JPH07104057B2 - Dual freezer - Google Patents

Dual freezer

Info

Publication number
JPH07104057B2
JPH07104057B2 JP2058647A JP5864790A JPH07104057B2 JP H07104057 B2 JPH07104057 B2 JP H07104057B2 JP 2058647 A JP2058647 A JP 2058647A JP 5864790 A JP5864790 A JP 5864790A JP H07104057 B2 JPH07104057 B2 JP H07104057B2
Authority
JP
Japan
Prior art keywords
refrigeration cycle
compressor
temperature
oil
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2058647A
Other languages
Japanese (ja)
Other versions
JPH03260557A (en
Inventor
一夫 竹政
豊 大森
福治 吉田
治郎 湯沢
勝彦 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2058647A priority Critical patent/JPH07104057B2/en
Publication of JPH03260557A publication Critical patent/JPH03260557A/en
Publication of JPH07104057B2 publication Critical patent/JPH07104057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)
  • Compressor (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はオゾン層を破壊する危険性のない冷媒にて構成
した二元冷凍装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a binary refrigeration system configured with a refrigerant that does not have a risk of destroying the ozone layer.

(ロ)従来の技術 従来のこの種二元冷凍装置は、例えば特開昭54−21658
号公報に示されている。当該従来技術に示された構成は
低温側冷凍サイクルの蒸発器において−80℃程の超低温
を得るためのもので、高温側冷凍サイクルの冷媒として
R500(R12(ジクロロジフルオロメタン)とR152a(1,1
−ジフルオロエタン)との共沸混合物)を、また、低温
側冷凍サイクルの冷媒としてR503(R13(クロロトリフ
ルオロメタン)とR23(トリフルオロメタン)との共沸
混合物)を用いている。R500の沸点は大気圧(1.033kg/
cm2abs)で−33.45℃であり、R503の沸点は大気圧で−8
8.65℃である。
(B) Conventional technology A conventional binary refrigeration system of this type is disclosed in, for example, Japanese Patent Laid-Open No.
It is shown in the publication. The configuration shown in the prior art is for obtaining an ultra low temperature of about -80 ° C in the evaporator of the low temperature side refrigeration cycle,
R500 (R12 (dichlorodifluoromethane) and R152a (1,1
-Difluoroethane) and also R503 (azeotrope of R13 (chlorotrifluoromethane) and R23 (trifluoromethane)) as the refrigerant in the low temperature side refrigeration cycle. The boiling point of R500 is atmospheric pressure (1.033 kg /
cm 2 abs) is −33.45 ° C., and the boiling point of R503 is −8 at atmospheric pressure.
8.65 ° C.

上記R12及びR13は圧縮機のオイルと相溶性が良く、冷媒
回路中のオイルを圧縮機まで引き戻す役割も果たす。
The above R12 and R13 have good compatibility with the oil of the compressor, and also play a role of returning the oil in the refrigerant circuit to the compressor.

(ハ)発明が解決しようとする課題 然し乍ら上記低温側冷凍サイクルに封入されるR500及び
R503はその中のR12或るいはR13が地球のオゾン層を破壊
する恐れがあり、使用できなくなってきた。
(C) Problems to be Solved by the Invention However, R500 and the R500 enclosed in the low temperature side refrigeration cycle described above
R503 is becoming unusable because R12 or R13 in it may destroy the ozone layer of the earth.

その為、R500に代えてオゾン層を破壊しないR200(クロ
ロジフルオロメタン、沸点は大気圧で−40.75℃)を高
温側冷凍サイクルに用いる必要がある。また、R22は圧
縮機オイルとの相溶性が悪く、高温側冷凍サイクル中の
オイル圧縮機に戻らなくなる危険性がある。
Therefore, instead of R500, it is necessary to use R200 (chlorodifluoromethane, boiling point is -40.75 ° C at atmospheric pressure) that does not destroy the ozone layer in the high temperature side refrigeration cycle. Further, R22 has poor compatibility with compressor oil, and there is a risk that R22 will not return to the oil compressor during the high temperature side refrigeration cycle.

更に、R503に代えてR23(沸点は大気圧で−82.05℃)の
みを低温側冷凍サイクルに用いると、R23は同様に圧縮
機オイルとの相溶性が悪いので、低温側冷凍サイクル中
のオイルが圧縮機に戻らなくなり、冷凍サイクルの配管
内壁面に残留して冷媒流通路を狭めるので、冷媒の循環
量も減り、更に、配管の熱交換率も悪化するので冷却能
力が著しく低下する問題が生じる。
Furthermore, when only R23 (boiling point is −82.05 ° C. at atmospheric pressure) is used in the low temperature side refrigeration cycle instead of R503, R23 also has poor compatibility with the compressor oil, so the oil in the low temperature side refrigeration cycle is Since it does not return to the compressor and remains on the inner wall surface of the piping of the refrigeration cycle to narrow the refrigerant flow passage, the circulation amount of the refrigerant also decreases, and the heat exchange rate of the piping deteriorates, causing a problem that the cooling capacity significantly decreases. .

本発明は、係る課題を解決することを目的とする。The present invention aims to solve such problems.

(ニ)課題を解決するための手段 請求項1の発明はカスケードコンデンサ11に高温側冷凍
サイクルS1と低温側冷凍サイクルS2とを連結して成る二
元冷凍装置において、高温側冷凍サイクルS1にはクロロ
ジフルオロメタン(R22、CHClF2)を含む冷媒を充填す
ると共に、低温側冷凍サイクルS2にはトリフルオロメタ
ン(R23、CHF3)及びn−ペンタン(C5H12)から成る混
合冷媒若しくはトリフルオロメタン及びジクロロモノフ
ルオロメタン(R21、CHCl2F)から成る混合冷媒を充填
して二元冷凍装置を構成したものである。
(D) Means for Solving the Problems The invention of claim 1 is a binary refrigeration system in which a high temperature side refrigeration cycle S1 and a low temperature side refrigeration cycle S2 are connected to a cascade condenser 11, and the high temperature side refrigeration cycle S1 includes A refrigerant containing chlorodifluoromethane (R22, CHClF 2 ) is charged, and the low temperature side refrigeration cycle S2 is a mixed refrigerant of trifluoromethane (R23, CHF 3 ) and n-pentane (C 5 H 12 ) or trifluoromethane and This is a binary refrigeration system filled with a mixed refrigerant composed of dichloromonofluoromethane (R21, CHCl 2 F).

請求項2の発明は、更にこの高温側冷凍サイクルS1に充
填される冷媒にR21を混入したものである。
According to the second aspect of the invention, R21 is further mixed into the refrigerant filled in the high temperature side refrigeration cycle S1.

(ホ)作 用 R22、R23、n−ペンタン(沸点は大気圧で+36.07℃)
及びR21(沸点は大気圧で+8.95℃)は、いずれもオゾ
ン層を破壊する危険性がない。
(E) Operation R22, R23, n-pentane (boiling point + 36.07 ℃ at atmospheric pressure)
Both R21 and R21 (boiling point at atmospheric pressure + 8.95 ° C) have no risk of depleting the ozone layer.

また、高温側冷凍サイクルではカスケードコンデンサに
て−40℃程の低温が得られる。
Also, in the high temperature side refrigeration cycle, a low temperature of about -40 ° C can be obtained with the cascade condenser.

更に、低温側冷凍サイクルの蒸発器では−80℃以下の超
低温が得られる。
Furthermore, an ultra low temperature of -80 ° C or lower can be obtained in the evaporator of the low temperature side refrigeration cycle.

特にn−ペンタン及びR21は圧縮機オイルとの相溶性が
非常に良好であるため両冷凍サイクル中のオイルを、そ
れに解け込ませた状態で圧縮機に帰還せしめ、特にR21
は圧縮機内で蒸発して圧縮機を冷却する働きをする。
In particular, n-pentane and R21 have very good compatibility with the compressor oil, so that the oil in both refrigeration cycles should be fed back to the compressor in a state of being thawed.
Serves to cool the compressor by evaporating in the compressor.

(ヘ)実施例 次に、図面において実施例を説明する。第1図は本発明
の二元冷凍装置の冷媒回路図を示している。S1は高温側
冷凍サイクルを、また、S2は低温側冷凍サイクルを示し
ている。
(F) Example Next, an example will be described with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of the binary refrigeration system of the present invention. S1 indicates a high temperature side refrigeration cycle, and S2 indicates a low temperature side refrigeration cycle.

高温側冷凍サイクルS1を構成する圧縮機1の吐出側配管
2は補助凝縮器3に接続され、補助凝縮器3は圧縮機1
のオイルクーラー4、補助凝縮器5、低温側冷凍サイク
ルS2を構成する圧縮機6のオイルクーラー7、凝縮器
8、乾燥器9、キャピラリチューブ10を順次経て、カス
ケードコンデンサ11に接続されて受液器12を経て吸込側
配管13にて圧縮機1に接続されている。14は各凝縮器
3、5及び8の冷却用ファンである。
The discharge side pipe 2 of the compressor 1 constituting the high temperature side refrigeration cycle S1 is connected to the auxiliary condenser 3, and the auxiliary condenser 3 is connected to the compressor 1
Oil cooler 4, auxiliary condenser 5, oil cooler 7 of compressor 6 that constitutes the low temperature side refrigeration cycle S2, condenser 8, dryer 9, and capillary tube 10 are sequentially connected to the cascade condenser 11 to receive liquid. It is connected to the compressor 1 via a suction side pipe 13 via a container 12. Reference numeral 14 is a cooling fan for the condensers 3, 5 and 8.

低温側冷凍サイクルS2の圧縮機6の吐出側配管15はオイ
ル分離器16に接続され、そこで分離された圧縮機オイル
はリターン配管17にて圧縮機6に帰還せられる。一方冷
媒は配管18に流入して吸込側熱交換器19と熱交換した
後、カスケードコンデンサ11内の配管20内を通過して凝
縮し、乾燥器21、キャピラリチューブ22を経て入口管23
より蒸発器24に流入し、出口管25より出て吸込側熱交換
器19内を経て圧縮機6の吸込側配管26より圧縮機6に帰
還する構成である。27は膨張タンクでありキャピラリチ
ューブ28を介して吸込側配管26に接続されている。
The discharge side pipe 15 of the compressor 6 of the low temperature side refrigeration cycle S2 is connected to an oil separator 16, and the compressor oil separated there is returned to the compressor 6 via a return pipe 17. On the other hand, the refrigerant flows into the pipe 18 and exchanges heat with the suction side heat exchanger 19, and then passes through the pipe 20 in the cascade condenser 11 to be condensed and passes through the dryer 21, the capillary tube 22 and the inlet pipe 23.
It further flows into the evaporator 24, exits from the outlet pipe 25, passes through the suction side heat exchanger 19, and returns to the compressor 6 from the suction side pipe 26 of the compressor 6. An expansion tank 27 is connected to the suction side pipe 26 via a capillary tube 28.

高温側冷凍サイクルS1には前述のR22及びR21の混合冷
媒)が充填される。この時、圧縮機1の吐出温度が高い
場合はR152a(1,1−ジフルオロエタン、CH3CHF2、沸点
は大気圧で−24.95℃)や、R142d(1−クロロ−1,1−
ジフルオロエタン、C2ClF2H3、沸点は大気圧で−9.75
℃)をこれに混入しても良い。R152aやR142bは圧縮機1
の吸上温度が比較的高くても吐出温度が上がらないので
これを混入することで圧縮機1の吐出温度の上昇を抑え
られる。また、R21は圧縮機1のオイルとの相溶性が良
いので、このオイルをR21に溶け込ませた状態で圧縮機
1に良好に帰還させることができ、それによって後述す
るのと同様の理由でカスケードコンデンサ11の温度上昇
を防止でき、更に、オイル不足による圧縮機1の焼き付
きも防止できる。
The high temperature side refrigeration cycle S1 is filled with the mixed refrigerant of R22 and R21 described above. At this time, when the discharge temperature of the compressor 1 is high R152a (1,1-difluoroethane, CH 3 CHF 2, boiling point -24.95 ° C. at atmospheric pressure) and, R142d (1- chloro-1,1
Difluoroethane, C 2 ClF 2 H 3, boiling point at atmospheric pressure -9.75
C.) may be mixed into this. R152a and R142b are compressors 1
Even if the suction temperature is relatively high, the discharge temperature does not rise. Therefore, by mixing this, the rise of the discharge temperature of the compressor 1 can be suppressed. Also, since R21 has a good compatibility with the oil of the compressor 1, this oil can be satisfactorily returned to the compressor 1 in a state of being melted in the R21, which makes it possible to use the cascade for the same reason as described later. It is possible to prevent the temperature rise of the condenser 11 and further prevent the seizure of the compressor 1 due to the lack of oil.

然し乍ら、R21、R152a及びR142bに沸点が高いので、入
れ過ぎれは今度はカスケードコンデンサ11にて所要の蒸
発温度(−40℃程)が得られなくなる。
However, since the boiling points of R21, R152a and R142b are high, the excessive evaporation temperature cannot obtain the required evaporation temperature (about -40 ° C) in the cascade condenser 11 this time.

出願人は鋭意研究の結果、最も安全性が高く、所要の蒸
発温度が得られる比率を割り出し、R22が70重量%、R15
2aまたはR142bが25重量%、R21が5重量%であることを
導き出した。
As a result of diligent research, the Applicant has determined a ratio that is the safest and obtains the required evaporation temperature. R22 is 70% by weight and R15 is R15.
It was derived that 2a or R142b was 25% by weight and R21 was 5% by weight.

この混合冷媒が各凝縮器3、5及び8にて凝縮し、キャ
ピラリチューブ10にて減圧されてカスケードコンデンサ
11に流入してそこで蒸発することにより、カスケードコ
ンデンサ11は後述する第2図及び第3図L9及びL10で示
す如く−40℃以下となる。
This mixed refrigerant is condensed in each of the condensers 3, 5 and 8 and is decompressed in the capillary tube 10 to be a cascade condenser.
By flowing into 11 and evaporating there, the temperature of the cascade condenser 11 becomes −40 ° C. or lower as shown in L9 and L10 of FIGS. 2 and 3 described later.

低温側冷凍サイクルS2にはR23とn−ペンタンの冷媒混
合物が充填される。圧縮機6から吐出された冷媒及び圧
縮機オイルはオイル分離器16に流入する。そこで気体状
の部分と液体状の部分とに分離され、オイルの大部分は
液体であるのでリターン配管17より圧縮機6に戻され
る。気体状の冷媒とオイルは配管18を通り、吸込側熱交
換器19と熱交換し、更にカスケードコンデンサ11にて高
温側冷凍サイクルS1内の冷媒の蒸発によって冷却されて
凝縮せられる。その後、キャピラリチューブ22にて減圧
された後、蒸発器24に流入して蒸発する。この蒸発器24
は図示しない冷凍庫の壁面に熱交換関係に付設されて庫
内を冷却する。
The low temperature side refrigeration cycle S2 is filled with a refrigerant mixture of R23 and n-pentane. The refrigerant and compressor oil discharged from the compressor 6 flow into the oil separator 16. There, it is separated into a gas-like portion and a liquid-like portion, and since most of the oil is liquid, it is returned to the compressor 6 through the return pipe 17. The gaseous refrigerant and oil pass through the pipe 18 and exchange heat with the suction side heat exchanger 19, and are further cooled and condensed by the evaporation of the refrigerant in the high temperature side refrigeration cycle S1 by the cascade condenser 11. Then, after being decompressed by the capillary tube 22, it flows into the evaporator 24 and evaporates. This evaporator 24
Is attached to the wall surface of a freezer (not shown) in a heat exchange relationship to cool the inside of the freezer.

この低温側冷凍サイクルS2中に充填される冷媒混合物の
混合比率と、低温側冷凍サイクルS2各部の温度及び圧力
との関係を第2図に示す。
FIG. 2 shows the relationship between the mixing ratio of the refrigerant mixture filled in the low temperature side refrigeration cycle S2 and the temperature and pressure of each part of the low temperature side refrigeration cycle S2.

横軸はn−ペンタンの混合比率であり、縦軸は温度及び
圧力である。また、図中L1は圧縮機6の温度、L2は吐出
側配管15の温度、L3は吸込側配管26の温度を示す。更
に、L4は圧縮機6の吐出圧力、L5は蒸発器24の出口管25
の温度、L6は庫内温度、L7は蒸発器24の入口管23の温
度、L8は圧縮機6の吸込圧力をそれぞれ示す。更に又、
L9はカスケートコンデンサ11の出口温度、L10はカスケ
ードコンデンサ11の入口温度を示す。
The horizontal axis represents the mixing ratio of n-pentane, and the vertical axis represents temperature and pressure. Further, in the figure, L1 indicates the temperature of the compressor 6, L2 indicates the temperature of the discharge side pipe 15, and L3 indicates the temperature of the suction side pipe 26. Further, L4 is the discharge pressure of the compressor 6, and L5 is the outlet pipe 25 of the evaporator 24.
, L6 is the internal temperature, L7 is the temperature of the inlet pipe 23 of the evaporator 24, and L8 is the suction pressure of the compressor 6. Furthermore,
L9 indicates the outlet temperature of the cascade condenser 11, and L10 indicates the inlet temperature of the cascade condenser 11.

n−ペンタンの混合比率を低下させて行った場合、13重
量%付近を境として吐出側配管15のL2が低下し、庫内温
度L6は上昇する。また、吸込側配管26の温度L3及び出口
管25の温度L5は上昇を続ける。これはオイル分離機16か
ら配管18に流入した圧縮機6のオイルが戻らなくなった
為である。即ち、オイルが冷凍サイクル中に滞留すると
配管内面に付着し、流通路の断面積が減る。それによっ
て冷媒の循環量が減少するので圧縮機6の仕事量が減っ
て温度L2が低下する。一方、配管の壁面にオイルが付着
することで熱交換が悪化し、庫内温度L6が上昇するから
である。
When the mixing ratio of n-pentane is decreased, L2 of the discharge side pipe 15 decreases and the internal temperature L6 increases at around 13 wt%. Further, the temperature L3 of the suction side pipe 26 and the temperature L5 of the outlet pipe 25 continue to rise. This is because the oil in the compressor 6 that has flowed into the pipe 18 from the oil separator 16 has not returned. That is, when the oil stays in the refrigeration cycle, it adheres to the inner surface of the pipe and the cross-sectional area of the flow passage decreases. As a result, the circulation amount of the refrigerant is reduced, so that the work amount of the compressor 6 is reduced and the temperature L2 is lowered. On the other hand, because the oil adheres to the wall surface of the pipe, the heat exchange deteriorates and the internal temperature L6 rises.

従って、n−ペンタンを13重量%以上封入することによ
って低温側冷凍サイクルS2内に循環する圧縮機6のオイ
ルを、n−ペンタンに溶け込ませた状態で圧縮機6に良
好に帰還させることができることが分かった。
Therefore, by encapsulating 13% by weight or more of n-pentane, the oil of the compressor 6 circulating in the low temperature side refrigeration cycle S2 can be favorably returned to the compressor 6 in a state of being dissolved in the n-pentane. I understood.

一方n−ペンタンの沸点は高い為、多過ぎれば今度は蒸
発温度が上昇してしまい、二元冷凍装置で必要とされる
蒸発温度が得られなくなる。これは第2図でn−ペンタ
ンが15重量%以上から庫内温度L6が徐々に上昇し始める
ことからも分かる。
On the other hand, since the boiling point of n-pentane is high, if it is too large, the evaporation temperature will rise and the evaporation temperature required by the binary refrigeration system will not be obtained. This can be seen from FIG. 2 as the internal temperature L6 starts to rise gradually from 15% by weight or more of n-pentane.

そこで、理想的には混合比率をR23が86重量%、n−ペ
ンタンが14重量%とすることで、吸込圧力(L8)が0.7k
g/cm2absで庫内温度(L6)−85℃程が得られた。これに
よって従来のR503を使用していた場合と同等の超低温が
得られ、且つ、オイル戻しの問題も解決できた。
Therefore, ideally the mixing ratio of R23 is 86% by weight and n-pentane is 14% by weight, so that the suction pressure (L8) is 0.7k.
An internal temperature (L6) of about -85 ° C was obtained at g / cm 2 abs. As a result, the same ultra-low temperature as when using the conventional R503 was obtained, and the problem of oil return was solved.

次に、第3図にR23とR21の冷媒混合物を低温側冷凍サイ
クルS2に封入した場合の混合比率と、低温側冷凍サイク
ルS2各部の温度及び圧力との関係を示す。
Next, FIG. 3 shows the relationship between the mixture ratio when the refrigerant mixture of R23 and R21 is enclosed in the low temperature side refrigeration cycle S2, and the temperature and pressure of each part of the low temperature side refrigeration cycle S2.

横軸はR21の混合比率であり、縦軸は温度及び圧力であ
る。また、図中L1〜L10は第2図と同一部位の温度或る
いは圧力とする。
The horizontal axis is the mixing ratio of R21, and the vertical axis is the temperature and pressure. Further, in the figure, L1 to L10 are the temperature or pressure of the same portion as in FIG.

R21の混合比率を低下させて行った場合、28重量%付近
を境として吐出側配管15の温度L2及び吐出圧力L4が低下
し、庫内温度L6及び出口管25の温度L5は上昇する。ま
た、吸込側配管26の温度L3は上昇を続ける。これはオイ
ル分離機16から配管18に流入した圧縮機6のオイルが前
述同様に圧縮機6に戻らなくなった為である。
When the mixing ratio of R21 is decreased, the temperature L2 of the discharge side pipe 15 and the discharge pressure L4 decrease, and the internal temperature L6 and the temperature L5 of the outlet pipe 25 increase at around 28 wt%. Further, the temperature L3 of the suction side pipe 26 continues to rise. This is because the oil of the compressor 6 that has flowed into the pipe 18 from the oil separator 16 does not return to the compressor 6 as described above.

従って、R21を28重量%以上封入することによって低温
側冷凍サイクルS2内に循環する圧縮機6のオイルを、R2
1に溶け込ませた状態で圧縮機6に良好に帰還させるこ
とができることが分かった。
Therefore, by enclosing R21 at 28% by weight or more, the oil of the compressor 6 circulated in the low temperature side refrigeration cycle S2 is
It has been found that it is possible to favorably return to the compressor 6 in a state of being melted in 1.

一方R21の沸点は高い為、多過ぎれば同様に蒸発温度が
上昇してしまい、二元冷凍装置で必要とされる蒸発温度
が得られなくなる。これは第3図でR21が30重量%以上
から庫内温度L6及び蒸発器24の入口温度17が再び上昇し
始めることからも分かる。
On the other hand, since the boiling point of R21 is high, if it is too large, the evaporation temperature similarly rises, and the evaporation temperature required in the binary refrigeration system cannot be obtained. This can be seen from FIG. 3 because the inside temperature L6 and the inlet temperature 17 of the evaporator 24 start to rise again when R21 is 30% by weight or more.

そこで、理想的には混合比率をR23が71重量%、R21が29
重量%とすることで、吸込圧力(L8)が0.7kg/cm2absで
庫内温度(L6)−83℃程が得られる。
Therefore, the mixing ratio is ideally 71% by weight for R23 and 29 for R21.
By adjusting the content to be wt%, the suction pressure (L8) is 0.7 kg / cm 2 abs and the internal temperature (L6) is about -83 ° C.

(ト)発明の効果 以上の如く、オゾン層を破壊しない冷媒によって二元冷
凍装置を運転し、低温側冷凍サイクルの蒸発器に於て所
要の冷凍温度が得られる。特に、圧縮機オイルを良好に
帰還せしめることにより冷凍能力の悪化を防止し、且
つ、安全に冷凍作用を発揮させることができる様にな
る。
(G) Effect of the Invention As described above, the required freezing temperature can be obtained in the evaporator of the low temperature side refrigeration cycle by operating the binary refrigeration system with the refrigerant that does not destroy the ozone layer. In particular, by returning the compressor oil satisfactorily, deterioration of the refrigerating capacity can be prevented, and the refrigerating action can be safely exhibited.

【図面の簡単な説明】[Brief description of drawings]

各図は実施例を示し、第1図は冷媒回路図、第2図はn
−ペンタンの混合比率と冷媒回路各部の温度及び圧力の
相関々係を示す図、第3図はR21の混合比率と冷媒回路
各部の温度及び圧力の相関々係を示す図である。 S1……高温側冷凍サイクル、S2……低温側冷凍サイク
ル、1、6……圧縮機、11……カスケードコンデンサ、
24……蒸発器。
Each drawing shows an embodiment, FIG. 1 is a refrigerant circuit diagram, and FIG. 2 is n.
FIG. 3 is a diagram showing the correlation between the mixture ratio of pentane and the temperature and pressure of each part of the refrigerant circuit, and FIG. 3 is a diagram showing the correlation of the mixture ratio of R21 and the temperature and pressure of each part of the refrigerant circuit. S1 ... High temperature side refrigeration cycle, S2 ... Low temperature side refrigeration cycle, 1,6 ... Compressor, 11 ... Cascade condenser,
24 ... Evaporator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 湯沢 治郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 井上 勝彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (56)参考文献 特開 平1−256766(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Jiro Yuzawa 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd. (72) Inventor Katsuhiko Inoue 2-18 Keihan Hondori, Moriguchi City, Osaka Sanyo Denki Co., Ltd. (56) References Japanese Patent Laid-Open No. 1-256766 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】カスケードコンデンサにて高温側冷凍サイ
クルと低温側冷凍サイクルとを連結して成る二元冷凍装
置において、前記高温側冷凍サイクルにはクロロジフル
オロメタンを含む冷媒を充填すると共に、前記低温側冷
凍サイクルにはトリフルオロメタン及びn−ペンタンか
ら成る混合冷媒若しくはトリフルオロメタン及びジクロ
ロモノフルオロメタンから成る混合冷媒を充填したこと
を特徴とする二元冷凍装置。
1. A binary refrigeration system in which a high temperature side refrigeration cycle and a low temperature side refrigeration cycle are connected by a cascade condenser, wherein the high temperature side refrigeration cycle is filled with a refrigerant containing chlorodifluoromethane, and the low temperature side refrigeration cycle is used. A dual refrigeration system characterized in that the side refrigeration cycle is filled with a mixed refrigerant of trifluoromethane and n-pentane or a mixed refrigerant of trifluoromethane and dichloromonofluoromethane.
【請求項2】高温側冷凍サイクルに充填される冷媒にジ
クロロモノフルオロメタンを混入したことを特徴とする
請求項1記載の二元冷凍装置。
2. The binary refrigeration system according to claim 1, wherein dichloromonofluoromethane is mixed in the refrigerant filled in the high temperature side refrigeration cycle.
JP2058647A 1990-03-09 1990-03-09 Dual freezer Expired - Fee Related JPH07104057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2058647A JPH07104057B2 (en) 1990-03-09 1990-03-09 Dual freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2058647A JPH07104057B2 (en) 1990-03-09 1990-03-09 Dual freezer

Publications (2)

Publication Number Publication Date
JPH03260557A JPH03260557A (en) 1991-11-20
JPH07104057B2 true JPH07104057B2 (en) 1995-11-13

Family

ID=13090378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2058647A Expired - Fee Related JPH07104057B2 (en) 1990-03-09 1990-03-09 Dual freezer

Country Status (1)

Country Link
JP (1) JPH07104057B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3208151B2 (en) * 1991-05-28 2001-09-10 三洋電機株式会社 Refrigeration equipment
WO2014050103A1 (en) 2012-09-28 2014-04-03 パナソニックヘルスケア株式会社 Binary refrigeration device

Also Published As

Publication number Publication date
JPH03260557A (en) 1991-11-20

Similar Documents

Publication Publication Date Title
US5702632A (en) Non-CFC refrigerant mixture
JP2512852B2 (en) Refrigerant for ice making
US7624585B2 (en) Freezer unit
WO2014156190A1 (en) Dual refrigeration device
JP3244296B2 (en) Refrigerant composition and binary refrigeration apparatus using the same
JPS592477B2 (en) Absorption liquid for absorption refrigerators
JPH028636B2 (en)
CN114058334B (en) Mixed refrigerant and refrigeration system
JPH07104057B2 (en) Dual freezer
JP4651255B2 (en) Refrigerant composition and refrigeration circuit using the same
JPH0748563A (en) Mixed refrigerant
JPH0660307B2 (en) Refrigerant composition
JPH0660306B2 (en) Refrigerant composition
JP2865475B2 (en) Refrigerant composition and binary refrigeration apparatus using the same
JP2562723B2 (en) Refrigerant composition and refrigeration system
JPH0682106A (en) Dual refrigerating apparatus
JPH0655944B2 (en) Refrigerant composition
JP2983969B2 (en) Cooling method
JPS6114282A (en) Medium for absorption type refrigerator
JP2001040340A (en) Binary refrigerating equipment
JPS6356918B2 (en)
JPH08170075A (en) Working fluid
US20050103028A1 (en) Non-CFC refrigerant mixture for an ultra-low temperature refrigeration system
JPH0418486A (en) Refrigerant composition
JPS606779A (en) Composition for absorption refrigerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees