JPH036196B2 - - Google Patents

Info

Publication number
JPH036196B2
JPH036196B2 JP57030019A JP3001982A JPH036196B2 JP H036196 B2 JPH036196 B2 JP H036196B2 JP 57030019 A JP57030019 A JP 57030019A JP 3001982 A JP3001982 A JP 3001982A JP H036196 B2 JPH036196 B2 JP H036196B2
Authority
JP
Japan
Prior art keywords
cooling
refrigerant
liquid helium
temperature
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57030019A
Other languages
Japanese (ja)
Other versions
JPS58148355A (en
Inventor
Kishio Yokochi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57030019A priority Critical patent/JPS58148355A/en
Publication of JPS58148355A publication Critical patent/JPS58148355A/en
Publication of JPH036196B2 publication Critical patent/JPH036196B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は主冷媒に相転移熱の大きい補助冷媒を
混入させて冷却効果を高めた混合冷媒に関する。 超高速のスイツチング素子、例えばジヨセフソ
ン素子はその動作温度が4.2゜K近傍の極低温に維
持されて初めてその所期の目的を果たしうるの
で、その極低温環境内でジヨセフソン素子を動作
させなければならない。 〔従来の技術〕 従来における上述したような極低温環境を作る
手段は、ヘリウムガスの液化、気化のサイクルを
繰り返す冷凍機により達成されている。 〔発明が解決しようとする課題〕 しかしながら、この冷凍機での冷却はヘリウム
の気化作用だけによつて生ぜしめられるものであ
るため、次のような問題が生じている。 即ち、上述のような極低温をヘリウムガスの液
化、気化のサイクルで得ようとすると、液体ヘリ
ウムの気化熱は液体中最も小さいことから、前記
サイクルを速くしなければならない、つまりその
冷凍サイクル中の大量の液体、気化を循環させな
ければならず、装置の大型化も避けられない。 本発明は上述のような従来技術の有する課題に
鑑みて創作されたもので、冷却能力を向上させ得
る混合冷媒を提供することをその目的とする。 〔課題を解決するたの手段〕 本発明は、液体ヘリウムに、該液体ヘリウムの
沸点より高く、被冷却体の冷却温度で定められる
値だけ高い温度より温度範囲で融解する固相状態
の補助冷媒を混入して構成される。 〔作 用〕 本発明の混合冷媒が循環される冷凍サイクル中
の吸熱交換部内で液体ヘリウムの気化に際してそ
の中に混入されている補助冷媒も融解するので、
冷媒全体として冷却能力は高められる。従つて、
被冷却体の冷却に冷媒を大量に循環させる必要は
なくなり、装置の小型化に役立つ。 〔実施例〕 以下、本発明の実施例を説明する。 本発明の混合冷媒は液体ヘリウムの冷却能力を
融解熱の大きい補助冷媒で引き上げるようにして
調製される。即ち、補助冷媒の融点は液体ヘリウ
ムの沸点より高く、20゜Kより低い温度範囲の温
度に選定される。これにより、その混合冷媒が冷
凍サイクルを経て循環される場合に、液体ヘリウ
ムの気化熱による冷却に加えて、補助冷媒の融解
熱もその冷却に加わるので、冷媒全体としての冷
却能力は液体ヘリウム単体の場合に比して向上さ
れる。従つて、従来のような冷凍サイクルの循環
速度を速めて大量の冷媒を冷凍機内に循環させる
必要性はなくなる。このような効果から冷凍機の
規模の縮小化を促しうる。 例えば、ジヨセフソン素子を冷却する例を示せ
ば、次の通りである。 液体ヘリウムHeの固体水素H2をスラリー状に
混入調製する。その混合冷媒を冷凍機内に循環さ
せれば、Heの気化熱による冷却に加えて、Heの
気化熱の約2倍もあるH2の単位体積当りの融解
熱(下表参照)が冷凍サイクルの冷却に加わつて
来るので、冷凍機の冷却能力を大幅に向上させう
る。これを冷却限界で示せば、本発明による冷却
限界は、ヘリウム単体の場合における0.5W/cm2
(Wはワツトを表す。)から1W/cm2へ引き上げら
れる。そして、その混入比は、被冷却体のための
冷却温度、冷却の流動性、ガス化した場合の危険
度等を考慮しつつ選定する。例えば、水素の混入
比は、流動性を損なわないという観点だけからす
れば、30mol%以内がよい。従つて、冷却能力も
それに伴つて変わるが、その限度において従来に
比し循環冷媒量も減少させ得る。
[Industrial Field of Application] The present invention relates to a mixed refrigerant in which a main refrigerant is mixed with an auxiliary refrigerant having a large phase transition heat to enhance the cooling effect. Ultra-high-speed switching elements, such as Josephson devices, can only fulfill their intended purpose if their operating temperature is maintained at an extremely low temperature of around 4.2°K, so Josephson devices must be operated within this extremely low temperature environment. . [Prior Art] Conventional means for creating a cryogenic environment as described above is achieved by a refrigerator that repeats a cycle of liquefying and vaporizing helium gas. [Problems to be Solved by the Invention] However, since the cooling in this refrigerator is caused only by the vaporization effect of helium, the following problems arise. In other words, in order to obtain the above-mentioned extremely low temperature through a cycle of liquefaction and vaporization of helium gas, the heat of vaporization of liquid helium is the smallest among liquids, so the cycle must be made faster. A large amount of liquid and vapor must be circulated, and the size of the equipment cannot be avoided. The present invention was created in view of the problems of the prior art as described above, and an object of the present invention is to provide a mixed refrigerant that can improve cooling capacity. [Means for Solving the Problems] The present invention provides liquid helium with an auxiliary refrigerant in a solid state that melts in a temperature range higher than the boiling point of the liquid helium and higher than a value determined by the cooling temperature of the object to be cooled. It is composed of a mixture of [Function] When the liquid helium is vaporized in the heat absorption exchange part of the refrigeration cycle in which the mixed refrigerant of the present invention is circulated, the auxiliary refrigerant mixed therein also melts.
The cooling capacity of the refrigerant as a whole is increased. Therefore,
It is no longer necessary to circulate a large amount of refrigerant to cool the object to be cooled, which helps reduce the size of the device. [Examples] Examples of the present invention will be described below. The mixed refrigerant of the present invention is prepared by increasing the cooling capacity of liquid helium with an auxiliary refrigerant having a large heat of fusion. That is, the melting point of the auxiliary refrigerant is selected to be higher than the boiling point of liquid helium and lower than 20°K. As a result, when the mixed refrigerant is circulated through the refrigeration cycle, in addition to cooling by the heat of vaporization of liquid helium, the heat of fusion of the auxiliary refrigerant is also added to the cooling, so the cooling capacity of the entire refrigerant is lower than that of liquid helium alone. This is improved compared to the case of . Therefore, there is no need to increase the circulation speed of the refrigeration cycle and circulate a large amount of refrigerant into the refrigerator, as in the past. Such effects can encourage downsizing of refrigerators. For example, an example of cooling a Josephson device is as follows. Prepare a slurry by mixing liquid helium He with solid hydrogen H2 . If the mixed refrigerant is circulated within the refrigerator, in addition to cooling due to the heat of vaporization of He, the heat of fusion per unit volume of H2 (see table below), which is approximately twice the heat of vaporization of He, will be generated in the refrigeration cycle. Since it joins the cooling process, the cooling capacity of the refrigerator can be greatly improved. Expressing this in terms of the cooling limit, the cooling limit according to the present invention is 0.5W/cm 2 for helium alone.
(W represents watts) to 1W/cm 2 . The mixing ratio is selected in consideration of the cooling temperature for the object to be cooled, the fluidity of cooling, the degree of danger in the case of gasification, etc. For example, the mixing ratio of hydrogen is preferably within 30 mol % from the viewpoint of not impairing fluidity. Therefore, the cooling capacity changes accordingly, but within that limit, the amount of circulating refrigerant can also be reduced compared to the conventional method.

【表】 この例は主として、ジヨセフソン素子の動作温
度にこの素子を冷却する場合についてであつた
が、被冷却体のための冷却温度が異なるにつれ
て、その冷媒の組成を異にして本発明の混合冷媒
を調製しうるものである。その調整に用いられる
冷媒には、上述の冷媒の外、Ne、N2等がある。 〔発明の効果〕 以上の説明から明らかなように、本発明によれ
ば次のような効果が得られる。 (1) 単位体積当りの熱輸送量を大幅に増大させ得
ることにより、 (2) 循環冷媒量の少量化を促しつつ、 (3) 冷凍機の規模の縮小化も併せて達成し得る等
である。
[Table] This example mainly concerns the case of cooling the Josephson element to its operating temperature. However, as the cooling temperature for the object to be cooled differs, the composition of the refrigerant is varied and the mixture of the present invention is used. It is possible to prepare refrigerants. In addition to the above-mentioned refrigerants, refrigerants used for this adjustment include Ne, N2 , etc. [Effects of the Invention] As is clear from the above description, according to the present invention, the following effects can be obtained. (1) The amount of heat transported per unit volume can be significantly increased, (2) the amount of circulating refrigerant can be reduced, and (3) the size of the refrigerator can also be reduced. be.

Claims (1)

【特許請求の範囲】[Claims] 1 液体ヘリウムに、該液体ヘリウムの沸点より
高く、被冷却体に対する冷却温度で定められる値
だけ高い温度より低い温度範囲の温度で融解する
固相状態の補助冷媒を混入して成る混合冷媒。
1. A mixed refrigerant made by mixing liquid helium with an auxiliary refrigerant in a solid state that melts at a temperature in a temperature range higher than the boiling point of the liquid helium and lower than a temperature higher than a value determined by the cooling temperature for the object to be cooled.
JP57030019A 1982-02-26 1982-02-26 Mixed refrigerant Granted JPS58148355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57030019A JPS58148355A (en) 1982-02-26 1982-02-26 Mixed refrigerant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57030019A JPS58148355A (en) 1982-02-26 1982-02-26 Mixed refrigerant

Publications (2)

Publication Number Publication Date
JPS58148355A JPS58148355A (en) 1983-09-03
JPH036196B2 true JPH036196B2 (en) 1991-01-29

Family

ID=12292124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57030019A Granted JPS58148355A (en) 1982-02-26 1982-02-26 Mixed refrigerant

Country Status (1)

Country Link
JP (1) JPS58148355A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941957A (en) * 1972-05-01 1974-04-19

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4941957A (en) * 1972-05-01 1974-04-19

Also Published As

Publication number Publication date
JPS58148355A (en) 1983-09-03

Similar Documents

Publication Publication Date Title
KR930012237B1 (en) Refrigerating apparatus
US4624114A (en) Dual refrigerant cooling system
US3878691A (en) Method and apparatus for the cooling of an object
JPH04350471A (en) Refrigerator
JPS592477B2 (en) Absorption liquid for absorption refrigerators
WO2013154185A1 (en) Cooling device for high temperature superconducting apparatus and operation method therefor
JPH036196B2 (en)
US3524815A (en) Lithium bromide-lithium iodide compositions for absorption refrigeration system
JP2006052921A (en) Cooling method and device using slash refrigerant and superconducting current limiter
JPH0660306B2 (en) Refrigerant composition
JP6951598B1 (en) Turbo Brayton refrigerator
JPS60102716A (en) Evaporative cooling type gas insulating electrical apparatus
JP2003086418A (en) Cryogenic device
JP2000035272A (en) Cooling facility for food
JPS5827300B2 (en) Refrigerant for absorption refrigerators
JPH03103488A (en) Low-temperature cooling medium, production thereof, method for cooling and cooler
JPH09129938A (en) Superconduction apparatus
JPS62196567A (en) Solar-heat utilizing absorption chilling unit
JPH03269083A (en) Refrigerant composition
JPS606779A (en) Composition for absorption refrigerator
JPS63299181A (en) Superconducting apparatus
JP3674974B2 (en) Water cooler
JPS606778A (en) Composition for absorption refrigerator
JPS6262478B2 (en)
KR0149284B1 (en) Absorption refrigerator composition