JPS606779A - Composition for absorption refrigerator - Google Patents

Composition for absorption refrigerator

Info

Publication number
JPS606779A
JPS606779A JP58116667A JP11666783A JPS606779A JP S606779 A JPS606779 A JP S606779A JP 58116667 A JP58116667 A JP 58116667A JP 11666783 A JP11666783 A JP 11666783A JP S606779 A JPS606779 A JP S606779A
Authority
JP
Japan
Prior art keywords
composition
refrigerant
absorbent
liquid
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58116667A
Other languages
Japanese (ja)
Inventor
Takeshi Kanai
健 金井
Toshio Nakayama
敏男 中山
Masumasa Hashimoto
益征 橋本
Takeshi Yamada
武史 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Chemical Industries Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Chemical Industries Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Chemical Industries Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP58116667A priority Critical patent/JPS606779A/en
Publication of JPS606779A publication Critical patent/JPS606779A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PURPOSE:To provide a compsn. for absorption refrigerator, which has a low viscosity and is hardly crystallized out, by blending a specified imidazole compd. as an absorbent with a fluorinated alcohol as a refrigerant. CONSTITUTION:5-60wt% C2-C10 fluorinated alcohol (e.g. 2,2,2-trifluoroethanol) which is a liquid at room temp. and vaporizes by heating, is mixed with 40- 95wt% mixture of imidazole and 2-ethyl-4-methylimidazole in a weight ratio of 35-45:65-55.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は冷媒の弗素化アルコールと、吸収剤のイミダ
ゾールとイミダゾール誘導体とからなる吸収冷凍機用の
組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a composition for an absorption refrigerator comprising a fluorinated alcohol as a refrigerant, and imidazole and an imidazole derivative as an absorbent.

←)従来技術 従来吸収冷凍機用組成物としては、冷媒の水もしくはメ
タノールと吸収剤のハロゲン化リチウム塩とからなる組
成物が主として用いられている。
←) Prior Art As compositions for conventional absorption refrigerators, compositions consisting of a refrigerant of water or methanol and an absorbent of a lithium halide salt have been mainly used.

この組成物は冷媒の水やメタノールの蒸発潜熱が大きい
ので吸収冷凍機の成績係数(coefficiθnto
f performance、 0OP) を大にする
ことができるという利点を有するが、ハロゲン化リチウ
ム塩は一般に高粘度でしかも金属腐蝕性と晶析性を有す
るという欠点がある。 またこの組成物の冷媒を液化す
るには80〜40℃程度まで冷却する必要があるので吸
収冷凍機の凝縮器および吸収器の冷却は空冷式では不充
分で水冷式にする必要がある。
This composition has a large latent heat of vaporization of water and methanol as refrigerants, so it has a high coefficient of performance for absorption refrigerators.
Although it has the advantage of being able to increase f performance, 0OP), it has the disadvantage that lithium halide salts generally have high viscosity and are corrosive to metals and prone to crystallization. Further, in order to liquefy the refrigerant of this composition, it is necessary to cool it to about 80 to 40°C, so the condenser and absorber of the absorption refrigerator are insufficiently cooled by air cooling, and it is necessary to use water cooling.

また冷媒として凝固点が0℃以下のフレオン類(ハロゲ
ン化炭化水素類)例えばR−22(モノクロロジフルオ
ロメタン)など、吸収剤としテ晶析を起さない有機液体
の例えばテトラエチレングリコールジメチルエーテル等
を用いる組成物も知られている。 この組成物は晶析を
起さず、低粘度であり、凝縮器と吸収器の冷却は空冷式
でよいという利点を有するが冷媒のフレオンは蒸発潜熱
が小さいので吸収冷凍機のOOPが低く、またフレオン
は耐熱性に劣るという欠点がある。
In addition, as a refrigerant, freons (halogenated hydrocarbons) such as R-22 (monochlorodifluoromethane) whose freezing point is below 0°C are used, and as an absorbent, an organic liquid that does not cause crystallization such as tetraethylene glycol dimethyl ether is used. Compositions are also known. This composition does not cause crystallization, has a low viscosity, and has the advantage that the condenser and absorber can be cooled by air cooling. However, since the refrigerant Freon has a small latent heat of vaporization, the OOP of the absorption refrigerator is low. Freon also has the disadvantage of poor heat resistance.

この発かは、上記問題点を解消するために冷媒として、
蒸発潜熱の大きい弗素化アルコールを用いる組成物を研
究した結果なされたものである。
The reason for this is that in order to solve the above problems, as a refrigerant,
This was achieved as a result of research into compositions that use fluorinated alcohols, which have a large latent heat of vaporization.

(ハ)発明の目的 この発明の目的は、前記のごとき従来の吸収冷凍機用組
成物の欠点を解消し、特に低粘度であってさらに後記の
ごとき多くの利点を有する吸収冷凍機用組成物を提供す
るにある。
(c) Purpose of the Invention The purpose of the present invention is to solve the drawbacks of the conventional compositions for absorption refrigerating machines as described above, and to provide a composition for absorption refrigerating machines that has a particularly low viscosity and has many advantages as described below. is to provide.

に)発明の構成 この発明に用いられる冷媒の、炭素数2−1O(以下余
白、次頁に続く) の炭素原子を有しかつ常温で液体であり加熱時に常圧又
は減圧下で蒸気となシうる弗素化アルコールとしては特
開昭56−88485号に記載の化合物が挙げられる。
B) Structure of the Invention The refrigerant used in this invention has carbon atoms of 2-1 O (hereinafter in the margin, continued on the next page), is liquid at room temperature, and turns into vapor under normal pressure or reduced pressure when heated. Examples of the fluorinated alcohol include compounds described in JP-A-56-88485.

 これらのうちで好ましいものはトリフルオロエタノー
ル、とくに好ましいものケ2.2.2−トリフルオロエ
タノール(以下TFFjという)である。
Among these, preferred is trifluoroethanol, and particularly preferred is 2.2.2-trifluoroethanol (hereinafter referred to as TFFj).

一方イミダゾールは、分子中に不対電子を有する窒素原
子を2個もっているので、弗素化アルコール(例えばT
FJC7jど)との電気吸引作用によって弗素化アルコ
ール吸収時の蒸気圧降下度が大きいということ、また化
学的に安定で酸、アルカリおよび還元剤に対しても強い
抵抗力を有し吸収剤としての利点を有する。 しか・し
イミダゾールは結晶性でしかも冷媒の弗素化アルコール
に対する溶解性が小さく(例えばT′I!Iには室温で
50−重量%までしか溶解しない)高粘度でかつ晶析性
を有する傾向がある。
On the other hand, imidazole has two nitrogen atoms with unpaired electrons in its molecule, so fluorinated alcohols (such as T
Due to the electric attraction effect with FJC7j, etc., the degree of vapor pressure drop during absorption of fluorinated alcohol is large, and it is also chemically stable and has strong resistance to acids, alkalis, and reducing agents, making it suitable as an absorbent. has advantages. However, imidazoles are crystalline and have low solubility in the refrigerant fluorinated alcohol (for example, only 50% by weight dissolves in T'I!I at room temperature), and tend to have high viscosity and crystallization. be.

この発明はイミダゾールと2−エチル−4−メチルイミ
ダゾールとの混合物が低粘度で高沸点を有することに着
目し、この混合物と弗素化アルコール(例えばTyn)
とからなる組成物は粘度が低く晶析性が認められずしか
も吸収冷凍機用組成物として優れていることを見出して
なされたものである。
This invention focuses on the fact that a mixture of imidazole and 2-ethyl-4-methylimidazole has a low viscosity and a high boiling point.
This composition was developed based on the discovery that the composition has low viscosity, exhibits no crystallization, and is excellent as a composition for absorption refrigerators.

かくしてこの発明は冷媒としての2>l Oの炭素原子
を有しかつ常温で液体で61)加熱時に常圧又は減圧下
で蒸気とl)うる弗素化アルコールと、吸収剤としての
イミダゾールと2−エチル−4−メチルイミダゾールと
からなる吸収冷凍機用の組成物を提供するものである。
Thus, the present invention uses a fluorinated alcohol having 2>l O carbon atoms as a refrigerant and which is liquid at room temperature (61) and vaporized under normal pressure or reduced pressure when heated, imidazole as an absorbent, and 2- The present invention provides a composition for an absorption refrigerator comprising ethyl-4-methylimidazole.

この発明の組成物における吸収剤としては、イミダゾー
ルと2−エチル−4−メチルイミダゾールの重量比率は
85〜45:65〜55のものが用いられ、40:60
のものが好ましい。 さらKこの発明の組成物における
冷媒の弗素化アルコールと吸収剤との含有比率は広範囲
に変えることができる。 すなわち組成物の重量に基づ
いて冷媒は通常5〜60重量%好ましくは10〜60重
量%、また吸収剤は通常40〜95重量%好ましくは5
0〜90重量−の組成物が用いられる。
The absorbent used in the composition of this invention has a weight ratio of imidazole and 2-ethyl-4-methylimidazole of 85 to 45:65 to 55, and 40:60.
Preferably. Furthermore, the content ratio of the fluorinated alcohol of the refrigerant and the absorbent in the composition of this invention can vary within a wide range. That is, based on the weight of the composition, the refrigerant is usually 5 to 60% by weight, preferably 10 to 60% by weight, and the absorbent is usually 40 to 95% by weight, preferably 5% by weight.
Compositions ranging from 0 to 90% by weight are used.

この発明の組成物は一般に第1図に示すような構成の吸
収冷凍機に用いられる。
The composition of the present invention is generally used in an absorption refrigerator having a configuration as shown in FIG.

(1)は冷媒を吸収して稀釈された吸収液から冷媒を加
熱分離する発生器、(2)は発生器(1)から流入する
気体冷媒を冷却して液状冷媒にする凝縮器、(3)は凝
縮器(2)の液体冷媒を減圧器(4)で減圧し低圧条件
下で散布し気化させて所望の冷却を行う蒸発器、(5)
は蒸発器(3)で気化した冷媒を吸収液で吸収すること
Kよル蒸発器(3)による冷却を連続的に行いうるよう
にする吸収器、(6)は発生器(1)において冷媒が分
離されて吸収器(5)に送られる濃い吸収液と、吸収器
(5)から発生器〔1〕に戻る稀釈された吸収液との熱
交換を行う熱交換器、(7)は吸収液の循環ポンプ、(
8)と(9)とはアナライザーと精留器である。
(1) is a generator that absorbs refrigerant and heats and separates the refrigerant from the diluted absorption liquid; (2) is a condenser that cools the gaseous refrigerant flowing from the generator (1) into a liquid refrigerant; (3) ) is an evaporator that reduces the pressure of the liquid refrigerant in the condenser (2) with a pressure reducer (4) and sprays it under low pressure conditions to vaporize it to achieve the desired cooling; (5)
(6) is an absorber that absorbs the refrigerant vaporized in the evaporator (3) with an absorption liquid so that the evaporator (3) can continuously cool the refrigerant; A heat exchanger (7) exchanges heat between the concentrated absorbent liquid that is separated and sent to the absorber (5) and the diluted absorbent liquid that returns from the absorber (5) to the generator [1]. Liquid circulation pump, (
8) and (9) are an analyzer and a rectifier.

(ホ)実験例と実施例 この発明を下記実験例と実施例で説明するがこの発明を
限定するものではない。
(e) Experimental Examples and Examples This invention will be explained by the following experimental examples and examples, but they are not intended to limit the invention.

実験例 組成物の粘度 40重量−のイミダゾールと60重量−〇2−エチル−
4−メチルイミダゾールとの混合物は、室温における粘
度が約100センチボイズで、2−エチル−4−メチル
イミダゾールが約8000センチボイズもの高粘度であ
るのに対して著しく粘度が低下している。 またこの混
合物の70重量%とTFFiの80重量%とからなる組
成物は粘度が室温で約60センチポイズでありしかも晶
析性がないことが認められた。
Experimental example Composition viscosity: 40% by weight imidazole and 60% by weight 〇2-ethyl-
The mixture with 4-methylimidazole has a viscosity of about 100 centivoise at room temperature, which is significantly lower than that of 2-ethyl-4-methylimidazole, which has a high viscosity of about 8000 centivoise. It was also observed that a composition consisting of 70% by weight of this mixture and 80% by weight of TFFi had a viscosity of about 60 centipoise at room temperature and was free of crystallization.

また上記組成物の沸点は154℃であり、冷媒であるT
FBの沸点の74.5℃と比較して79.5℃の沸点上
昇を示しておシ、吸収剤の冷媒(TFE)吸収性が大き
く従って蒸気圧降下度が大きいことを示している。
The boiling point of the above composition is 154°C, and the refrigerant T
This shows an increase in the boiling point of 79.5°C compared to the boiling point of FB of 74.5°C, which indicates that the refrigerant (TFE) absorbency of the absorbent is large and therefore the degree of vapor pressure drop is large.

また前記混合物(400ffのイミダゾールと60重量
%の2−エチル−4−メチルイミダゾール)の沸点は後
記第2図の蒸気圧温度線図から明らかなように約278
℃であシ、TF1!iの沸点745℃よシも著しく高い
ので丁FBの吸収剤からの分離が容易であることが分か
る。
Further, the boiling point of the mixture (400ff of imidazole and 60% by weight of 2-ethyl-4-methylimidazole) is approximately 278, as is clear from the vapor pressure temperature diagram in Figure 2 below.
℃adeshi, TF1! It can be seen that the boiling point of i is extremely high at 745° C., so it is easy to separate the FB from the absorbent.

実施例 80重量%の冷媒(TFFi)と、70重量%の吸収剤
(前記のイミダゾールと2−エチル−4−メチルイミダ
ゾールとからなる混合物)とからなる組成物を前記第1
図の吸収冷凍機に封入して駆動した場合の蒸気圧線図を
第2図に示した。
Example 8 A composition consisting of 80% by weight of a refrigerant (TFFi) and 70% by weight of an absorbent (a mixture of imidazole and 2-ethyl-4-methylimidazole) was
FIG. 2 shows a vapor pressure diagram when the gas is enclosed in the absorption refrigerator shown in the figure and is operated.

すなわち発生器(1)にTFBが流入して(第2図a点
)TF兄/e、収剤の重量%比率が8 o / 7 。
That is, TFB flows into the generator (1) (point a in Fig. 2), and the weight percent ratio of the collected agent is 8 o/7.

の吸収剤濃度の低い吸収液(稀液)が生成し、これを1
74℃に加熱しTFKを気化分離して(第2図す点)凝
縮器(2) K送る。 一方吸収剤濃度がほぼ85重量
%に濃縮された吸収剤濃度の高い吸収液(濃液)は熱交
換器(6)を介して冷却され吸収器(5)に流入する(
第4図C点)、 凝縮器(2)に流入したTFKは約5
7.5℃に冷却されて液化し、減圧装置(4)を経て約
10.5ff)kの圧力にある蒸発器(3)に供給散布
され、ここで気化する際に、蒸発器(3)の周囲の物体
を約−8℃に冷却する。 気化したTFBは吸収器(5
)において散布される濃液に吸収されるため、蒸発器〈
3)内けほぼ1G、5m11gに保持され、TFRのガ
スを吸収して生成した(第4図d点)稀液は、熱交換器
(6)において吸収器(5)に流入する濃液と熱交換し
て昇温した後再び発生器(1)に流入する(第4図a点
)。
An absorbent liquid (dilute liquid) with a low absorbent concentration is generated, and this is
It is heated to 74°C to vaporize and separate TFK (point shown in Figure 2) and sent to a condenser (2). On the other hand, the absorbent liquid (concentrated liquid) with a high absorbent concentration concentrated to approximately 85% by weight is cooled via the heat exchanger (6) and flows into the absorber (5) (
Point C in Figure 4), the amount of TFK flowing into the condenser (2) is approximately 5
It is cooled to 7.5°C and liquefied, and is supplied to the evaporator (3) at a pressure of approximately 10.5ff) via a pressure reducing device (4), and when vaporized here, the evaporator (3) The surrounding object is cooled to about -8°C. The vaporized TFB is transferred to the absorber (5
), the evaporator <
3) The dilute liquid generated by absorbing the TFR gas (point d in Figure 4), which is maintained at approximately 1 G and 5 m 11 g, is mixed with the concentrated liquid flowing into the absorber (5) in the heat exchanger (6). After exchanging heat and raising the temperature, it flows into the generator (1) again (point a in Figure 4).

なお第2図におい°て、直線(4)はTFBの各温度に
対する飽和蒸気圧を、直線(Bl)(Bり(Bl)(B
4)はTFI/吸収剤の重量比が4’/60. ”/7
0゜”/80.10/90の組成物の各温度に対する飽
和蒸気圧を、直線(0)は吸収剤の各温度に対する飽和
蒸気圧を、それぞれ示す。
In addition, in Fig. 2, the straight line (4) represents the saturated vapor pressure of TFB at each temperature.
4) has a TFI/absorbent weight ratio of 4'/60. ”/7
The straight line (0) shows the saturated vapor pressure of the composition of 0°''/80.10/90 at each temperature, and the straight line (0) shows the saturated vapor pressure of the absorbent at each temperature.

上記の吸収冷凍サイクルにおいてTFEと該吸収剤は共
沸せず、両者の沸点差は前記のように著しく大きいので
吸収冷凍機のアナライザー(8)と精留器(9)は簡単
な構造のものでよい。
In the absorption refrigeration cycle described above, TFE and the absorbent do not undergo azeotropy, and the difference in boiling point between the two is extremely large as described above, so the analyzer (8) and rectifier (9) of the absorption refrigeration machine have a simple structure. That's fine.

また上記組成物を用いると、吸収冷凍機の運転圧力が発
生器(1)のおる高圧側において約850ff拘、蒸発
器(3)のある低圧側では約10ff)Igといういず
れの部分も大気圧よシも低く、従来の7レオンーテトラ
エチレングリコールジメチルエーテル系のように運転圧
力が高圧側で10〜20kg/d低圧側においてさえ約
5kg/cdと高圧条件で運転される組成物系と異なり
、吸収冷凍機の構成機器の強度の軽減や保守管理の簡素
化がはかれる−9さらKこの実施例の組成物は通常の吸
収冷凍機の運転条件下で晶析現象が認められず、かつ低
粘度である。 また凝縮器(2)と吸収器〈3)の冷却
は空冷で充分なため、従来の水−臭化リチウム系のよう
な水冷却機構やクーリングタワーが不要となシ、水事情
の悪い地域での吸収冷凍機の運転も可能である。
Furthermore, when the above composition is used, the operating pressure of the absorption refrigerator is about 850 ff on the high pressure side where the generator (1) is located, and about 10 ff on the low pressure side where the evaporator (3) is located, both of which are at atmospheric pressure. Unlike the conventional 7 leone-tetraethylene glycol dimethyl ether system, which has an operating pressure of 10 to 20 kg/d on the high pressure side and about 5 kg/cd even on the low pressure side, which operates under high pressure conditions, The composition of this example shows no crystallization phenomenon under normal absorption chiller operating conditions and has a low viscosity. It is. In addition, since air cooling is sufficient for cooling the condenser (2) and absorber (3), there is no need for a water cooling mechanism or cooling tower like in conventional water-lithium bromide systems, making it ideal for areas with poor water conditions. It is also possible to operate an absorption refrigerator.

(へ)発明の効果 この発明の吸収冷凍機用組成物は次のような利点を有す
る。
(f) Effects of the Invention The composition for absorption refrigerators of the present invention has the following advantages.

(1)発生器において冷媒を組成物から分離する場合に
温度をさほど高くしなくても、よい。
(1) When separating the refrigerant from the composition in the generator, the temperature does not need to be very high.

(i) 吸収剤の冷媒吸収性が大で吸収時の蒸気圧降下
度が大きい。
(i) The refrigerant absorbency of the absorbent is high and the degree of vapor pressure drop during absorption is large.

(1) 冷媒を凝縮させる際に温度をさほど低温にしな
くてもよいので凝縮器および吸収器の冷却は空冷で充分
である。
(1) Air cooling is sufficient for cooling the condenser and absorber since the temperature does not need to be very low when condensing the refrigerant.

卸 高い成績係数(cop)が得られる。Wholesale: A high coefficient of performance (COP) can be obtained.

(V) 冷媒と吸収剤は共沸せず、かつ両者の沸点差は
著しく大きいので吸収冷凍機のアナライザーと精留器は
簡単な構造のものでよい。
(V) Since the refrigerant and the absorbent do not azeotrope and the difference in boiling point between them is extremely large, the analyzer and rectifier of the absorption refrigerator may be of simple structure.

(vl) 低圧で稼動しうるので機内からの液やガスの
漏出の危険がなく、装置の強度の軽減並びに保守管理の
簡素化が可能である。
(vl) Since it can be operated at low pressure, there is no risk of leakage of liquid or gas from inside the machine, and it is possible to reduce the strength of the device and simplify maintenance management.

輔)組成物が低粘度なので循環動力が軽減できる。輔)Since the composition has low viscosity, circulation power can be reduced.

(4)組成物が晶析性を有しないので循環動力が軽減さ
れるとともに伝熱抵抗が小さくなる。 また寒冷地でも
使用できる。
(4) Since the composition does not have crystallization properties, circulating power is reduced and heat transfer resistance is reduced. It can also be used in cold regions.

QX) 組成物の鉄や銅に対する腐蝕性が小さい。QX) The composition has low corrosivity to iron and copper.

(X) 組成物に毒性がない。(X) The composition is non-toxic.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の組成物を用いる吸収冷凍機の一例の
構成図、第2図はこの発明の組成物の・−笑施例の蒸気
圧温度線図である。 (1ト一発生器、(2)・−・凝縮器、(3)・・・蒸
発器、(4)・−・減圧器、(5)−・・吸収器、(6
)−・・熱交換器、(7)・・・吸収液の循環ポンプ、
(8)−・・アナライザー、および(9)・・・精留器
FIG. 1 is a block diagram of an example of an absorption refrigerator using the composition of this invention, and FIG. 2 is a vapor pressure temperature diagram of an example of the composition of this invention. (1 generator, (2) --- condenser, (3) --- evaporator, (4) --- pressure reducer, (5) --- absorber, (6
)--heat exchanger, (7)... absorption liquid circulation pump,
(8) --- Analyzer, and (9) --- Rectifier.

Claims (1)

【特許請求の範囲】 1、冷媒としての2〜lOの炭素原子を有しかつ常温で
液体であシ加熱時に常圧又は減圧下で蒸気となシうる弗
素化アルコールと、吸収剤としてのイミダゾールと2−
エチル−4−メチルイミダゾールとからなる吸収冷凍機
用の組成物。 2、弗素化フルコールが2+L2− ト+)フルオロエ
タノールである特許請求の範囲第1項記載の組成物。
[Scope of Claims] 1. A fluorinated alcohol having 2 to 1O carbon atoms as a refrigerant and which is liquid at room temperature and turns into vapor under normal pressure or reduced pressure when heated, and imidazole as an absorbent. and 2-
A composition for an absorption refrigerator comprising ethyl-4-methylimidazole. 2. The composition according to claim 1, wherein the fluorinated fluorinated fluorinated fluoroethanol is 2+L2- fluoroethanol.
JP58116667A 1983-06-27 1983-06-27 Composition for absorption refrigerator Pending JPS606779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58116667A JPS606779A (en) 1983-06-27 1983-06-27 Composition for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58116667A JPS606779A (en) 1983-06-27 1983-06-27 Composition for absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS606779A true JPS606779A (en) 1985-01-14

Family

ID=14692907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58116667A Pending JPS606779A (en) 1983-06-27 1983-06-27 Composition for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS606779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543965A (en) * 2010-11-08 2013-12-09 エボニック デグサ ゲーエムベーハー Working medium for absorption heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013543965A (en) * 2010-11-08 2013-12-09 エボニック デグサ ゲーエムベーハー Working medium for absorption heat pump

Similar Documents

Publication Publication Date Title
JPS592477B2 (en) Absorption liquid for absorption refrigerators
JP3208151B2 (en) Refrigeration equipment
US3541013A (en) Lithium bromide-lithium thiocyanatewater composition for an absorbentrefrigeration system
WO1993021280A1 (en) Refrigerant composition and binary refrigerating system using the composition
JPS606779A (en) Composition for absorption refrigerator
JPS5827300B2 (en) Refrigerant for absorption refrigerators
JPS6356918B2 (en)
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
JPS6114282A (en) Medium for absorption type refrigerator
JPS606778A (en) Composition for absorption refrigerator
JPS6356915B2 (en)
JPS5991188A (en) Absorbing solution
JPS60118785A (en) Absorbing solution for absorption refrigerator
JPH0411778B2 (en)
JP2000319646A (en) Absorbing solution for absorption refrigerating machine and absorption refrigerating machine
JPH03269083A (en) Refrigerant composition
JPS6120598B2 (en)
JPS6111985B2 (en)
JPH09318182A (en) Absorption room cooler
JPS6356917B2 (en)
JPH0660306B2 (en) Refrigerant composition
JPS6040186A (en) Refrigerant composition for absorption refrigerator
JPS6356916B2 (en)
JP2668063B2 (en) Absorbent composition for absorption air conditioner
JP2748789B2 (en) Absorption solution for absorption refrigerator