of the present invention and a conventional method. l... Link-shaped coil, 2.3.10... Conveyor,
4...natural treatment right, 5...refrigerant, 6...oxidizing bubbles,
7... Gas supply system, 8... Air, 9... Stirrer. Prayer 1 Figure Yoshi 2 Figure 3 Refrigerant temperature (0C) Piece 4 Figure 5ir-LIL (C''/5eC) Mushroom 6 Figure School traces (Cm/5ee) Hole 7 Figure 4 thirst (0c)

Claims (1)

【特許請求の範囲】 (])金属組織がオーヌテナイトを呈する高温にある鋼
線材のリング状コイルを、水平に展開した形で連続的に
移送しながら調整冷却して直接熱処理する方法において
、調整冷却が、強力な撹乱状態にあシ、かつ酸化性気泡
を多量に含有する95℃以下の温度に保持された気水混
相流体からなる冷媒中に前記鋼線材を浸漬通過せしめて
行なわれるととを特徴とする鋼線材の直接熱処理方法。 (2)気水混相流体からなる冷媒中に浸漬前、鋼線材を
空気中にて3〜20秒開放冷開放冷面を酸化せしめる特
許請求の範囲第1項記載の鋼線材の直接熱処理方法。 (3)酸化性気泡が、酸素、酸素富化空気又は空気を用
いて形成されたものであり、前記気泡中の酸素濃度y 
(%)が、冷媒温度をx℃とした時、y≦−−x + 
35 である特許請求の範囲第1項又は第2項記載の鋼線材の
直接熱処理方法。 (4)気水混相流体が、気体混相率O1〜035.空塔
速度3〜20 am/秒のものである特許請求の範囲第
1項、第2項又は第3項記載の鋼線材の直接熱処理方法
。 (6)冷媒の撹乱強度が、5〜7XIOerg/iであ
る特許請求の範囲第1項、第2項、第3項又は第4項記
載の鋼線材の直接熱処理方法。 (6)冷媒の温度が、70〜95℃、好捷しくは75〜
90℃である特許請求の範囲第1項、第2項、第3項、
第4項又は第5項記載のW!線材の直接熱処理方法。 (7)調節冷却が、鋼線材の冷却速度を、900〜65
0℃の範囲で15〜b 630〜500℃の範囲で10〜b 方法。
[Claims] (]) A method in which a ring-shaped coil of steel wire at a high temperature with an autenite metal structure is continuously transferred in a horizontally expanded form, controlled cooling and direct heat treatment. This is carried out by immersing and passing the steel wire through a refrigerant consisting of an air-water multiphase fluid maintained at a temperature of 95° C. or lower and containing a large amount of oxidizing bubbles and in a strongly disturbed state. Features: Direct heat treatment method for steel wire. (2) The method for direct heat treatment of a steel wire rod according to claim 1, wherein the steel wire rod is opened in air for 3 to 20 seconds to oxidize the cold surface thereof before being immersed in a refrigerant consisting of a gas-water multiphase fluid. (3) The oxidizing bubbles are formed using oxygen, oxygen-enriched air, or air, and the oxygen concentration y in the bubbles is
(%), when the refrigerant temperature is x℃, y≦−−x +
35. The method for direct heat treatment of a steel wire according to claim 1 or 2. (4) The gas-water multiphase fluid has a gas multiphase ratio of O1 to 035. A direct heat treatment method for steel wire according to claim 1, 2 or 3, wherein the superficial velocity is from 3 to 20 am/sec. (6) The method for direct heat treatment of steel wire according to claim 1, 2, 3, or 4, wherein the refrigerant has a disturbance intensity of 5 to 7 XIOerg/i. (6) The temperature of the refrigerant is 70 to 95°C, preferably 75 to 95°C.
Claims 1, 2, and 3 that the temperature is 90°C;
W! described in paragraph 4 or 5! Direct heat treatment method for wire rods. (7) Controlled cooling increases the cooling rate of the steel wire from 900 to 65
15-b in the range of 0°C 10-b in the range of 630-500°C Method.
JP20316083A 1983-05-24 1983-10-28 Direct heat treatment of steel wire material Granted JPS6096726A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP20316083A JPS6096726A (en) 1983-10-28 1983-10-28 Direct heat treatment of steel wire material
EP84105780A EP0126481B1 (en) 1983-05-24 1984-05-21 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
DE8484105780T DE3473888D1 (en) 1983-05-24 1984-05-21 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
AT84105780T ATE37044T1 (en) 1983-05-24 1984-05-21 PROCESS AND DEVICE FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON STEEL BARS.
NO842021A NO163907C (en) 1983-05-24 1984-05-22 PROCEDURE AND DEVICE FOR DIRECT HEAT TREATMENT OF STEEL BAR.
FI842062A FI75867C (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of a medium or high carbon steel bar
KR1019840002821A KR890002982B1 (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of medium-to-high-carbon steel rods
BR8402479A BR8402479A (en) 1983-05-24 1984-05-23 PROCESS AND EQUIPMENT FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON STEEL BARS
CA000454956A CA1221297A (en) 1983-05-24 1984-05-23 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
ES532773A ES8604314A1 (en) 1983-05-24 1984-05-24 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods.
MX201444A MX161816A (en) 1983-05-24 1984-05-24 METHOD AND APPARATUS FOR DIRECT HEAT TREATMENT OF MEDIUM TO HIGH CARBON CONTENT STEEL RODS
US06/613,485 US4526627A (en) 1983-05-24 1984-05-24 Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
AU28567/84A AU560405B2 (en) 1983-05-24 1984-05-24 Direct heat treatment of medium- to high carbon steel rods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20316083A JPS6096726A (en) 1983-10-28 1983-10-28 Direct heat treatment of steel wire material

Publications (2)

Publication Number Publication Date
JPS6096726A true JPS6096726A (en) 1985-05-30
JPS647139B2 JPS647139B2 (en) 1989-02-07

Family

ID=16469427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20316083A Granted JPS6096726A (en) 1983-05-24 1983-10-28 Direct heat treatment of steel wire material

Country Status (1)

Country Link
JP (1) JPS6096726A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248824A (en) * 1984-05-24 1985-12-09 Sumitomo Electric Ind Ltd Method and device for direct heat treatment of middle and high carbon steel wire rod
JPH02232321A (en) * 1989-03-06 1990-09-14 Sumitomo Electric Ind Ltd Method for directly heat-treating steel wire rod

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579826A (en) * 1980-06-19 1982-01-19 Sumitomo Electric Ind Ltd Method and device for heat treatment of metals
JPS583930A (en) * 1981-06-30 1983-01-10 Nippon Steel Corp Continuous hardening method for wire rod

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS579826A (en) * 1980-06-19 1982-01-19 Sumitomo Electric Ind Ltd Method and device for heat treatment of metals
JPS583930A (en) * 1981-06-30 1983-01-10 Nippon Steel Corp Continuous hardening method for wire rod

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248824A (en) * 1984-05-24 1985-12-09 Sumitomo Electric Ind Ltd Method and device for direct heat treatment of middle and high carbon steel wire rod
JPS6340850B2 (en) * 1984-05-24 1988-08-12 Sumitomo Electric Industries
JPH02232321A (en) * 1989-03-06 1990-09-14 Sumitomo Electric Ind Ltd Method for directly heat-treating steel wire rod

Also Published As

Publication number Publication date
JPS647139B2 (en) 1989-02-07

Similar Documents

Publication Publication Date Title
US10604820B2 (en) Method of continuously annealing a strip
US4146411A (en) Hot bar cooling
US4526627A (en) Method and apparatus for direct heat treatment of medium- to high-carbon steel rods
JPH0293051A (en) Production of aging resistant galvanized steel sheet by hot dip type continuous galvanizing method
JPS6096726A (en) Direct heat treatment of steel wire material
US4375378A (en) Process for producing spheroidized wire rod
US4770722A (en) Methods for heat treatment of steel rods
JP2020514540A (en) Lead-free patenting process and equipment
JPS6340850B2 (en)
JPS5921369B2 (en) Manufacturing method for high-tensile, high-carbon steel wire with excellent wire drawability
JPH075991B2 (en) Heat treatment method for steel wire
JPS5830938B2 (en) Continuous heat treatment method for high carbon steel wire rod for high processing cold drawing
JPH06100934A (en) Production of high carbon steel wire stock for wire drawing
JPH0160532B2 (en)
JPH05117762A (en) Manufacture of bainite wire rod
JPH07268464A (en) Production of bainitic wire rod or steel wire for wiredrawing
JPH0578754A (en) Treatment of fluidized bed patenting for cr-containing high carbon steel wire
JP3176465B2 (en) Manufacturing method of hypereutectoid steel wire
JP2815695B2 (en) Fluidized bed patenting method for high carbon steel wire
JPS6326182B2 (en)
JPH02232321A (en) Method for directly heat-treating steel wire rod
JPH06228656A (en) Method for directly heat-treating steel wire rod
JPS6056215B2 (en) Heat treatment method for wire rod
US3458365A (en) Process for making steel wire
JPS61106726A (en) Direct hardening and tempering method of hot rolled wire