JPS60118785A - Absorbing solution for absorption refrigerator - Google Patents

Absorbing solution for absorption refrigerator

Info

Publication number
JPS60118785A
JPS60118785A JP58226161A JP22616183A JPS60118785A JP S60118785 A JPS60118785 A JP S60118785A JP 58226161 A JP58226161 A JP 58226161A JP 22616183 A JP22616183 A JP 22616183A JP S60118785 A JPS60118785 A JP S60118785A
Authority
JP
Japan
Prior art keywords
absorption
absorption liquid
methanol
liquid
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58226161A
Other languages
Japanese (ja)
Inventor
Hiroyuki Matsumura
宏之 松村
Yasutoshi Shiyouji
恭敏 庄司
Shuzo Takahata
高畠 修蔵
Kunihiko Nakajima
邦彦 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP58226161A priority Critical patent/JPS60118785A/en
Publication of JPS60118785A publication Critical patent/JPS60118785A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Abstract

PURPOSE:The titled absorbing solution, containing lithium bromide as an absorbent and methanol as a refrigerant, capable of suppressing the content of moisture to a minor amount, having a high coefficient of performance, improved handleability, and capable of providing air cooling of absorbers and condensers and generating low temperatures. CONSTITUTION:An absorbing solution containing lithium bromide as an absorbent, methanol as a refrigerant and <=1.5wt%, preferably <=1.0wt% moisture. An organic corrosion inhibitor, e.g. tolyltriazole, benztriazole, etc. having no oxidizing action in 50-5,000ppm concentration is preferably added as a corrosion inhibitor.

Description

【発明の詳細な説明】 本発明は、吸収冷凍機に使用される吸収液、詳しくは臭
化リチウム(Lj−Br )を吸収剤とし、メタノール
を冷媒とする吸収液組成物に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an absorption liquid used in an absorption refrigerator, and more particularly to an absorption liquid composition using lithium bromide (Lj-Br) as an absorbent and methanol as a refrigerant.

吸収冷凍機は、冷暖房などの空気温度調節および冷凍な
どを目的とし、冷媒液が蒸発する際の蒸発潜熱を利用し
低温を発生させるとともに、蒸発した冷媒蒸気が吸収液
に吸収されることによシ低温を維持させるものである。
Absorption refrigerators are used for air temperature control and refrigeration in air-conditioning and heating systems, and use the latent heat of evaporation when a refrigerant liquid evaporates to generate low temperatures. This is to maintain the low temperature.

吸収冷凍機の構成は第1図に示す如くであり、主要機器
は再生器1、凝縮器2、吸収器3、蒸発器4、熱交換器
5よりなる。再生器lは外部熱源(石油燃料、都市ガス
、蒸気、排ガスなど)により吸収液を加熱し、冷媒を蒸
発させ吸収液を濃縮させる。ここで吸収液は濃液となる
。凝縮器2は[Jj、止器1よシ蒸発分離した冷媒蒸気
を冷却し液化させる。吸収器3では再生器lより送られ
た濃液が蒸発器4で蒸発した冷媒蒸気を吸収する。ここ
で吸収液は希液となる。吸収器3は凝縮熱、混合熱によ
り温度上昇が生じるため外部冷却水にて冷却される。蒸
発器4では凝縮器2より送られた冷媒を蒸発させ、蒸@
潜熱にて低温の冷液(熱媒体)を発生させるものである
。熱交換器5では、吸収液(a液)と吸収液(希液)ど
を熱交換させる。
The structure of the absorption refrigerator is as shown in FIG. 1, and the main equipment includes a regenerator 1, a condenser 2, an absorber 3, an evaporator 4, and a heat exchanger 5. The regenerator 1 heats the absorption liquid using an external heat source (petroleum fuel, city gas, steam, exhaust gas, etc.), evaporates the refrigerant, and concentrates the absorption liquid. Here, the absorption liquid becomes a concentrated liquid. The condenser 2 cools and liquefies the refrigerant vapor separated by evaporation from the stopper 1. In the absorber 3, the concentrated liquid sent from the regenerator 1 absorbs the refrigerant vapor evaporated in the evaporator 4. Here, the absorption liquid becomes a dilute liquid. The absorber 3 is cooled with external cooling water because the temperature rises due to heat of condensation and heat of mixing. In the evaporator 4, the refrigerant sent from the condenser 2 is evaporated, and the refrigerant is evaporated.
It generates a low-temperature cold liquid (heating medium) using latent heat. The heat exchanger 5 exchanges heat between the absorption liquid (liquid A) and the absorption liquid (dilute liquid).

これらの構成機器において、再生器1は外部熱源によっ
て加熱せられ、吸収器3および凝縮器2は通常、冷却水
にて冷却され、蒸発器4にて冷液が発生する。一方、吸
収液は、再生器→吸収滞→山止器の順で、冷媒は、再生
器→凝縮器→蒸発器戸吸収器→再止器の順で、外部冷却
水は、吸収器−→凝縮器の順で送られる。
In these components, the regenerator 1 is heated by an external heat source, the absorber 3 and the condenser 2 are usually cooled with cooling water, and a cold liquid is generated in the evaporator 4. On the other hand, the absorption liquid goes in the order of regenerator → absorption stagnation → stopper, the refrigerant goes in the order of regenerator → condenser → evaporator door absorber → stopper, and external cooling water goes in the order of absorber → absorber → stopper. It is then sent to the condenser.

この操作を定常的に連続させることによシ、継続的な冷
凍機能を発揮する。このような吸収冷凍機に使用される
吸収液においては、吸収剤の溶解度が大きくかつ蒸気圧
降下が大きく、吸収剤の晶出温度が低いことが必要であ
る。また冷媒としては蒸発潜熱が大きいことが望まれる
By constantly performing this operation, a continuous refrigeration function is achieved. In the absorption liquid used in such an absorption refrigerator, it is necessary that the solubility of the absorbent is high, the vapor pressure drop is large, and the crystallization temperature of the absorbent is low. Further, it is desired that the refrigerant has a large latent heat of vaporization.

このだめ、従来吸収冷凍機にて使用されている吸収液は
、冷媒として水、吸収剤としてLi、Brなどのハロゲ
ン化リチウムを使用するものが代表的である。現在、冷
暖房などの空調用の吸収冷凍機のほとんど全てにおいて
、この1Br−水系吸収液が使用されている。このLi
Br−水系吸収液は、水の蒸発潜熱が大きいため成績係
数が大きく、かつ吸収液の蒸気圧降下が大きく、捷た低
粘性で比重が比較的小さく取扱い性の点でも良好であり
、吸収液としてすぐれた特性を有する。しかしながら、
(1)冷凍サイクル上吸収器、凝縮器の空冷化ができな
いこと、(2)水の凍結温度が0°Cであるため0°C
以下の低温発生ができないことなどの短所があシ、これ
らが吸収冷凍機の適用゛頭囲の拡大を制服するものとも
なっている。そこで、新しい領域での吸収冷凍機の適応
を図るには、Lj−Br−水系以外の高性能の吸収液が
必要である。一方、L−′1Br−水系以外の吸収液と
して、アンモニアを冷媒とし水を吸収剤とする吸収液、
弗素原子を有する炭化水素を冷媒としこの冷媒を吸収す
るイ」機動を吸収剤とする吸収液なども知られている。
In view of this, absorption liquids conventionally used in absorption refrigerators typically use water as a refrigerant and lithium halide such as Li or Br as an absorbent. Currently, this 1Br-water-based absorption liquid is used in almost all absorption refrigerators for air conditioning such as heating and cooling. This Li
Br-water-based absorption liquid has a large coefficient of performance due to the large latent heat of vaporization of water, a large vapor pressure drop of the absorption liquid, and has low viscosity and relatively low specific gravity, making it easy to handle. It has excellent properties as however,
(1) The absorber and condenser cannot be air-cooled on the refrigeration cycle, (2) The freezing temperature of water is 0°C, so it is 0°C.
There are disadvantages such as the inability to generate lower temperatures, but these are also the reasons why absorption refrigerators are used to increase head circumference. Therefore, in order to adapt absorption refrigerators to new areas, a high-performance absorption liquid other than the Lj-Br-water system is required. On the other hand, as absorption liquids other than L-'1Br-water systems, absorption liquids using ammonia as a refrigerant and water as an absorbent,
There are also known absorption liquids that use a hydrocarbon containing fluorine atoms as a refrigerant and absorb this refrigerant as an absorbent.

しかしながら、アンモニア系吸収液はその毒性が使用上
の問題であり、弗素原子を有する炭化水素系吸収故では
成績係数が著しく小さく、いづれもLiBr −水系吸
収液に較べると性能面で大幅に見劣ることが明らかであ
る。このように、その他の吸収液を含めても、臭化リチ
ウム−水系吸収液の欠点をおぎない吸収冷凍機の適用分
野の拡大を可能にするためのすべての点を満足できる吸
収液は未だ見い出されていない。
However, the toxicity of ammonia-based absorption liquids is a problem in use, and the coefficient of performance of hydrocarbon-based absorption liquids containing fluorine atoms is extremely small, and the performance of both is significantly inferior to that of LiBr-water-based absorption liquids. That is clear. In this way, even if other absorption liquids are included, an absorption liquid that satisfies all the points that overcomes the drawbacks of lithium bromide-water absorption liquid and enables expansion of the application field of absorption refrigerators has not yet been found. Not yet.

本発明は上記に鑑み、本発明者らが見い出しだものであ
シ、LiBrを吸収剤としメタノールを冷媒とするとと
もに両者を混合せしめた溶液中の水分量を1.5wt%
以下、望ましくは1,0wt%以下とする吸収液によっ
て、成績係数が大きくかつハンドリング性が良好である
とともに、吸収器、凝R?J器の空冷化、また0°C以
下の低温の発生化などを1−可能ならしめ、TJ :L
 B r−水系吸収液では困ガトなる吸収冷凍機の新規
分野への適用を可能ならしめる吸収冷凍機用吸収液を提
供するものである。
The present invention was discovered by the present inventors in view of the above, and consists of using LiBr as an absorbent and methanol as a refrigerant, and reducing the water content in a solution in which both are mixed to 1.5 wt%.
Hereinafter, by using an absorbing liquid whose content is desirably 1.0 wt% or less, a large coefficient of performance and good handling properties can be obtained, and the absorber and coagulation R? 1- Make it possible to air-cool the J unit and generate low temperatures below 0°C, TJ:L
The object of the present invention is to provide an absorption liquid for an absorption refrigerator that can be applied to a new field of absorption refrigerators, where it is difficult to use a Br-water-based absorption liquid.

以下、本発明の構成を詳細に説明する。メタノールは蒸
発潜熱が大きく吸収液用冷媒に用いる際には成績係数が
大きくなる。またLj−Brの溶解度も大きくかつ蒸気
圧降Fも大なるため、Lj−Br −メタノール吸収液
は下記の優れた特徴を有し、これはL iB r−水系
吸収液にはない長所であシ、吸収冷凍機の新規分野への
適用を可能ならしめるものである。
Hereinafter, the configuration of the present invention will be explained in detail. Methanol has a large latent heat of vaporization and has a large coefficient of performance when used as a refrigerant for absorption liquid. In addition, since the solubility of Lj-Br is high and the vapor pressure drop F is also large, the Lj-Br-methanol absorption liquid has the following excellent characteristics, which are advantages that the LiBr-water-based absorption liquid does not have. This makes it possible to apply absorption refrigerators to new fields.

(1) 冷凍サイクル上、吸収器、凝縮器の空冷化が可
能であること。(クーリングクワ−などの水冷却設備が
不要であり、設置1“hが簡素化する。)(2)0°C
以下の低温の発生が可能である。(冷涼分野にも適用し
得る。) (3)冷媒の蒸気圧が大きいため吸収器、蒸発器のコン
パクト化が可能であること。(吸収器、蒸発器における
伝熱面を小さくし得る。)しかしながら、従来L I 
B r−メタノール吸収液は吸収液の約35〜5 Q 
wt%の低濃度域での晶析、即ちLi−Br−メタノー
ル吸収液のデユーリング線図における冷凍サイクルの近
傍に存在する晶析線の存在が大きな問題とされていた。
(1) It is possible to air-cool the absorber and condenser in the refrigeration cycle. (No water cooling equipment such as a cooling hoe is required, simplifying the installation time.) (2) 0°C
It is possible to generate the following low temperatures: (It can also be applied to the cooling field.) (3) Since the vapor pressure of the refrigerant is high, it is possible to make the absorber and evaporator more compact. (The heat transfer surface in the absorber and evaporator can be made smaller.) However, conventional L I
B r-methanol absorption liquid is about 35 to 5 Q of absorption liquid.
Crystallization in the low concentration range of wt%, ie, the presence of crystallization lines near the refrigeration cycle in the Duehring diagram of the Li-Br-methanol absorption liquid, has been a major problem.

これは吸収液が20〜30°Cの比較的高い温度で晶析
するため、吸収冷凍機の運転時の温度管理ならびに運転
停止時の晶析防止対策カ極めて複雑となるためである。
This is because the absorption liquid crystallizes at a relatively high temperature of 20 to 30°C, which makes temperature control during operation of the absorption refrigerator and measures to prevent crystallization when the operation is stopped extremely complicated.

なおとのLi Br−メタノール吸11又液に多量の水
(例えばlQwt%以上)を添加することによって低濃
度域での晶析が発生しなくなることが知られているが、
多量の水分の添加によって蒸気圧が小さくなるなどLi
Br−メタノール吸収液の長所が大幅に低減するため適
切な改良方法とは云えない。
It is known that adding a large amount of water (for example, 1Qwt% or more) to Naoto's LiBr-methanol absorption solution prevents crystallization in the low concentration range.
The vapor pressure decreases due to the addition of a large amount of water.
Since the advantages of the Br-methanol absorption liquid are significantly reduced, it cannot be said to be an appropriate improvement method.

本発明者らは、LiBr−メタノール吸収液につき鋭意
研究の結果、低濃度域での晶析物質はT」l−1臀の結
晶ではなく、Lj−Brのメタノール化物であることな
らびにLiBr−メタノール吸収液中の水分量が1.5
 wt%以下であれば低濃度域での晶析が発生しないこ
とを明らかにした。即ち、該吸収液中の水分量を1.5
wt%以下とすることにょシ、低濃度域の晶析を防ぎL
 j−Br−メタノール吸収液の長所を充分に生かし得
る吸収液とすることを見いだしたものである。
As a result of intensive research on LiBr-methanol absorption liquid, the present inventors found that the crystallized substance in the low concentration range is not a crystal of T'l-1 buttock, but a methanolated product of Lj-Br, and that LiBr-methanol The amount of water in the absorption liquid is 1.5
It was revealed that crystallization does not occur in the low concentration range if the concentration is below wt%. That is, the water content in the absorption liquid is 1.5
It is important to keep it below wt% to prevent crystallization in the low concentration range.
It has been discovered that the absorption liquid can fully utilize the advantages of the j-Br-methanol absorption liquid.

第2図にLj−Br−メタノール吸収液におけるLiB
rのメタノール化物の晶折線を示す。吸収液中の水分量
が1.gw’t、%、1.5wt%、2,0wt%と大
きくなるにしたがって吸収液の晶析温度が高くなり、と
くに2,0wt%では吸収液濃度38〜45 wt% 
における晶析温度が約28〜80’Cであり、運転休止
時には通常の室温下で晶析を発生する。一方、吸収液中
の水分量が1.0wt%以下の際にはこの吸収液の低濃
度域での晶析は0 ’C以上の温度では発生しないこと
が見い出された。
Figure 2 shows LiB in the Lj-Br-methanol absorption liquid.
The crystalline folding line of the methanol compound of r is shown. The amount of water in the absorption liquid is 1. The crystallization temperature of the absorption liquid increases as gw't increases from 1.5wt% to 2.0wt%, and especially at 2.0wt%, the absorption liquid concentration is 38 to 45 wt%.
The crystallization temperature is about 28 to 80'C, and crystallization occurs at normal room temperature when the operation is stopped. On the other hand, it has been found that when the water content in the absorption liquid is 1.0 wt % or less, crystallization of the absorption liquid in a low concentration range does not occur at a temperature of 0'C or higher.

またL I B r−メタノール吸収液における腐食性
は元来極めて小さいものであるが、吸収液の製作時なら
びに冷却運転時等における空気中の水分等のもれこみな
どによって極めて小針(例えばQ、lWl。
Furthermore, although the corrosiveness of the L I B r-methanol absorption liquid is originally extremely low, it may cause extremely small needles (for example, Q, lWl.

%)の水分が吸収液に存在するおそれがあり、この微量
による装置材料の腐食性も長期間のメインテナンスフリ
ーの要求される際には問題となる。
%) of moisture may be present in the absorption liquid, and the corrosivity of the equipment material due to this small amount also becomes a problem when long-term maintenance-free operation is required.

従来、LiBr−水系吸収液では防食剤としてモリブデ
ン酸リチウム、クロム酸リチウム、硝酸リチウムなどの
無機インヒビクーが使用されているが、これらはいづれ
も酸化作用が強く、メタノールを酸化分解させるためL
 1Br−メタノール吸収1校には使用できない。この
ため、本発明では酸化作用を持たないトリルトリアゾー
ル、ベンゾトリアゾールなどの有機防食剤を50〜50
00 ppm の濃1シで吸収液に添加することにより
、徽)歎水分による腐食を抑制するものである。
Conventionally, inorganic inhibitors such as lithium molybdate, lithium chromate, and lithium nitrate have been used as corrosion inhibitors in LiBr-aqueous absorption liquids, but these all have strong oxidizing effects and cause methanol to oxidize and decompose, resulting in L
Cannot be used for 1Br-methanol absorption. For this reason, in the present invention, organic anticorrosives such as tolyltriazole and benzotriazole, which do not have oxidizing effects, are added at 50 to 50%
By adding it to the absorbing liquid at a concentration of 0.00 ppm, corrosion caused by moisture can be suppressed.

つぎに実施例および比1咬例について説明する1、冷液
発生機能に係わる実施例および比較例は次の条件下によ
るものである。
Next, Examples and comparative examples will be described. 1. Examples and comparative examples relating to the cold liquid generation function are based on the following conditions.

冷凍サイクル 一重効用 蒸発器冷却温度 空調用:5°C 冷凍用ニー5°C 吸収液の濃度差 5〜7wt% (濃液と希液の濃度差) 吸収器、凝縮器温度 第1表に示す。Refrigeration cycle single effect Evaporator cooling temperature for air conditioning: 5°C Knee 5°C for freezing Absorption liquid concentration difference: 5-7wt% (Difference in concentration between concentrated and dilute solutions) Absorber and condenser temperatures are shown in Table 1.

底積係数 吸収液の蒸気圧、潜熱、比熱、混合熱に関す
る物性値をベースとする理 論計算による。熱損失lO%、熱交 換率70%とする。
Basal area coefficient Based on theoretical calculations based on physical property values regarding vapor pressure, latent heat, specific heat, and heat of mixing of the absorption liquid. The heat loss is 10% and the heat exchange rate is 70%.

比較例] 本例は冷暖房などの空調用に適用される代表例であり、
臭化リチウム−水系の吸収液を用い、第2表に示す条件
で実験した。蒸発器温度は5°Cとなり、これより15
°Cの空調用の冷風が得られた。
Comparative Example] This example is a typical example applied to air conditioning such as heating and cooling.
Experiments were conducted using a lithium bromide-water absorption liquid under the conditions shown in Table 2. The evaporator temperature is 5°C, which means 15
Cold air for air conditioning at °C was obtained.

底積係数は0.675であった。また空調サイクルは第
3図においてA−B−C−Dで示を如くであった。
The base area coefficient was 0.675. The air conditioning cycle was as shown by A-B-C-D in FIG.

比較例2 臭化リチウム−水系の吸収液を用い、第2表に示す条件
で実験した。空冷で吸収器温度が50 ″にと高いため
、第3図に示すように冷凍ザイクルΔ′−B’−C’−
D’中に臭化リチウムの晶出線が存在し、冷凍サイク゛
ルとして成り立たなかった。1実施例1 本例は冷暖房などの空調用に適用される例であり、臭化
リチウム−メタノールの吸収液を用い、第2表に示す条
件で実験しだ。なお水分はQ、5wi・%であった。蒸
発器?i1?L度は5°Cであり、15”Gの空調用の
冷風が得られた。底積係数は0.610であシ、比較例
1の場合と較べて遜色はなかった。空調サイクルは第2
図においてA’−B’−C’−1)’で示す如くであっ
た。
Comparative Example 2 An experiment was conducted under the conditions shown in Table 2 using a lithium bromide-water absorption liquid. Since the absorber temperature is as high as 50'' due to air cooling, the freezing cycle Δ'-B'-C'-
A crystallization line of lithium bromide was present in D', and the freezing cycle could not be achieved. 1 Example 1 This example is an example applied to air conditioning such as air conditioning and heating, and experiments were conducted under the conditions shown in Table 2 using a lithium bromide-methanol absorption liquid. Note that the moisture content was Q, 5wi·%. Evaporator? i1? The L degree was 5°C, and a cold air of 15"G for air conditioning was obtained.The base area coefficient was 0.610, which was comparable to that of Comparative Example 1.The air conditioning cycle was 2
It was as shown by A'-B'-C'-1)' in the figure.

実施例2 本例は冷暖房などの空調用に適用されるものであり、臭
化リチウム−メタノールの吸収液を用・ハ、第2表に示
す条件で実験した。なお水分はQ、5wt%であった。
Example 2 This example is applied to air conditioning such as heating and cooling, and experiments were conducted under the conditions shown in Table 2 using a lithium bromide-methanol absorption liquid. Note that the water content was Q, 5 wt%.

蒸発器温度は比較例1、実施例1と同様に5°Cであシ
、空調用として15°Cの冷風が得られた。成績係数は
0.651であり、従来型の代表例である比較例1と1
咬べて遜色はなかった。空調サイクルは第2図において
A−B−C−Dで示す如くであった。
The evaporator temperature was 5°C as in Comparative Example 1 and Example 1, and cold air of 15°C was obtained for air conditioning. The coefficient of performance is 0.651, and Comparative Examples 1 and 1, which are representative examples of the conventional type,
It was comparable in bite. The air conditioning cycle was as shown by A-B-C-D in FIG.

実施例3 本例は0 ’C以下の低温を要する冷凍用に適用される
ものであり、臭化リチウム−メタノールの吸収液を用い
、第2表に示す条件で実験しだ。なお水分Oよ0.5%
であった。蒸発器81に度は一5°Cでちり、0〜−2
°Cのプラインが得られた。成績係数は0.623であ
り、比較例1に較べて遜色はなかった。冷凍サイクルは
第2表においてA”−B”−C”−D”で示す如くであ
った。なお吸収液(濃液、希液)の濃度を大きくするこ
とによって、より低温の発生が可能である。
Example 3 This example is applied to refrigeration that requires a low temperature of 0'C or less, and experiments were conducted under the conditions shown in Table 2 using a lithium bromide-methanol absorption liquid. In addition, moisture content is 0.5%
Met. The temperature in the evaporator 81 is -5°C, dust, 0 to -2
°C plines were obtained. The coefficient of performance was 0.623, which was comparable to Comparative Example 1. The refrigeration cycle was as shown in Table 2 by A"-B"-C"-D". Note that by increasing the concentration of the absorption liquid (concentrated liquid, diluted liquid), it is possible to generate a lower temperature.

(以下余白) つぎに有機防食剤による防食効果に係わる実験例を示す
(Left below) Next, we will show an example of an experiment related to the anticorrosive effect of an organic anticorrosive agent.

実験例 メタノール臭化リチウム溶液中で約2000 )Ir 
Experimental Example Approximately 2000 ) Ir in methanol lithium bromide solution
.

150°Cの真空中で5s41普通鋼の腐食試験片を用
いた腐食試験を実施した。その結果は第3表のとおりで
あり、防食剤がない場合と比較し、腐食速度は10〜2
0%に丑で軽減されていることを確認した。
A corrosion test was conducted using a corrosion test piece of 5s41 common steel in a vacuum at 150°C. The results are shown in Table 3, and compared to the case without anticorrosion agent, the corrosion rate was 10 to 2
We confirmed that it was reduced to 0%.

ただしモリブデン酸リチウム添加液中からは、ホルムア
ルデヒドが検出されたため、腐食防止効果は認められる
ものの、吸収冷温水機用吸収液の1()J食用7f’5
加剤として好捷しくないことを確認した。
However, formaldehyde was detected in the lithium molybdate additive solution, so although the corrosion prevention effect was recognized, the absorption solution for absorption water coolers and heaters was
It was confirmed that it is not suitable as an additive.

以1−説明した如く、Lj−13rを吸収剤、メタノー
ルを冷媒とするとともに両者を混合せしめた吸収液中の
水分量をl、 5 wt%以下とする吸収液においては
、従来、LiBr−メタノール吸収液において問題とさ
れていた吸収液の低濃度域での晶析現象がなくなり、メ
タノールを冷媒とすることによる特徴を生かし、吸収器
、凝縮器の空冷化によるクーリングタワーなどの水冷却
設備の不要化ならびに0°C以下の低温発生、さらにま
た冷媒蒸気1」二が大きいことによる吸収器、凝縮器に
おける伝夕)面の小型化などによる吸収冷凍機の適用範
囲の大幅な拡大に寄与する技術として極めて有益である
As explained in 1-1 below, in an absorption liquid in which Lj-13r is used as an absorbent and methanol is used as a refrigerant, and the water content in the absorption liquid is 1,5 wt% or less, LiBr-methanol has been conventionally used. The problem of crystallization in the low concentration range of the absorption liquid, which was a problem with absorption liquid, has been eliminated, and by taking advantage of the characteristics of using methanol as a refrigerant, the absorber and condenser are air-cooled, eliminating the need for water cooling equipment such as a cooling tower. Technology that contributes to a significant expansion of the range of application of absorption refrigerators, such as generation of low temperatures below 0°C, and miniaturization of the transmission surface in absorbers and condensers due to the large refrigerant vapor. It is extremely useful as a

また吸収冷温水機は長期間にわたってメンテナンスフリ
ーであることが要求されるものであり、系内の腐食は水
素ガスの蓄積による冷凍能力の低下や配管などからの液
の漏洩をもたらし、きわめて好ましからざる現象である
。したがって、メタノール冷媒の特徴を生かした冷温水
機を実現ならしめるために、本発明に示した有機防食剤
を3むLiBr−メタノール吸収液を用いることはきわ
めて有益である。
In addition, absorption chiller/heaters are required to be maintenance-free for long periods of time, and corrosion within the system is extremely undesirable as it can lead to a decrease in refrigeration capacity due to the accumulation of hydrogen gas and leakage of liquid from piping. It is a phenomenon. Therefore, in order to realize a water chiller/heater that takes advantage of the characteristics of methanol refrigerant, it is extremely beneficial to use the LiBr-methanol absorption liquid containing the organic anticorrosive agent shown in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸収冷凍機の基本的な構成図、第2図はLiB
r−メタノール吸収afのデユーリング線図、第3図は
LiBr−水吸収液のデユーリング線図である。 l・・・再生器、2・・凝縮器、3・・・吸収器、4・
・・蒸発器、5 ・熱交換器 出 願 人 川崎重工業株式会社
Figure 1 is a basic configuration diagram of an absorption refrigerator, Figure 2 is a LiB
The Dueling diagram of r-methanol absorption af, and FIG. 3 is the Dueling diagram of the LiBr-water absorption liquid. l... Regenerator, 2... Condenser, 3... Absorber, 4...
・Evaporator, 5 ・Heat exchanger Applicant: Kawasaki Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】 l 臭化リチウムと、メタノールと、水1.5wt%以
下とからなる吸収冷凍機用吸収液。 2 臭化リチウムど、メタノールと、水1,5wt%以
下と、有機防食剤50〜5000pI)mとからなる吸
収冷凍機用吸収液。
[Claims] l An absorption liquid for an absorption refrigerator comprising lithium bromide, methanol, and 1.5 wt% or less of water. 2. An absorption liquid for an absorption refrigerator consisting of lithium bromide, methanol, 1.5 wt% or less of water, and an organic anticorrosive agent of 50 to 5000 pI)m.
JP58226161A 1983-11-29 1983-11-29 Absorbing solution for absorption refrigerator Pending JPS60118785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58226161A JPS60118785A (en) 1983-11-29 1983-11-29 Absorbing solution for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58226161A JPS60118785A (en) 1983-11-29 1983-11-29 Absorbing solution for absorption refrigerator

Publications (1)

Publication Number Publication Date
JPS60118785A true JPS60118785A (en) 1985-06-26

Family

ID=16840815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58226161A Pending JPS60118785A (en) 1983-11-29 1983-11-29 Absorbing solution for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS60118785A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547600A (en) * 1995-05-05 1996-08-20 Carrier Corporation Absorption refrigeration system working fluid with molybdate, borate, silicate inhibitor blend
US6004475A (en) * 1996-06-27 1999-12-21 Fmc Corporation Corrosion inhibiting solutions for refrigeration systems comprising heteropoly complex anions of transition metal elements
US6187220B1 (en) * 1999-03-26 2001-02-13 Gas Research Institute Ether heat and mass transfer additives for aqueous absorption fluids
US6620341B1 (en) 1999-12-23 2003-09-16 Fmc Corporation Corrosion inhibitors for use in oil and gas wells and similar applications
US6758988B1 (en) 1999-09-07 2004-07-06 Fmc Corporation Corrosion inhibiting solutions for absorption systems

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124897A (en) * 1974-03-20 1975-10-01
JPS5613743A (en) * 1979-07-16 1981-02-10 Fujitsu Ltd Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124897A (en) * 1974-03-20 1975-10-01
JPS5613743A (en) * 1979-07-16 1981-02-10 Fujitsu Ltd Semiconductor device and its manufacture

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5547600A (en) * 1995-05-05 1996-08-20 Carrier Corporation Absorption refrigeration system working fluid with molybdate, borate, silicate inhibitor blend
US6004475A (en) * 1996-06-27 1999-12-21 Fmc Corporation Corrosion inhibiting solutions for refrigeration systems comprising heteropoly complex anions of transition metal elements
US6187220B1 (en) * 1999-03-26 2001-02-13 Gas Research Institute Ether heat and mass transfer additives for aqueous absorption fluids
US6527974B1 (en) 1999-03-26 2003-03-04 Gas Research Institute Monofunctional ether heat and mass transfer additives for aqueous absorption fluids
US6758988B1 (en) 1999-09-07 2004-07-06 Fmc Corporation Corrosion inhibiting solutions for absorption systems
US7410596B2 (en) 1999-09-07 2008-08-12 Rocky Research Corrosion inhibiting solutions for absorption systems
US6620341B1 (en) 1999-12-23 2003-09-16 Fmc Corporation Corrosion inhibitors for use in oil and gas wells and similar applications

Similar Documents

Publication Publication Date Title
AU661517B2 (en) Vapour absorbent compositions
JPS592477B2 (en) Absorption liquid for absorption refrigerators
US3458445A (en) Absorption refrigeration system containing solutions of monoethylamine with thiocyanates
JPS60118785A (en) Absorbing solution for absorption refrigerator
JPS6144231B2 (en)
JP2950522B2 (en) Mixed absorption liquid and absorption heat conversion device using the same
JPH01198679A (en) Absorbing solution for absorption refrigerator
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
US4801393A (en) High-temperature non-oxidizing water vapor absorbent
JPS6040187A (en) Refrigerant composition for absorption refrigerator
JPS5827300B2 (en) Refrigerant for absorption refrigerators
JPH03174487A (en) Absorbent liquid for absorption refrigerating machine
JPH0285655A (en) Absorbing refrigerator
JPS6040185A (en) Refrigerant composition for absorption refrigerator
JP3801784B2 (en) Absorption-type heat pump aqueous solution composition
JPH02169967A (en) Absorption system refrigerating machine and liquid absorbent
JPS59180257A (en) Chemical heat pump
JPS6356915B2 (en)
JPS60104174A (en) Freezing composition for absorption refrigerator
JP2000319646A (en) Absorbing solution for absorption refrigerating machine and absorption refrigerating machine
JPS6040186A (en) Refrigerant composition for absorption refrigerator
JPH09318182A (en) Absorption room cooler
JPS6040184A (en) Refrigerant composition for absorption refrigerator
JPH0528751B2 (en)
JPS6241564A (en) Refrigeration composition for absorption refrigerator