JPH0362284B2 - - Google Patents

Info

Publication number
JPH0362284B2
JPH0362284B2 JP60229175A JP22917585A JPH0362284B2 JP H0362284 B2 JPH0362284 B2 JP H0362284B2 JP 60229175 A JP60229175 A JP 60229175A JP 22917585 A JP22917585 A JP 22917585A JP H0362284 B2 JPH0362284 B2 JP H0362284B2
Authority
JP
Japan
Prior art keywords
weight
fluoride
resistor
carbonate
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60229175A
Other languages
Japanese (ja)
Other versions
JPS6288304A (en
Inventor
Toshimitsu Honda
Kazuharu Onigata
Shoichi Tosaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP60229175A priority Critical patent/JPS6288304A/en
Publication of JPS6288304A publication Critical patent/JPS6288304A/en
Publication of JPH0362284B2 publication Critical patent/JPH0362284B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、非酸化雰囲気中での焼成によつて厚
膜抵抗体又はこれに類似の抵抗体を形成すること
ができ、且つ耐湿性の高い抵抗体を提供すること
ができるペースト状抵抗材料に関する。 〔従来の技術〕 未焼成セラミツクシート即ちグリーンシートに
ニツケル等の卑金属の導体ペーストを塗布し、且
つ硼化モリブデンと弗化金属ガラスとを含有する
抵抗体ペーストを塗布したものを非酸化雰囲気中
で焼成し、厚膜導体と厚膜抵抗体との両方を有す
る多層セラミツク回路基板を作成する方法は、本
件出願人に係わる特願昭59−197655号明細書に開
示されている。この方法においては、厚膜導体及
び厚膜抵抗の形成に貴金属が使用されないので、
多層セラミツク回路基板のコストの低減ができ
る。 〔発明が解決しようとする問題点〕 しかし、上記出願に係わる抵抗材料で形成され
た厚膜抵抗は十分な耐湿特性を有さない。例え
ば、温度60℃、相対湿度95%の環境下に1000時間
放置した場合の抵抗変化率は+5%〜+10%程度
になる。 そこで、本発明の目的は、非酸化雰囲気中での
焼成で抵抗体を形成することができ、且つ耐湿試
験における抵抗変化率が±2%以内の抵抗体を得
ることができる抵抗材料を提供することにある。 〔問題点を解決するための手段〕 上記目的を達成するための本発明に係わる抵抗
材料は、硼化モリブデン20〜70重量%と、ガラス
10〜70重量%と、弗化カルシウム(CaF2)、弗化
ストロンチウム(SrF2)、及び弗化バリウム
(BaF2)の内の少なくとも1種の弗化物5〜50重
量%と、炭酸カルシウム(CaCO3)、炭酸ストロ
ンチウム(SrCO3)、炭酸バリウム(BaCO3)の
内の少なくとも1種の炭酸塩10〜60重量%とから
成る混合物の粉末と、有機結合剤と、溶剤(ビヒ
クル)とからなる。 〔作 用〕 上記組成のペースト状抵抗材料をグリーンシー
ト上に印刷し、非酸化雰囲気で焼成すれば、耐湿
試験における抵抗変化率が±2%以内の厚膜抵抗
体が得られる。従つて、ニツケル等の卑金属の導
体ペーストによる厚膜導体の形成と同時に卑金属
厚膜抵抗を形成することが出来る。 実施例 1 次に、本発明の実施例に係わる抵抗材料及びこ
れを使用した多層セラミツク回路基板の形成方法
について述べる。 まず、二酸化珪素(SiO2)78.0重量%、酸化亜
鉛(ZnO)5.5重量%、酸化ジルコニウム(ZrO2
12.0重量%、炭酸カルシウム(CaCO3)3.0重量
%、及び酸化アルミニウム(Al2O3)1.5重量%を
混合し、アルミナルツボ中、1400℃で30分間溶融
し、この溶融液を水中に投入し、急冷させた。こ
の急冷物を取り出してアルミナ乳鉢に入れ、約
50μm程度になるまで粉砕し、更にこれをエタノ
ールと共にポリエチレン製ポツトミルの中に入
れ、アルミナボールで150時間粉砕し、粒径が
10μm以下の粉末状のガラスを得た。 次に、上記ガラスと、硼化モリブデン
(Mo2B、Mo2B6、MoB、MoB2の1種以上)と
弗化物(CaF2、SrF2、BaF2の1種以上)とを表
に示す割合に秤量し、ボールミルに入れて撹拌し
た。次いで、これをアルゴンガス雰囲気中1200℃
で1時間熱処理し、しかる後、エタノールと共に
ポリエチレン製のポツトミル中に入れ、アルミナ
ボールで24時間粉砕し、10μm以下の硼化モリブ
デンとガラスと弗化物との混合物の粉末を得た。
即ち、表の試料No.1〜32に示されている種々の割
合のガラスと硼化モリブデンと弗化物との混合粉
末を得た。 次に、ガラスと硼化モリブデンと弗化物との炭
酸塩(CaCO3、SrCO3、BaCO3の1種以上)と
の重量割合が表の試料No.1〜32の組成の欄に示す
ようになるように、上述のガラスと硼化モリブデ
ンと弗化物との混合粉末に対して炭酸塩を添加
し、混合することによつて本発明に係わる抵抗材
料の粉末を得た。即ち、試料No.1において、抵抗
材料の組成をガラス10重量%、Mo2B20重量%、
CaF210重量%、CaCO360重量%とし、残りの試
料No.2〜32においても組成の欄に示す重量割合の
組成とした。 次に、各試料の抵抗材料の粉末100重量部に、
有機結合剤としてのエチルセルロース10重量部を
溶剤としてのブチルカルビトール90重量部に溶か
したものから成る有機バインダ溶液即ちビヒクル
25重量部を加えて3本ロールミルで混練して約
800ポイズの抵抗体ペーストを得た。 一方、上記抵抗体ペーストを印刷するためのグ
リーンシートを次の方法で作製した。Al2O3粉末
50重量%、SiO2粉末20重量%、SrO粉末25重量
%、Li2O粉末1重量%、及びMgO粉末4重量%
からなるセラミツク原料粉末と、アクリル酸エス
テルポリマーの水溶液からるバインダーと、グリ
セリンと、カルボン酸塩及び水と、をそれぞれボ
ールミルに入れて混合して、スリツプを作製し、
脱泡処理した後にドクターブレード法により厚さ
200μmの長尺のグリーンシートを作製した。そし
て、このグリーンシートから、9mm×9mmと6mm
×9mmの2種類のグリーンシート片を切り抜い
た。 次に、第1図に示す如く、前者のグリーンシー
ト片1上に、ニツケル(Ni)粉末と有機バイン
ダ溶液(エチルセルロース10重量部をテレピン油
90重量部に溶かしたもの)とを3:1の比で混練
した導体ペーストを200メツシユのスクリーンを
用いて印刷し、125℃、10分間乾燥することによ
つて第1図に示す如くNi導体膜2を形成した。 次に、本発明に係わる抵抗体ペーストを導体ペ
ーストと同様にスクリーン印刷し、乾燥すること
によつて、第1図に示す如く抵抗体膜3を形成し
た。 次に、グリーンシート片1の上に鎖線で示す大
きさのもう一方のグリーンシート片4を積層し、
100℃、150Kg/cm2で熱圧着し、これを酸化雰囲気
中500℃で熱処理して有機結合剤及び溶剤(有機
ビヒクル)を飛散及び分解し、N2(98.5容積%)
+H2(1.5容積%)の還元雰囲気中で1100℃、2
時間焼成し、第2図に示す如く、磁器層1a,4
aの中に、厚膜導体2aと厚膜抵抗体3aとを有
する混成集積回路用の多層セラミツク回路基板を
完成させた。なお、抵抗体3aの導体2aにかか
らない部分の大きさは、3mm×3mmであり、厚膜
は18μmである。また、抵抗体3aの組成は、焼
成前の抵抗材料の無機質の組成にほぼ一致してい
る。 次に、この抵抗体3aの25℃におけるシート抵
抗R0(Ω/□)をデイジタルマルチメータで測定
した。次いで、各試料(多層セラミツク回路基
板)を温度60℃、相対湿度95%の環境下に1000時
間放置し、その後、デイジタルマルチメータで再
びシート抵抗R1(Ω/□)を測定し、この耐湿試
験による厚膜導体2aの抵抗変化率△Rを(R1
−R0/R0)×100%で求めた。表の特性の欄には
上記のR0と△Rとが示されている。なお、R0
値の欄のkは×103を意味する。
[Industrial Application Field] The present invention provides a resistor that can be formed into a thick film resistor or a similar resistor by firing in a non-oxidizing atmosphere and has high moisture resistance. The present invention relates to a paste-like resistance material that can be used. [Prior art] An unfired ceramic sheet, i.e., a green sheet, coated with a conductive paste of a base metal such as nickel, and coated with a resistor paste containing molybdenum boride and metal fluoride glass is heated in a non-oxidizing atmosphere. A method of firing a multilayer ceramic circuit board having both thick film conductors and thick film resistors is disclosed in commonly assigned Japanese Patent Application No. 1976-197. In this method, no precious metals are used to form the thick film conductors and thick film resistors;
The cost of multilayer ceramic circuit boards can be reduced. [Problems to be Solved by the Invention] However, the thick film resistor formed from the resistive material according to the above application does not have sufficient moisture resistance. For example, when left in an environment with a temperature of 60°C and a relative humidity of 95% for 1000 hours, the rate of change in resistance will be about +5% to +10%. Therefore, an object of the present invention is to provide a resistor material that can be formed into a resistor by firing in a non-oxidizing atmosphere and that can have a resistance change rate within ±2% in a humidity test. There is a particular thing. [Means for Solving the Problems] The resistance material according to the present invention for achieving the above object contains 20 to 70% by weight of molybdenum boride and glass.
10 to 70% by weight, 5 to 50% by weight of at least one fluoride selected from calcium fluoride ( CaF2 ), strontium fluoride ( SrF2 ), and barium fluoride ( BaF2 ), and calcium carbonate ( A powder of a mixture consisting of 10 to 60% by weight of at least one carbonate of CaCO 3 ), strontium carbonate (SrCO 3 ), and barium carbonate (BaCO 3 ), an organic binder, and a solvent (vehicle). Become. [Function] If a paste-like resistance material having the above composition is printed on a green sheet and fired in a non-oxidizing atmosphere, a thick film resistor having a resistance change rate within ±2% in a humidity test can be obtained. Therefore, it is possible to form a base metal thick film resistor simultaneously with the formation of a thick film conductor using a base metal conductor paste such as nickel. Example 1 Next, a resistor material according to an example of the present invention and a method of forming a multilayer ceramic circuit board using the same will be described. First, silicon dioxide (SiO 2 ) 78.0% by weight, zinc oxide (ZnO) 5.5% by weight, zirconium oxide (ZrO 2 )
12.0% by weight, 3.0% by weight of calcium carbonate (CaCO 3 ), and 1.5% by weight of aluminum oxide (Al 2 O 3 ) were mixed and melted at 1400°C for 30 minutes in an alumina crucible, and this melt was poured into water. , rapidly cooled. Take out this quenched material and put it in an alumina mortar, about
Grind it to about 50 μm, then put it in a polyethylene pot mill with ethanol and grind it with alumina balls for 150 hours until the particle size is reduced.
A powdered glass with a size of 10 μm or less was obtained. Next, the above glass, molybdenum boride (one or more of Mo 2 B, Mo 2 B 6 , MoB, and MoB 2 ) and fluoride (one or more of CaF 2 , SrF 2 , and BaF 2 ) were placed in a table. It was weighed in the proportion shown, placed in a ball mill, and stirred. Next, this was heated to 1200℃ in an argon gas atmosphere.
The mixture was heat-treated for 1 hour, and then placed in a polyethylene pot mill with ethanol and ground for 24 hours with an alumina ball to obtain a powder of a mixture of molybdenum boride, glass, and fluoride with a particle size of 10 μm or less.
That is, mixed powders of glass, molybdenum boride, and fluoride in various proportions shown in Sample Nos. 1 to 32 in the table were obtained. Next, the weight ratio of glass, molybdenum boride, and carbonate of fluoride (one or more of CaCO 3 , SrCO 3 , BaCO 3 ) is as shown in the composition column of samples No. 1 to 32 in the table. As shown, carbonate was added to the above-mentioned mixed powder of glass, molybdenum boride, and fluoride, and the powder of the resistance material according to the present invention was obtained by mixing. That is, in sample No. 1, the composition of the resistance material was 10% by weight of glass, 20% by weight of Mo 2 B,
CaF 2 was 10% by weight and CaCO 3 was 60% by weight, and the remaining samples Nos. 2 to 32 had the compositions shown in the composition column. Next, add 100 parts by weight of the resistance material powder of each sample to
An organic binder solution or vehicle consisting of 10 parts by weight of ethyl cellulose as an organic binder dissolved in 90 parts by weight of butyl carbitol as a solvent.
Add 25 parts by weight and knead with a three-roll mill to give approx.
A resistor paste of 800 poise was obtained. On the other hand, a green sheet for printing the above resistor paste was produced by the following method. Al2O3 powder
50% by weight, 20% by weight of SiO2 powder, 25% by weight of SrO powder, 1% by weight of Li2O powder, and 4% by weight of MgO powder.
A ceramic raw material powder consisting of a powder, a binder consisting of an aqueous solution of an acrylic acid ester polymer, glycerin, a carboxylic acid salt, and water are placed in a ball mill and mixed to prepare a slip,
After degassing, the thickness is measured using the doctor blade method.
A 200 μm long green sheet was produced. And from this green sheet, 9mm x 9mm and 6mm
Two types of green sheet pieces measuring 9 mm were cut out. Next, as shown in FIG.
A conductive paste prepared by kneading 90 parts by weight of Ni conductor paste in a ratio of 3:1 was printed using a 200 mesh screen and dried at 125°C for 10 minutes to form a Ni conductor as shown in Figure 1. Film 2 was formed. Next, the resistor paste according to the present invention was screen printed in the same manner as the conductor paste and dried to form a resistor film 3 as shown in FIG. Next, on top of the green sheet piece 1, another green sheet piece 4 of the size indicated by the chain line is laminated,
Thermocompression bonding is carried out at 100℃ and 150Kg/cm 2 , and then heat treated at 500℃ in an oxidizing atmosphere to scatter and decompose the organic binder and solvent (organic vehicle), and N 2 (98.5% by volume)
+H 2 (1.5% by volume) at 1100℃, 2
As shown in FIG. 2, the porcelain layers 1a, 4
A multilayer ceramic circuit board for a hybrid integrated circuit having a thick film conductor 2a and a thick film resistor 3a was completed. The size of the portion of the resistor 3a that does not cover the conductor 2a is 3 mm x 3 mm, and the thickness of the film is 18 μm. Further, the composition of the resistor 3a substantially matches the inorganic composition of the resistor material before firing. Next, the sheet resistance R 0 (Ω/□) of this resistor 3a at 25° C. was measured using a digital multimeter. Next, each sample (multilayer ceramic circuit board) was left in an environment with a temperature of 60°C and a relative humidity of 95% for 1000 hours, and then the sheet resistance R 1 (Ω/□) was measured again using a digital multimeter. The resistance change rate △R of the thick film conductor 2a during the test is (R 1
−R 0 /R 0 )×100%. The above R 0 and ΔR are shown in the characteristics column of the table. Note that k in the R 0 value column means ×10 3 .

【表】【table】

〔変形例〕[Modified example]

本発明は上述の実施例に限定されるものではな
く、例えば次の変形例が可能なものである。 (a) 硼化モリブデンとガラスと弗化物と炭酸塩と
を含む抵抗体ペーストを塗布したグリーンシー
トの焼成温度を1000℃〜1200℃の範囲で変化さ
せても、抵抗値R0及び抵抗変化率△Rが殆ん
ど変化しないことが確認されている。例えば、
実施例1の試料No.3と同一組成で焼成温度のみ
を1000℃、1050℃、1150℃、1200℃に変化させ
た時の抵抗値R0は140.0×103Ω/□、141.2×
103Ω/□、140.5×103Ω/□、140.9×103Ω/
□であり、また抵抗変化率△Rは+1.2%、+
1.6%、+1.5%、+1.3%であつた。他の組成にお
いてもほぼ同様な結果が得られた。 (b) グリーンシートを焼成する時の雰囲気を中性
雰囲気(不活性雰囲気)としてもよい。また、
グリーンシートを焼成する前の有機物を分解及
び飛散させるための酸化性雰囲気の熱処理温度
を例えば400℃〜600℃で変化させてもよい。 (c) ガラスと硼化モリブデンと弗化物との混合物
のアルゴン雰囲気中での焼成温度を、例えば
900〜1200℃の範囲で変化させてもよい。また
この焼成をアルゴンガス以外の不活性雰囲気、
又は真空中、又は中性雰囲気、又は還元性雰囲
気で行つてもよい。 (d) 抵抗体ペーストを作るための有機バインダ溶
液(ビヒクル)は、ニトロセルロース等の樹脂
を、テレピン油、ブチルカルビトールアセテー
ト等の高沸点溶剤に溶かしたものでもよい。ま
た、この有機バインダ溶液の量は15〜35重量部
程度が望ましい。 〔発明の効果〕 上述から明らかな如く、本発明のペースト状抵
抗材料とニツケル等の卑金属の導体ペーストとを
非酸化雰囲気で同時焼成することができ、且つ本
発明の抵抗材料には貴金属が含まれていない。従
つて、多層セラミツク回路基板、又はこれに類似
の電気回路部品の小型化及び低コスト化に寄与す
ることができる。また、本発明の抵抗材料は前述
の特許出願の抵抗材料に比較し、耐湿性の良い抵
抗体を提供することができる。
The present invention is not limited to the embodiments described above, and the following modifications are possible, for example. (a) Even if the firing temperature of a green sheet coated with a resistor paste containing molybdenum boride, glass, fluoride, and carbonate is varied in the range of 1000°C to 1200°C, the resistance value R 0 and the rate of change in resistance will change. It has been confirmed that ΔR hardly changes. for example,
When the same composition as Sample No. 3 of Example 1 was used but only the firing temperature was changed to 1000°C, 1050°C, 1150°C, and 1200°C, the resistance value R 0 was 140.0×10 3 Ω/□, 141.2×
10 3 Ω/□, 140.5×10 3 Ω/□, 140.9×10 3 Ω/
□, and the resistance change rate △R is +1.2%, +
They were 1.6%, +1.5%, and +1.3%. Almost similar results were obtained with other compositions. (b) The atmosphere when firing the green sheet may be a neutral atmosphere (inert atmosphere). Also,
The heat treatment temperature in an oxidizing atmosphere for decomposing and scattering organic matter before firing the green sheet may be varied, for example, from 400°C to 600°C. (c) Calcination temperature of a mixture of glass, molybdenum boride, and fluoride in an argon atmosphere, e.g.
It may be changed within the range of 900 to 1200°C. In addition, this firing is performed in an inert atmosphere other than argon gas.
Alternatively, it may be carried out in vacuum, in a neutral atmosphere, or in a reducing atmosphere. (d) The organic binder solution (vehicle) for making the resistor paste may be one in which a resin such as nitrocellulose is dissolved in a high boiling point solvent such as turpentine oil or butyl carbitol acetate. Further, the amount of this organic binder solution is preferably about 15 to 35 parts by weight. [Effects of the Invention] As is clear from the above, the paste-like resistive material of the present invention and the conductive paste of a base metal such as nickel can be co-fired in a non-oxidizing atmosphere, and the resistive material of the present invention does not contain a noble metal. Not yet. Therefore, it is possible to contribute to miniaturization and cost reduction of multilayer ceramic circuit boards or similar electric circuit components. Furthermore, the resistive material of the present invention can provide a resistor with better moisture resistance than the resistive material of the patent application mentioned above.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる多層セラミツ
ク回路基板を作製する際のグリーンシートと導体
膜及び抵抗体膜のパターンを示す平面図、第2図
は第1図の−線に相当する部分の焼成後の多
層セラミツク回路基板を示す断面図である。 1……グリーンシート片、2……導体膜、3…
…抵抗体膜、4……グリーンシート片。
FIG. 1 is a plan view showing patterns of a green sheet, a conductor film, and a resistor film when manufacturing a multilayer ceramic circuit board according to an embodiment of the present invention, and FIG. 2 is a portion corresponding to the - line in FIG. 1. FIG. 3 is a cross-sectional view showing the multilayer ceramic circuit board after firing. 1... Green sheet piece, 2... Conductor film, 3...
...Resistor film, 4... Green sheet piece.

Claims (1)

【特許請求の範囲】 1 硼化モリブデン 20〜40重量%、 ガラス 10〜60重量%、 弗化カルシウム、弗化ストロンチウム、及び弗
化バリウムの内の少なくとも1種の弗化物 5〜
50重量%、 炭酸カルシウム、炭酸ストロンチウム、及び炭
酸バリウムの内の少なくとも1種の炭酸塩 10〜
60重量%、 から成る混合物の粉末と、 有機結合剤と、 溶剤と、 から成るペースト状抵抗材料。 2 前記硼化モリブデンは、1硼化2モリブデン
(Mo2B)、5硼化2モリブデン(Mo2B5)、1硼
化1モリブデン(MoB)、及び2硼化1モリブデ
ン(MoB2)の内の少なくとも1種である特許請
求の範囲第1項記載の抵抗材料。 3 前記ガラスは、作業点が900〜1200℃の範囲
のものである特許請求の範囲第1項又は第2項記
載の抵抗材料。
[Scope of Claims] 1 Molybdenum boride 20-40% by weight, glass 10-60% by weight, at least one fluoride selected from calcium fluoride, strontium fluoride, and barium fluoride 5-
50% by weight, at least one carbonate selected from calcium carbonate, strontium carbonate, and barium carbonate 10~
A paste-like resistance material consisting of a powder mixture consisting of 60% by weight, an organic binder, and a solvent. 2 The molybdenum boride includes molybdenum boride di(Mo 2 B), molybdenum pentaboride (Mo 2 B 5 ), molybdenum boride monoboride (MoB), and molybdenum diboride (MoB 2 ). The resistance material according to claim 1, which is at least one of the following. 3. The resistance material according to claim 1 or 2, wherein the glass has a working point in the range of 900 to 1200°C.
JP60229175A 1985-10-15 1985-10-15 Resistance material Granted JPS6288304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60229175A JPS6288304A (en) 1985-10-15 1985-10-15 Resistance material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229175A JPS6288304A (en) 1985-10-15 1985-10-15 Resistance material

Publications (2)

Publication Number Publication Date
JPS6288304A JPS6288304A (en) 1987-04-22
JPH0362284B2 true JPH0362284B2 (en) 1991-09-25

Family

ID=16887963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229175A Granted JPS6288304A (en) 1985-10-15 1985-10-15 Resistance material

Country Status (1)

Country Link
JP (1) JPS6288304A (en)

Also Published As

Publication number Publication date
JPS6288304A (en) 1987-04-22

Similar Documents

Publication Publication Date Title
JPH0740633B2 (en) Insulating layer composition
JPH051963B2 (en)
JPH0362284B2 (en)
JPH0362281B2 (en)
JPH0362286B2 (en)
JPH051964B2 (en)
JPH0362285B2 (en)
JPH0362287B2 (en)
JPH0362283B2 (en)
JPH051965B2 (en)
JPH051962B2 (en)
JPH0362282B2 (en)
JPH051961B2 (en)
JPH027161B2 (en)
JPH024121B2 (en)
JPH024122B2 (en)
JPS6292408A (en) Resistance material
JPH024124B2 (en)
JPH0469584B2 (en)
JPH03126201A (en) Resistor composition
JPS60198703A (en) Resistor composition
JPH0469589B2 (en)
JPH0469582B2 (en)
JPH0469590B2 (en)
JPH0469588B2 (en)