JPH0362325B2 - - Google Patents

Info

Publication number
JPH0362325B2
JPH0362325B2 JP19582284A JP19582284A JPH0362325B2 JP H0362325 B2 JPH0362325 B2 JP H0362325B2 JP 19582284 A JP19582284 A JP 19582284A JP 19582284 A JP19582284 A JP 19582284A JP H0362325 B2 JPH0362325 B2 JP H0362325B2
Authority
JP
Japan
Prior art keywords
voltage
temperature compensation
vco
temperature
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19582284A
Other languages
Japanese (ja)
Other versions
JPS6174417A (en
Inventor
Toshio Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP19582284A priority Critical patent/JPS6174417A/en
Publication of JPS6174417A publication Critical patent/JPS6174417A/en
Publication of JPH0362325B2 publication Critical patent/JPH0362325B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はスイープ発振器等に用いる電圧制御発
振器の温度補償回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature compensation circuit for a voltage controlled oscillator used in a sweep oscillator or the like.

〔従来の技術〕[Conventional technology]

従来、この種の電圧制御発振器(以下、VCO
と称す)において、一般に発振周波数の温度変化
量が発振する周波数により異なるということか
ら、温度変化に対する発振周波数の安定度を高め
るためにシンセサイザ方式と呼ばれる温度補償方
式を採用することがある。
Conventionally, this type of voltage controlled oscillator (hereinafter referred to as VCO)
In general, since the amount of temperature change in the oscillation frequency varies depending on the oscillation frequency, a temperature compensation method called a synthesizer method is sometimes employed to increase the stability of the oscillation frequency against temperature changes.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このようなシンセサイザ方式に
よると、VCOの温度変化に対する発振周波数の
安定度を高くすることはできるが、回路構成が非
常に複雑になり、コストの高いものになつてしま
うという欠点があつた。
However, although this synthesizer method can improve the stability of the oscillation frequency against temperature changes of the VCO, it has the disadvantage that the circuit configuration becomes extremely complex and the cost becomes high. .

本発明はこのような欠点を解消するためになさ
れたもので、その目的とするところは非常に簡単
な回路構成で小形に、しかも安価に、VCOの温
度変化に対する発振周波数の安定度を高めること
のできる温度補償回路を提供することにある。
The present invention was made to eliminate these drawbacks, and its purpose is to improve the stability of the oscillation frequency of a VCO against temperature changes, with a very simple circuit configuration, compact size, and at low cost. The object of the present invention is to provide a temperature compensation circuit that can perform the following.

〔問題点を解決するための手段〕[Means for solving problems]

このような目的を達成するために本発明は、降
下電圧の温度変化量が夫々異なる第1および第2
の温度補償素子と、この第1および第2の温度補
償素子の降下電圧の差電圧を増幅し、差電圧に応
じた値をVCOの温度補償量とする差電圧増幅器
と、第1の温度補償素子の降下電圧の温度変化量
をVCOの発振周波数を制御する制御電圧に応じ
て変化させる制御回路とを備えた温度補償回路を
VCOに付加しようとするものである。
In order to achieve such an object, the present invention provides first and second
a temperature compensation element, a difference voltage amplifier that amplifies the voltage difference between the voltage drops of the first and second temperature compensation elements, and sets a value corresponding to the difference voltage as the temperature compensation amount of the VCO; and a first temperature compensation element. A temperature compensation circuit that includes a control circuit that changes the amount of temperature change in the voltage drop of the element according to a control voltage that controls the oscillation frequency of the VCO.
This is what we are trying to add to the VCO.

〔作用〕[Effect]

したがつて、この発明によると降下電圧の温度
変化量が異なる第1および第2の温度補償素子の
降下電圧の差電圧を差電圧増幅器で増幅し、差電
圧に応じた値を温度補償量としてVCOに入力す
ると共に、第1の温度補償素子の降下電圧の温度
変化量をVCOの発振周波数を制御する制御電圧
に応じて変化させるようにしたので、VCOを制
御する制御電圧に応じて前記差電圧に応じた温度
補償量を可変することができるようになる。
Therefore, according to the present invention, the difference voltage between the voltage drops of the first and second temperature compensating elements having different amounts of temperature change in the voltage drop is amplified by a difference voltage amplifier, and a value corresponding to the difference voltage is set as the amount of temperature compensation. In addition to inputting the voltage to the VCO, the amount of temperature change in the voltage drop of the first temperature compensation element is changed in accordance with the control voltage that controls the oscillation frequency of the VCO. It becomes possible to vary the amount of temperature compensation depending on the voltage.

〔実施例〕〔Example〕

以下、本発明に係るVCOの温度補償回路を詳
細に説明する。図は本発明の温度補償回路の一実
施例を示す回路図である。図において1はVCO、
2はVCO1の発振周波数を制御する制御信号を
乗せる制御信号線である。この制御信号線2は
VCO1に接続されると共に、温度補償制御用ト
ランジスタ3(以下単にトランジスタと称す)の
ベースに接続されている。さらに、このトランジ
スタ3のエミツタは電流制限用抵抗4を介して差
電圧増幅器5の反転入力端子に接続されており、
コレクタは抵抗7および抵抗9の一端に接続され
ている。そして、抵抗7および抵抗9の他端には
夫々アノード側が接地された温度補償素子として
のダイオード6および8が直列に接続されてい
る。また、ダイオード6と抵抗7との接続点は差
電圧増幅器5の反転入力端子に接続されており、
ダイオード8と抵抗9との接続点は差電圧増幅器
5の非反転入力端子に接続されている。そして、
差電圧増幅器5の出力はVCO1に入力されるよ
うになつている。このような回路において、トラ
ンジスタ3と電流制限用抵抗4とで制御回路を構
成している。また、トランジスタ3のコレクタに
は−V1ボルトの所定電圧が印加されるようにな
つており、トランジスタ3がオフ状態の時、ダイ
オード6に流れる電流はダイオード8に流れる電
流の約1/100になるように設定されている。すな
わち、抵抗7と抵抗9との値でダイオード6およ
び8に流れる電流の値を上記のように設定してい
るのである。また、このときダイオード6の降下
電圧とダイオード8の降下電圧との差電圧の温度
変化量は約0.4mV/℃となり、この差電圧を差
電圧増幅器5で増幅して、VCO1の最大温度補
償量としている。
Hereinafter, the VCO temperature compensation circuit according to the present invention will be explained in detail. The figure is a circuit diagram showing an embodiment of the temperature compensation circuit of the present invention. In the figure, 1 is VCO,
Reference numeral 2 denotes a control signal line on which a control signal for controlling the oscillation frequency of the VCO 1 is carried. This control signal line 2
It is connected to the VCO 1 and also to the base of a temperature compensation control transistor 3 (hereinafter simply referred to as a transistor). Furthermore, the emitter of this transistor 3 is connected to an inverting input terminal of a differential voltage amplifier 5 via a current limiting resistor 4.
The collector is connected to one end of a resistor 7 and a resistor 9. Diodes 6 and 8 as temperature compensation elements whose anode sides are grounded are connected in series to the other ends of the resistor 7 and the resistor 9, respectively. Further, the connection point between the diode 6 and the resistor 7 is connected to the inverting input terminal of the differential voltage amplifier 5.
A connection point between the diode 8 and the resistor 9 is connected to a non-inverting input terminal of the differential voltage amplifier 5. and,
The output of the differential voltage amplifier 5 is input to the VCO 1. In such a circuit, the transistor 3 and the current limiting resistor 4 constitute a control circuit. Furthermore, a predetermined voltage of -V 1 volt is applied to the collector of transistor 3, and when transistor 3 is off, the current flowing through diode 6 is approximately 1/100 of the current flowing through diode 8. It is set to be. That is, the values of the currents flowing through the diodes 6 and 8 are set as described above based on the values of the resistors 7 and 9. Also, at this time, the amount of temperature change in the voltage difference between the voltage drop of diode 6 and the voltage drop of diode 8 is approximately 0.4 mV/°C, and this difference voltage is amplified by the voltage difference amplifier 5 to obtain the maximum temperature compensation amount of VCO 1. It is said that

尚、VCO1は制御信号線2からの零ボルトか
ら−Vボルトまでの負電圧の制御信号で作動する
ようになつている。
Incidentally, the VCO 1 is adapted to be operated by a control signal of a negative voltage from 0 volts to -V volts from the control signal line 2.

このように構成された本発明の温度補償回路の
動作を説明する。すなわち、制御信号線2より零
ボルト〜−Vボルトの間の任意の値の負電圧の制
御信号が入力されると、この制御信号はVCO1
に入力されると同時にトランジスタ3のベースに
も入力される。そして、トランジスタ3はこの制
御信号を受けてオンとなり、電流制限用抵抗4を
介してエミツタ電流IEを流す。このエミツタ電流
IEによりダイオード6に流れる電流は抵抗7に流
れる電流にIEを加えた値となる。このIEの値は制
御信号が零ボルトから負方向に−Vボルトまで変
化するのに応じて増大するので、ダイオード6に
流れる電流も制御信号が負方向に変化するのに応
じて増大する。このため、制御信号が零ボルトか
ら負方向に大きくなるにつれてダイオード6の降
下電圧の温度変化量がダイオード8の降下電圧の
温度変化量に近づき、ダイオード6の降下電圧と
ダイオード8の降下電圧との差電圧の温度変化量
は小さくなる。したがつて、差電圧増幅器5より
出力される温度補償量は制御信号が零ボルトから
−Vボルトまで変化するにつれて小さくなり、
VCO1の温度変化に対する影響が制御信号の電
圧の値が負方向に大きくなるにつれて小さくなる
場合、差電圧増幅器5より出力される温度補償量
を追随して小さくなり、VCO1の温度変化に対
する周波数の安定度を高めることができるように
なる。
The operation of the temperature compensation circuit of the present invention configured as described above will be explained. That is, when a control signal of a negative voltage of any value between 0 volts and -V volts is input from the control signal line 2, this control signal is applied to VCO1.
It is also input to the base of transistor 3 at the same time. Then, the transistor 3 is turned on in response to this control signal, and emitter current I E flows through the current limiting resistor 4. This emitter current
The current flowing through the diode 6 due to IE is the sum of the current flowing through the resistor 7 and IE . Since the value of I E increases as the control signal changes from zero volts to -V volts in the negative direction, the current flowing through the diode 6 also increases as the control signal changes in the negative direction. Therefore, as the control signal increases in the negative direction from zero volts, the amount of temperature change in the voltage drop of diode 6 approaches the amount of temperature change in the voltage drop of diode 8, and the voltage drop of diode 6 and the voltage drop of diode 8 become smaller. The amount of temperature change in the differential voltage becomes smaller. Therefore, the temperature compensation amount output from the differential voltage amplifier 5 becomes smaller as the control signal changes from zero volts to -V volts.
When the influence of VCO1 on temperature changes decreases as the voltage value of the control signal increases in the negative direction, it decreases following the temperature compensation amount output from differential voltage amplifier 5, and the frequency of VCO1 becomes stable with respect to temperature changes. You will be able to increase your level.

また、制御信号が零ボルトから−Vボルトまで
変化するにつれてVCO1の温度変化に対する影
響が大きくなる場合、トランジスタ3のベースの
前段に電圧反転回路をおけば、−Vボルトのとき
温度補償量最大で、零ボルトのとき温度補償量最
小とする制御回路にすることができる。
In addition, if the influence of VCO1 on temperature changes increases as the control signal changes from zero volts to -V volts, if a voltage inversion circuit is placed in front of the base of transistor 3, the amount of temperature compensation will be maximum at -V volts. , it is possible to create a control circuit that minimizes the amount of temperature compensation when the voltage is zero volts.

尚、本実施例ではVCO1の発振周波数の温度
変化量が一次特性の場合の実施例を示したが、二
次特性、その他の特性の場合には逐次その特性に
応じた制御回路をトランジスタ3のベースの前段
におけば、これらの特性に対応して温度補償する
ことが可能である。
In this embodiment, the temperature change amount of the oscillation frequency of VCO 1 is a primary characteristic, but in the case of a secondary characteristic or other characteristics, the control circuit corresponding to the characteristic is sequentially changed to the transistor 3. At the front stage of the base, it is possible to perform temperature compensation corresponding to these characteristics.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によるVCOの温度
補償回路によれば、降下電圧の温度変化量が異な
る第1および第2の温度補償素子の降下電圧の差
電圧を差電圧増幅器で増幅し、差電圧に応じた値
を温度補償量としてVCOに入力すると共に、第
1の温度補償素子の降下電圧の温度変化量を
VCOの発振周波数を制御する制御電圧に応じて
変化させるようにしたので、VCOを制御する制
御電圧に応じて差電圧に応じた温度補償量を可変
することができ、VCOの発振周波数の温度変化
量が発振する周波数により異なつてもその発振周
波数の温度補償を追随して行なうことが可能とな
り、従来のシンセサイザ方式に比して非常に簡単
な回路構成で、小形に、しかも安価な温度補償回
路とすることができる。
As explained above, according to the VCO temperature compensation circuit according to the present invention, the difference voltage between the voltage drops of the first and second temperature compensation elements having different amounts of temperature change in the voltage drop is amplified by the difference voltage amplifier, and the difference voltage is Input the value corresponding to the temperature compensation amount into the VCO as the temperature compensation amount, and also input the temperature change amount of the voltage drop of the first temperature compensation element.
Since the oscillation frequency of the VCO is changed according to the control voltage that controls the VCO, the amount of temperature compensation according to the differential voltage can be varied according to the control voltage that controls the VCO, and the temperature change in the oscillation frequency of the VCO Even if the amount varies depending on the oscillation frequency, it is possible to follow the temperature compensation of the oscillation frequency, and the temperature compensation circuit has a much simpler circuit configuration than the conventional synthesizer method, and is small and inexpensive. It can be done.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係るVCOの温度補償回路を示す
回路図である。 1……VCO、3……温度補償制御用トランジ
スタ、4……電流制限用抵抗、5……差電圧増幅
器、6,8……ダイオード、7,9……抵抗。
The figure is a circuit diagram showing a temperature compensation circuit for a VCO according to the present invention. 1... VCO, 3... Temperature compensation control transistor, 4... Current limiting resistor, 5... Differential voltage amplifier, 6, 8... Diode, 7, 9... Resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 降下電圧の温度変化量が夫々異なる第1およ
び第2の温度補償素子と、この第1および第2の
温度補償素子の降下電圧の差電圧を増幅し差電圧
に応じた値を電圧制御発振器の温度補償量とする
差電圧増幅器と、前記第1の温度補償素子の降下
電圧の温度変化量を前記電圧制御発振器の発振周
波数を制御する制御電圧に応じて変化させる制御
回路とを具備した電圧制御発振器の温度補償回
路。
1. First and second temperature compensation elements whose drop voltages have different amounts of temperature change, and a voltage-controlled oscillator that amplifies the voltage difference between the voltage drops of the first and second temperature compensation elements and generates a value corresponding to the difference voltage. and a control circuit that changes the temperature change amount of the voltage drop of the first temperature compensation element in accordance with a control voltage that controls the oscillation frequency of the voltage controlled oscillator. Controlled oscillator temperature compensation circuit.
JP19582284A 1984-09-20 1984-09-20 Temperature compensating circuit of voltage controlled oscillator Granted JPS6174417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19582284A JPS6174417A (en) 1984-09-20 1984-09-20 Temperature compensating circuit of voltage controlled oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19582284A JPS6174417A (en) 1984-09-20 1984-09-20 Temperature compensating circuit of voltage controlled oscillator

Publications (2)

Publication Number Publication Date
JPS6174417A JPS6174417A (en) 1986-04-16
JPH0362325B2 true JPH0362325B2 (en) 1991-09-25

Family

ID=16347573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19582284A Granted JPS6174417A (en) 1984-09-20 1984-09-20 Temperature compensating circuit of voltage controlled oscillator

Country Status (1)

Country Link
JP (1) JPS6174417A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637956B2 (en) * 1986-08-08 1997-08-06 松下電器産業株式会社 Time axis correction device
JP6070635B2 (en) * 2014-06-02 2017-02-01 トヨタ自動車株式会社 Semiconductor device

Also Published As

Publication number Publication date
JPS6174417A (en) 1986-04-16

Similar Documents

Publication Publication Date Title
US4013898A (en) Hysteresis circuit
US4227127A (en) Motor speed control circuit having improved starting characteristics
JP2774881B2 (en) Gamma correction circuit
JP2733962B2 (en) Gain control amplifier
JPH0362325B2 (en)
JP2561023B2 (en) High frequency signal level detection circuit and high frequency signal level detection method
US4272709A (en) Circuit for controlling the drive of motor
JPH0321927B2 (en)
JPS6213844B2 (en)
JPS6133707Y2 (en)
JPS62173807A (en) Constant current source bias circuit
JPH05119856A (en) Semiconductor constant-voltage generating circuit
JPH0115228Y2 (en)
JPH0760981B2 (en) Voltage-current conversion circuit
JPS6139880A (en) Speed controller of dc motor
JP2661303B2 (en) Modulation circuit
JPH0697725B2 (en) Amplifier circuit
JP2513767B2 (en) Voltage controlled oscillator
JPH10335951A (en) Differential amplifier
JP2722769B2 (en) Gain control circuit
JP3671519B2 (en) Current supply circuit
JPS6145882B2 (en)
JPS6228884B2 (en)
JPS6222284B2 (en)
JPH02116203A (en) Temperature compensation type active bias amplifier