JPH0660306B2 - Refrigerant composition - Google Patents
Refrigerant compositionInfo
- Publication number
- JPH0660306B2 JPH0660306B2 JP1295939A JP29593989A JPH0660306B2 JP H0660306 B2 JPH0660306 B2 JP H0660306B2 JP 1295939 A JP1295939 A JP 1295939A JP 29593989 A JP29593989 A JP 29593989A JP H0660306 B2 JPH0660306 B2 JP H0660306B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- compressor
- refrigerant
- composition
- oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Detergent Compositions (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Lubricants (AREA)
Description
【発明の詳細な説明】 (イ)産業上の利用分野 本発明は冷凍装置に用いられ、且つ、オゾン層を破壊す
る危険性のない冷媒組成物に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigerant composition used in a refrigeration system and having no risk of destroying the ozone layer.
(ロ)従来の技術 従来、冷凍機の冷媒として用いられているものにはR1
2(ジクロロフルオロメタン)とR500(R12とR
152a(1,1−ジフルオロエタン)との共沸混合
物)が多い。R12の沸点は約−30℃で、R500の
沸点は約−33℃であり通常の冷凍装置に好適である。
更に圧縮機への吸込温度が比較的高くても吐出温度が圧
縮機のオイルスラッジを引き起こす程高くならない。更
に又、R12は圧縮機のオイルと相溶性が良く、冷媒回
路中のオイルを圧縮機まで引き戻す役割も果たす。(B) Conventional technology R1 is used as the refrigerant used in the refrigerator in the past.
2 (dichlorofluoromethane) and R500 (R12 and R
152a (1,1-difluoroethane) as an azeotrope). R12 has a boiling point of about −30 ° C. and R500 has a boiling point of about −33 ° C., which is suitable for a normal refrigerating apparatus.
Further, even if the suction temperature to the compressor is relatively high, the discharge temperature does not become so high as to cause oil sludge in the compressor. Furthermore, R12 has good compatibility with the oil of the compressor, and also plays a role of returning the oil in the refrigerant circuit to the compressor.
(ハ)発明が解決しようとする課題 然し乍ら上記各冷媒はオゾン層を破壊する恐れがあると
され、その使用が規制されることとなって来た。これら
規制冷媒の代替冷媒として研究されているのがR22
(クロロジフルオロメタン)とR142b(1−クロロ
−1,1−ジフルオロエタン)の混合冷媒が考えられて
いる。R22の沸点は約−40℃、R142bの沸点は
約−9.8℃である。又、R22は圧縮機の吸込温度を
相当低くしなければ吐出温度の上昇を抑えられないので
R142bを混合することによって吐出温度を下げてい
る。即ち、R142bは吸込温度が比較的高くても吐出
温度が上がらないからである。(C) Problems to be Solved by the Invention However, it is said that each of the above refrigerants may destroy the ozone layer, and the use thereof has been restricted. R22 is being researched as an alternative refrigerant to these regulated refrigerants.
A mixed refrigerant of (chlorodifluoromethane) and R142b (1-chloro-1,1-difluoroethane) is considered. The boiling point of R22 is about -40 ° C, and the boiling point of R142b is about -9.8 ° C. Further, R22 cannot suppress the rise of the discharge temperature unless the suction temperature of the compressor is considerably lowered, so that the discharge temperature is lowered by mixing R142b. That is, the discharge temperature of R142b does not rise even if the suction temperature is relatively high.
更にR142bは可燃性であるがR22と混合すること
によって不燃組成を構成し、安全性を高めている。第3
図にR142bとR22及び空気の混合比率に対する可
燃性を示し、図中斜線部分が可燃域を、他の部分は不燃
域を示している。即ち、R22を10重量%以上混合す
ることでR142bの可燃域を避けることができる。Further, although R142b is flammable, it is mixed with R22 to form a non-flammable composition to enhance safety. Third
In the figure, flammability is shown with respect to the mixing ratio of R142b and R22 and air. That is, by mixing 10% by weight or more of R22, the flammable region of R142b can be avoided.
然し乍ら例えば冬季等の周囲温度が低い(例えば0℃以
下)時に冷媒回路からの冷媒漏れが発生すると、沸点の
低いR22の大部分は蒸発して先に放散されてしまい、
沸点の高いR142bのみが単独で、或るいは可燃性の
圧縮機オイル中に溶けて残存することになる。そこで再
び周囲温度が上昇するか、修理用のトーチ等を近づける
等で温度が上昇すると可燃性のR142bのみがガスと
なって流出し、爆発するおそれがある。However, if a refrigerant leaks from the refrigerant circuit when the ambient temperature is low (for example, 0 ° C. or lower) in winter, for example, most of R22 having a low boiling point evaporates and is diffused first,
Only R142b, which has a high boiling point, remains alone after being dissolved in combustible compressor oil. Therefore, if the ambient temperature rises again or the temperature rises due to bringing a repairing torch or the like closer, only flammable R142b may flow out as a gas and explode.
更に、上記R22及びR142bは圧縮機オイルとの相
溶性が悪く、その為冷媒回路の蒸発器中で二相分離(オ
イルと冷媒の分離)が発生し、圧縮機にオイルが戻され
ずに焼付きが生ずる危険性がある。Further, R22 and R142b have poor compatibility with the compressor oil, so that two-phase separation (separation of oil and refrigerant) occurs in the evaporator of the refrigerant circuit, and seizure occurs without returning the oil to the compressor. May occur.
本発明は係る問題点を解決することを目的とする。The present invention aims to solve such problems.
(ニ)課題を解決するための手段 本発明はクロロジフルオロメタン(R22)と1−クロ
ロ−1,1−ジフルオロエタン(R142b)とジクロ
ロモノフルオロメタン(R21)とから冷媒組成物を構
成したものである。(D) Means for Solving the Problems The present invention comprises a refrigerant composition comprising chlorodifluoromethane (R22), 1-chloro-1,1-difluoroethane (R142b) and dichloromonofluoromethane (R21). is there.
又、上記の冷媒組成物においてR21がR142bの5
重量%以上20重量%以下としたものである。Further, in the above refrigerant composition, R21 is 5 of R142b.
It is set to be not less than 20% by weight and not more than 20% by weight.
更に、R22とR142b及びR21の混合において、
R22が70重量%、R142bが25重量%、R21
が5重量%として冷媒組成物を構成したものである。Furthermore, in the mixing of R22, R142b and R21,
70% by weight of R22, 25% by weight of R142b, R21
Is 5% by weight to constitute the refrigerant composition.
(ホ)作用 R21はオゾン層破壊問題における規制の対象となって
おらず、また、その沸点は約+8.9℃である。更に第
2図に示す如くR22と同様にR142bの不燃域(図
中斜線で示す部分)を作ることができる。従って、前述
の如き冷媒漏れが生じてR22が放散した後にも冷媒回
路中にはR142bと共にR21も残存するため、残存
冷媒の組成を不燃性として爆発を防止できる。(E) Action R21 is not subject to regulation in the ozone depletion problem, and its boiling point is about + 8.9 ° C. Further, as shown in FIG. 2, an incombustible region of R142b (a portion indicated by hatching in the figure) can be formed similarly to R22. Therefore, even after R22 is diffused and R22 is diffused as described above, R142 is also left in the refrigerant circuit together with R142b, so that the composition of the remaining refrigerant is made nonflammable and explosion can be prevented.
この防爆効果はR142bに対するR21の重量比率が
高いほど大きくなるが、R21の沸点は高いため、入れ
過ぎれば今度は所要の冷却温度が得られなくなる。This explosion-proof effect increases as the weight ratio of R21 to R142b increases, but since the boiling point of R21 is high, the required cooling temperature cannot be obtained this time if too much is added.
実験によればR21をR142bの5重量%以上20重
量%以下混合することで、冷却能力を損うことなく爆発
の危険性を避けることができる。According to the experiment, by mixing R21 with 5% by weight or more and 20% by weight or less of R142b, the risk of explosion can be avoided without impairing the cooling capacity.
出願人は更なる鋭意研究の結果、最も安全性が高く、且
つ、所要の冷凍温度(少なくとも−40℃以下の冷却温
度)が得られる比率を割り出し、R22が70重量%、
R142bが25重量%、R21が5重量%てあること
を導き出した。As a result of further earnest research, the applicant has determined a ratio that provides the highest safety and the required freezing temperature (cooling temperature of at least -40 ° C or lower), and R22 is 70% by weight,
It was deduced that R142b was 25% by weight and R21 was 5% by weight.
更に、R21は圧縮機オイルとの相溶性が非常に良好で
あるため冷媒回路中のオイルを、それに溶け込ませた状
態で圧縮機に帰還せしめ、更にR21は圧縮機内で蒸発
して圧縮機を冷却する働きをする。Furthermore, since R21 has a very good compatibility with the compressor oil, the oil in the refrigerant circuit is returned to the compressor in a state of being dissolved therein, and R21 is evaporated in the compressor to cool the compressor. Work.
(ヘ)実施例 次に図面において実施例を説明する。第1図はR22、
R142b及びR21の混合冷媒を用いた場合の冷媒回
路を示している。圧縮機1の吐出側配管2は凝縮器3に
接続され、凝縮器3は気液分離器4に接続されている。
気液分離器4から出た液相配管5はキャピラリチューブ
6に接続されキャピラリチューブ6は中間熱交換器7に
接続される。気液分離器4から出た気相配管8は中間熱
交換器7中を通過してキャピラリチューブ9に接続さ
れ、キャピラリチューブ9は蒸発器10に接続される。
中間熱交換器7から出た配管11と蒸発器10から出た
配管12は接続点Pにて合流せられ、圧縮機1の吸込側
配管13に接続される。(F) Example Next, an example will be described with reference to the drawings. Figure 1 shows R22,
The refrigerant circuit when a mixed refrigerant of R142b and R21 is used is shown. The discharge side pipe 2 of the compressor 1 is connected to the condenser 3, and the condenser 3 is connected to the gas-liquid separator 4.
The liquid phase pipe 5 coming out of the gas-liquid separator 4 is connected to a capillary tube 6, and the capillary tube 6 is connected to an intermediate heat exchanger 7. The gas-phase pipe 8 coming out of the gas-liquid separator 4 passes through the intermediate heat exchanger 7 and is connected to the capillary tube 9, and the capillary tube 9 is connected to the evaporator 10.
The pipe 11 coming out of the intermediate heat exchanger 7 and the pipe 12 coming out of the evaporator 10 are joined at a connection point P and connected to the suction side pipe 13 of the compressor 1.
冷媒回路内にはR22、R142b及びR21の非共沸
混合冷媒が充填される。次に動作を説明する。圧縮機1
から吐出された高温高圧のガス状冷媒混合物は凝縮器3
に流入して放熱し、その内のR142b及びR21の多
くは液化して気液分離器4に入る。そこで液状のR14
2bとR21は液相配管5へ、また、未だ気体のR22
は気相配管8へと分離される。液相配管5に流入したR
142bとR21はキャピラリチューブ6にて減圧され
て中間熱交換器7に流入し、R142bはそこで蒸発す
る。一方、気相配管8に流入したR22は中間熱交換器
7内を通過する過程で、そこで蒸発するR142bに冷
却されて凝縮し、キャピラリチューブ9で減圧されて蒸
発器10に流入し、そこで蒸発して周囲を冷却する。中
間熱交換器7から出たR142bとR21は配管11を
通り、また、蒸発器10を出たR22は配管12を通
り、接続点Pにて合流し、再びR22、R142b及び
R21の混合物となって圧縮機1に帰還する。The refrigerant circuit is filled with the non-azeotropic mixed refrigerant of R22, R142b and R21. Next, the operation will be described. Compressor 1
The high-temperature high-pressure gaseous refrigerant mixture discharged from the condenser 3
Into which heat is dissipated, and most of R142b and R21 therein are liquefied and enter the gas-liquid separator 4. So liquid R14
2b and R21 to the liquid phase pipe 5, and R22 which is still gas
Is separated into a gas phase pipe 8. R flowing into the liquid phase pipe 5
142b and R21 are decompressed by the capillary tube 6 and flow into the intermediate heat exchanger 7, where R142b evaporates. On the other hand, R22 that has flowed into the gas-phase pipe 8 is cooled and condensed by R142b that evaporates there while passing through the intermediate heat exchanger 7, is decompressed by the capillary tube 9 and flows into the evaporator 10, and evaporates there. And cool the surroundings. R142b and R21 coming out of the intermediate heat exchanger 7 pass through the pipe 11, and R22 coming out of the evaporator 10 goes through the pipe 12 and merge at the connection point P to become a mixture of R22, R142b and R21 again. And returns to the compressor 1.
冷媒回路中を循環する圧縮機1のオイルはR21に溶け
込んだ状態で圧縮機1に戻される。圧縮機1に帰還した
R21は圧縮機1内で蒸発することでそれを冷却する。
従って吐出冷媒の温度も更に下げることができる。The oil of the compressor 1 circulating in the refrigerant circuit is returned to the compressor 1 in a state of being dissolved in R21. The R21 returned to the compressor 1 evaporates in the compressor 1 to cool it.
Therefore, the temperature of the discharged refrigerant can be further lowered.
冷媒回路内に封入される冷媒混合物の組成を決定するに
際しては、R21が多ければR142bの防爆性が向上
し、より安全であるが、逆に蒸発器10における冷却能
力が低下し、冷凍装置の実用に供せなくなることを考慮
する必要がある。この様な状況から出願人はこの組成を
R21がR142bの5重量%以上15重量%以下と設
定し、冷媒回路内に封入する冷媒混合物の組成をR22
が57重量%、R142bが38重量%、R21が5重
量%とした。この組成による実験によれば蒸発器10に
て−40℃の冷却能力が得られ、且つ、爆発の危険性を
回避できた。In determining the composition of the refrigerant mixture enclosed in the refrigerant circuit, the larger the amount of R21, the better the explosion-proof property of R142b, which is safer. It is necessary to consider that it cannot be put to practical use. Under these circumstances, the applicant sets this composition such that R21 is 5% by weight or more and 15% by weight or less of R142b, and the composition of the refrigerant mixture sealed in the refrigerant circuit is R22.
Was 57% by weight, R142b was 38% by weight, and R21 was 5% by weight. According to the experiment using this composition, a cooling capacity of −40 ° C. was obtained in the evaporator 10, and the risk of explosion could be avoided.
このR21のR142bに対する構成比率は大きい方が
爆発の危険性は更に低くなる。出願人は更に実験研究を
重ねた結果、R21のR142bに対する構成比率を2
0%まで引き上げても蒸発器10にて−40℃の冷却能
力が得られることを導き出した。この場合冷媒回路内に
封入する冷媒混合物の組成はR22が70重量%、R1
42bが25重量%、R21が5重量%が最適であるこ
とが分かった。この組成による実験によれば蒸発器10
にて同様の−40℃の冷却能力が得られ、且つ、爆発の
危険性を更に低いものとすることができた。The greater the composition ratio of R21 to R142b, the lower the risk of explosion. As a result of further experimentation, the applicant has determined that the composition ratio of R21 to R142b is 2
It was deduced that the cooling capacity of −40 ° C. can be obtained in the evaporator 10 even if it is raised to 0%. In this case, the composition of the refrigerant mixture sealed in the refrigerant circuit is such that R22 is 70% by weight and R1 is R1.
It was found that the optimum amount of 42b was 25% by weight and that of R21 was 5% by weight. According to the experiment using this composition, the evaporator 10
In the same manner, the same cooling capacity of -40 ° C was obtained, and the risk of explosion could be further reduced.
(ト)発明の効果 本発明によれば低周囲温度下、冷媒回路からの冷媒漏れ
が生じても、残存する1−クロロ−1,1−ジフルオロ
エタン(R142b)をジクロロモノフルオロメタン
(R21)によって不燃域に維持できるもので爆発を防
止できる。(G) Effect of the Invention According to the present invention, at low ambient temperature, even if refrigerant leaks from the refrigerant circuit, the remaining 1-chloro-1,1-difluoroethane (R142b) is converted to dichloromonofluoromethane (R21). It can be maintained in a non-combustible area and can prevent explosion.
又、ジクロロモノフルオロメタン(R21)を1−クロ
ロ−1,1−ジフルオロエタン(R142b)の5重量
%以上20重量%以下とすることで、沸点の高いジクロ
ロモノフルオロメタン(R21)が混入することによる
冷凍能力の低下を抑え、必要とされる冷凍能力を確保し
つつ爆発の危険性を避けられる。特にクロロジフルオロ
メタン(R22)が70重量%、1−クロロ−1,1−
ジフルオロエタン(R142b)が25重量%、ジクロ
ロモノフルオロメタン(R21)が5重量%とすること
が最適である。Further, by adjusting dichloromonofluoromethane (R21) to 5% by weight or more and 20% by weight or less of 1-chloro-1,1-difluoroethane (R142b), dichloromonofluoromethane (R21) having a high boiling point is mixed. It is possible to prevent the risk of explosion while suppressing the deterioration of the refrigerating capacity due to, ensuring the required refrigerating capacity. 70% by weight of chlorodifluoromethane (R22), 1-chloro-1,1-
Optimally, 25% by weight of difluoroethane (R142b) and 5% by weight of dichloromonofluoromethane (R21) are used.
更にジクロロモノフルオロメタン(R21)によって圧
縮機オイルを帰還せしめられるので、焼付けも生じず、
又、ジクロロモノフルオロメタン(R21)により圧縮
機を冷却できるので、オイルスラッジの発生を防止でき
る。Furthermore, since compressor oil can be returned by dichloromonofluoromethane (R21), no seizure will occur,
Moreover, since the compressor can be cooled by dichloromonofluoromethane (R21), the generation of oil sludge can be prevented.
第1図は冷媒回路図、第2図はR142b、R21及び
空気の組成によるR142bの可燃域を示す図、第3図
はR142b、R22及び空気の組成によるR142b
の可燃域を示す図ある。 1…圧縮機、4…気液分離器、7…中間熱交換器、10
…蒸発器。FIG. 1 is a refrigerant circuit diagram, FIG. 2 is a diagram showing a combustible region of R142b, R21 and R142b according to the composition of air, and FIG.
It is a figure which shows the combustible area of. 1 ... Compressor, 4 ... Gas-liquid separator, 7 ... Intermediate heat exchanger, 10
…Evaporator.
Claims (3)
1,1−ジフルオロエタン及びジクロロモノフルオロメ
タンから成る冷媒組成物。1. Chlorodifluoromethane, 1-chloro-
A refrigerant composition comprising 1,1-difluoroethane and dichloromonofluoromethane.
−1,1−ジフルオロエタンの5重量%以上20重量%
以下としたことを特徴とする請求項1記載の冷媒組成
物。2. Dichloromonofluoromethane is 5% by weight or more and 20% by weight or more of 1-chloro-1,1-difluoroethane.
The refrigerant composition according to claim 1, wherein:
1,1−ジフルオロエタン及びジクロロモノフルオロメ
タンから成り、前記クロロジフルオロメタンが70重量
%、前記1−クロロ−1,1−ジフルオロエタンが25
重量%、前記ジクロロモノフルオロメタンが5重量%と
したことを特徴とする冷媒組成物。3. Chlorodifluoromethane, 1-chloro-
1,1-difluoroethane and dichloromonofluoromethane, 70% by weight of the chlorodifluoromethane and 25% of the 1-chloro-1,1-difluoroethane.
%, And the dichloromonofluoromethane is 5% by weight.
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU57132/90A AU627587B2 (en) | 1989-06-16 | 1990-06-14 | Refrigerant composition |
US07/538,617 US5062985A (en) | 1989-06-16 | 1990-06-15 | Refrigerant composition containing dichloromonofluoromethane |
EP90111338A EP0402937B1 (en) | 1989-06-16 | 1990-06-15 | Refrigerant composition |
KR1019900008800A KR960009238B1 (en) | 1989-06-16 | 1990-06-15 | Refrigerant composition |
SU904830181A RU2013431C1 (en) | 1989-06-16 | 1990-06-15 | Coolant composition |
CA002019096A CA2019096C (en) | 1989-06-16 | 1990-06-15 | Refrigerant composition |
MYPI90001000A MY106740A (en) | 1989-06-16 | 1990-06-15 | Refrigerant composition. |
DE69012664T DE69012664D1 (en) | 1989-06-16 | 1990-06-15 | Cold compositions. |
BR909002854A BR9002854A (en) | 1989-06-16 | 1990-06-18 | REFRIGERANT COMPOSITION |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15511489 | 1989-06-16 | ||
JP1-155114 | 1989-06-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0388889A JPH0388889A (en) | 1991-04-15 |
JPH0660306B2 true JPH0660306B2 (en) | 1994-08-10 |
Family
ID=15598893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1295939A Expired - Fee Related JPH0660306B2 (en) | 1989-06-16 | 1989-11-14 | Refrigerant composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0660306B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023243184A1 (en) * | 2022-06-13 | 2023-12-21 | キヤノン株式会社 | Cooling device, semiconductor manufacturing device, and semiconductor manufacturing method |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3208151B2 (en) * | 1991-05-28 | 2001-09-10 | 三洋電機株式会社 | Refrigeration equipment |
JP3244296B2 (en) * | 1992-04-10 | 2002-01-07 | 三洋電機株式会社 | Refrigerant composition and binary refrigeration apparatus using the same |
WO2015140887A1 (en) * | 2014-03-17 | 2015-09-24 | 三菱電機株式会社 | Refrigeration cycle apparatus |
-
1989
- 1989-11-14 JP JP1295939A patent/JPH0660306B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023243184A1 (en) * | 2022-06-13 | 2023-12-21 | キヤノン株式会社 | Cooling device, semiconductor manufacturing device, and semiconductor manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JPH0388889A (en) | 1991-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5265443A (en) | Refrigerating unit | |
KR100652080B1 (en) | Refrigeration apparatus | |
US5702632A (en) | Non-CFC refrigerant mixture | |
JP3244296B2 (en) | Refrigerant composition and binary refrigeration apparatus using the same | |
US6058717A (en) | Method for charging refrigerant blend | |
JPH0660306B2 (en) | Refrigerant composition | |
CN114058334B (en) | Mixed refrigerant and refrigeration system | |
KR960000866B1 (en) | Refrigerant composition | |
US6951115B2 (en) | Refrigerant composition and refrigerating circuit using the same | |
JP3433197B2 (en) | Refrigerant circuit | |
JP2562723B2 (en) | Refrigerant composition and refrigeration system | |
JP2983969B2 (en) | Cooling method | |
JPH0418486A (en) | Refrigerant composition | |
JPH0617040A (en) | Refrigerant for refrigerator | |
JPH03269083A (en) | Refrigerant composition | |
JPH0737609B2 (en) | Refrigerant composition | |
JP2865475B2 (en) | Refrigerant composition and binary refrigeration apparatus using the same | |
JPH09318182A (en) | Absorption room cooler | |
JP3469855B2 (en) | Refrigerant circuit | |
JPH08200866A (en) | Air conditioner | |
JPH07104057B2 (en) | Dual freezer | |
JPH08170075A (en) | Working fluid | |
JP2001040340A (en) | Binary refrigerating equipment | |
JP2001089754A (en) | Composition used for refrigerator and refrigerator using the same | |
JPH07252473A (en) | Refrigerant composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |