JPS6040185A - Refrigerant composition for absorption refrigerator - Google Patents

Refrigerant composition for absorption refrigerator

Info

Publication number
JPS6040185A
JPS6040185A JP58148732A JP14873283A JPS6040185A JP S6040185 A JPS6040185 A JP S6040185A JP 58148732 A JP58148732 A JP 58148732A JP 14873283 A JP14873283 A JP 14873283A JP S6040185 A JPS6040185 A JP S6040185A
Authority
JP
Japan
Prior art keywords
absorbent
refrigerant
refrigeration
dimethyl ether
glycol dimethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58148732A
Other languages
Japanese (ja)
Other versions
JPS6356917B2 (en
Inventor
Hiroshi Iizuka
弘 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP58148732A priority Critical patent/JPS6040185A/en
Publication of JPS6040185A publication Critical patent/JPS6040185A/en
Publication of JPS6356917B2 publication Critical patent/JPS6356917B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled composition having safe handleability, relatively low vapor pressure, low corrosiveness to the apparatus, and excellent heat stability, by using dichlorotrifluoroethylene as the refrigerant and diethylene glycol dimethyl ether as the absorbent. CONSTITUTION:The objective composition is obtained by using dichlorotrifluoroethane (any isomers of CHCl2-CF3, CHClF-CClF2 or CHF2-CCl2F meet the purpose) as the refigerant and diethylene glycol dimethyl ether as the absorbent.

Description

【発明の詳細な説明】 本発明は吸収式冷凍機に使用される冷凍組成物に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a refrigeration composition used in an absorption refrigerator.

一般に吸収式冷凍機は冷凍組成物を内部に含む発生器、
凝縮器、蒸発器及び吸収器からなる閉鎖サイクルで形成
され、蒸発器で液冷媒が蒸発する際に外部より熱を奪い
、この蒸発熱が冷凍に利用される。蒸発器で蒸発した冷
媒蒸気は吸収器で発生器から送られる高濃度の吸収剤を
含む冷凍組成物に接触吸収され、低濃度の吸収剤を含む
冷凍組成物となって発生器に還流される。低濃度の吸収
剤を含む冷凍組成物は発生器で外部熱源で加熱されて冷
媒蒸気を放出し、冷媒蒸気は凝縮器で凝縮されて再び蒸
発器へ送られる。
In general, absorption refrigerators include a generator containing a refrigeration composition,
It is formed by a closed cycle consisting of a condenser, evaporator, and absorber, and when the liquid refrigerant evaporates in the evaporator, heat is taken from the outside, and this heat of evaporation is used for refrigeration. The refrigerant vapor evaporated in the evaporator is contacted and absorbed by the refrigeration composition containing a high concentration of absorbent sent from the generator in the absorber, and is returned to the generator as a refrigeration composition containing a low concentration of absorbent. . The refrigeration composition containing a low concentration of absorbent is heated in a generator with an external heat source to release refrigerant vapor, which is condensed in a condenser and sent back to the evaporator.

かかるサイクルからなる吸収式冷凍機に使用される冷凍
組成物としては、従来、水(H2O)を冷媒、臭化リチ
ウム(L i B r)を吸収剤とする冷凍組成物及び
アンモニア(NH3)を冷媒、水(H’20)を吸収剤
とする冷凍組成物が実用化されている。
Conventionally, refrigeration compositions used in absorption refrigerators having such a cycle include refrigeration compositions using water (H2O) as a refrigerant and lithium bromide (L i Br) as an absorbent, and ammonia (NH3) as an absorbent. A refrigeration composition using a refrigerant and water (H'20) as an absorbent has been put into practical use.

しかし乍ら、HzOLiBr系の冷凍組成物では水を冷
媒とするため、蒸発温度をθ℃以下Gこ設定することが
できず、従って空調用以外Gこ使用できないこと、臭化
リチウムの水への溶解度に限度があるため凝縮器の空冷
化が困難であること、蒸気圧が低過ぎるため装置に可成
りの負圧を維持しなければならないこと、溶液の腐食性
のためGこ腐1食抑制剤の添加や装置の材料が制約され
る等の欠点がある。
However, since HzOLiBr-based refrigeration compositions use water as a refrigerant, the evaporation temperature cannot be set below θ°C, and therefore cannot be used for anything other than air conditioning. Due to the limited solubility, it is difficult to air-cool the condenser; the vapor pressure is too low, so it is necessary to maintain a considerable negative pressure in the equipment; and the corrosive nature of the solution makes it difficult to air-cool the condenser. There are drawbacks such as restrictions on the addition of agents and materials for equipment.

又、NH3−H2O系の冷凍組成物心よ蒸気圧力(かな
り高いために装置は高圧に耐える設計をa・要とし、又
、アンモニアガスに爆発性及び毒性があリ、危険を伴な
うため吸収式冷凍機用には現在殆ど使用されていない。
In addition, since the steam pressure of NH3-H2O-based refrigeration compositions is quite high, the equipment must be designed to withstand high pressure, and since ammonia gas is explosive and toxic, it is dangerous to absorb it. Currently, it is hardly used for type refrigerators.

そこで、0℃以下の温度が得られる冷媒としてメタノー
ル、エタノールなどのアルコール類を冷媒とし、臭化リ
チウム(LiBr)、臭化亜鉛(ZnBr2)等のハロ
ゲン化物を吸収剤とする系が提案され研究されている。
Therefore, a system in which alcohols such as methanol and ethanol are used as refrigerants to obtain temperatures below 0°C and halides such as lithium bromide (LiBr) and zinc bromide (ZnBr2) are used as absorbents has been proposed and researched. has been done.

しかし、この系はアルコールに対するハロゲン化物の溶
解度が低く、低濃度域でハロゲン化物の結晶が析出し易
いため運転濃度幅が狭くなること、溶液の粘度が高く液
循環に要する動力が大きくなること、吸収器での吸収剤
′a温溶液液膜が厚くなりアルコールの吸収率が低下す
るなどの欠点が指摘されている。
However, in this system, the solubility of halides in alcohol is low, and halide crystals tend to precipitate in low concentration ranges, resulting in a narrow operating concentration range.The viscosity of the solution is high, which increases the power required for liquid circulation. It has been pointed out that there are drawbacks such as the thickening of the warm solution film of the absorbent 'a in the absorber, which reduces the absorption rate of alcohol.

以上のような冷凍組成物の問題点に鑑がみ、最近各種の
フロン系化合物を冷媒とし、これらのフロン系化合物を
熔解する各種の有Nu溶剤を吸収剤とする系について検
削が行なわれており、その一部については特開昭54−
5・5849号公報、特開昭56−79175号公報等
により提案されている。しかし、フロン系化合物を冷媒
として有機溶剤を吸収剤とする系については多数の組合
せが考えられ、個々の組合せについては未だ十分な研究
がなされていないのが現状であり、僅かにクロロジフル
オロメタン(R−22)等のメタン系フロンを冷媒とし
、テトラエチレングリコールジメチルエーテルを吸収剤
とする冷凍組成物が注目されているが、その蒸気圧はN
H3H2O系と同様に高いという欠点がある。
In view of the above-mentioned problems with refrigeration compositions, recently research has been carried out on systems that use various fluorocarbon compounds as refrigerants and various Nu-containing solvents that dissolve these fluorocarbon compounds as absorbents. Some of them are published in Japanese Unexamined Patent Application Publication No. 1983-
This method has been proposed in Japanese Patent Publication No. 5.5849, Japanese Patent Application Laid-open No. 79175/1980, and the like. However, there are many possible combinations of systems in which a fluorocarbon compound is used as a refrigerant and an organic solvent is used as an absorbent. Refrigeration compositions that use methane-based fluorocarbons such as R-22) as a refrigerant and tetraethylene glycol dimethyl ether as an absorbent are attracting attention, but their vapor pressure is N
Like the H3H2O system, it has the disadvantage of being expensive.

本発明はかかる従来の吸収式冷凍機に使用される冷凍組
成物の問題点に鑑がみ、特に取扱いが安全で蒸気圧が余
り高くなく、又、装置に対する腐食性の少ない冷凍組成
物を提供することを目的としてなされたもので、鋭意研
究の結果ジクロロトリフルオロエタンを冷媒とし、ジエ
チレングリコールジメチルエーテルを吸収剤とする冷凍
組成物が上記の目的に良く適合し優れた冷凍組成物であ
ることを見出し本発明に至ったものである。即ち、本発
明はジクロロトリフルオロエタンを冷媒とし、ジエチレ
ングリコールジメチルエーテルを吸収剤として使用する
吸収式冷凍機用冷凍組成物である。
In view of the problems of the refrigeration compositions used in conventional absorption refrigerators, the present invention provides a refrigeration composition that is particularly safe to handle, does not have a very high vapor pressure, and is less corrosive to equipment. As a result of intensive research, it was discovered that a refrigeration composition using dichlorotrifluoroethane as a refrigerant and diethylene glycol dimethyl ether as an absorbent is well suited to the above purpose and is an excellent refrigeration composition. This led to the present invention. That is, the present invention is a refrigeration composition for an absorption refrigerator that uses dichlorotrifluoroethane as a refrigerant and diethylene glycol dimethyl ether as an absorbent.

本発明において冷媒として使用するジクロロトリフルオ
ロエタンには構造式を異にする3種の異性体、即ちCH
Cj!2 CF3 (R123)、CHCffF−CC
j!F2 (R123a)及びCHF2 CCj22F
 (R123b)が存在するが、これらの物性は殆ど類
似しているので何れの異性体でも使用することができる
。従って以下の説明においてはジクロロ1−リフルオロ
エタンとしてR123aを用いた場合を例示して説明す
る。
Dichlorotrifluoroethane used as a refrigerant in the present invention has three isomers with different structural formulas, namely CH
Cj! 2 CF3 (R123), CHCffF-CC
j! F2 (R123a) and CHF2 CCj22F
(R123b) exists, but since their physical properties are almost similar, any isomer can be used. Therefore, in the following explanation, the case where R123a is used as dichloro-1-lifluoroethane will be exemplified and explained.

第1図にR123aを冷媒として使用し、ジエチレング
リコールジメチルエーテルを吸収剤として使用した本発
明の冷凍組成物の吸収剤濃度をバラメークとする温度−
蒸気圧線図を示した。
FIG. 1 shows the temperatures at which the absorbent concentration of the refrigeration composition of the present invention using R123a as a refrigerant and diethylene glycol dimethyl ether as an absorbent is varied.
A vapor pressure diagram is shown.

一般にフロンを冷媒として使用する冷凍サイクルは吸収
剤稀溶液(フロン濃度の高い溶液)からのフロンガスの
発生、発生したフロンガスの凝縮、液化フロンの蒸発(
気化)、吸収剤a溶液(フロン濃度の低い溶液)へのフ
ロンガスの吸収等の工程の繰返しにより達成されるが、
上記吸収剤l@溶液及び?a熔液の濃度は冷凍機の運転
条件、IIIち吸収剤稀溶液の加熱温度(発生器内の温
度)、液化フロンの蒸発温度(蒸発器内の温度)及びフ
ロンガスの吸収温度(吸収器内の温度)に応じて任意に
設定される。かかるフロンを冷媒とする冷凍サイクルに
おいて、本発明のように冷媒としてR123aを用い、
吸収剤としてジエチレングリコールジメチルエーテルを
用いた場合は、液化R1,23aの蒸発温度を約0℃、
吸収温度を約42〜54℃として、吸収剤稀溶液濃度が
約52重量%(以下、本明細書において%は特記しない
■艮り重量%を表わす)、濃溶液濃度が約62%となる
ように設定することが適切である。
In general, a refrigeration cycle that uses fluorocarbons as a refrigerant involves the generation of fluorocarbon gas from a dilute absorbent solution (a solution with a high concentration of fluorocarbons), the condensation of the generated fluorocarbon gas, and the evaporation of liquefied fluorocarbons.
This is achieved by repeating the steps of evaporation) and absorption of the fluorocarbon gas into an absorbent a solution (a solution with a low concentration of fluorocarbons).
Above absorbent l@solution and? (a) The concentration of the molten liquid depends on the operating conditions of the refrigerator, the heating temperature of the absorbent dilute solution (temperature inside the generator), the evaporation temperature of liquefied chlorofluorocarbon (temperature inside the evaporator), and the absorption temperature of fluorocarbon gas (temperature inside the absorber). (temperature)). In a refrigeration cycle using CFC as a refrigerant, R123a is used as a refrigerant as in the present invention,
When diethylene glycol dimethyl ether is used as an absorbent, the evaporation temperature of liquefied R1,23a is approximately 0°C,
The absorption temperature is about 42 to 54 ° C., and the concentration of the dilute absorbent solution is about 52% by weight (hereinafter, % is not specified in this specification and represents weight%), and the concentration of the concentrated solution is about 62%. It is appropriate to set it to .

尚、運転条件を上記以外に設定した時は、それに応じて
吸収剤の稀溶液濃度及びa溶液濃度条件を変化させるこ
とができ玩。又、本発明の冷凍組成物は、上記と同様の
冷凍サイクルを使用し、蒸発器で外気から熱を吸み取り
、凝縮器又は吸収器で熱を放出する系に構成したヒート
ポンプサイクル(図示せず)にもそのまま適用すること
ができる。
In addition, when operating conditions are set to other than the above, the absorbent dilute solution concentration and a solution concentration conditions can be changed accordingly. Furthermore, the refrigeration composition of the present invention uses a refrigeration cycle similar to the above, and a heat pump cycle (not shown) configured in a system in which an evaporator absorbs heat from outside air and a condenser or absorber releases heat. ) can also be applied as is.

次に、本発明の冷凍組成物を使用した吸収式冷凍サイク
ルの作動の一例を第2図のフローシート及び第3図の運
転サイクル線図に基づいて説明する。第3図の運転サイ
クル線図は第1図のR123a−ジエチレングリコール
ジメチルエーテル系冷凍組成物の温度−蒸気圧線図から
純粋なR123a及びジエチレングリコールジメチルエ
ーテル濃度が52%及び62%の線図を抜粋して示した
ものである。
Next, an example of the operation of an absorption refrigeration cycle using the refrigeration composition of the present invention will be explained based on the flow sheet of FIG. 2 and the operating cycle diagram of FIG. 3. The operating cycle diagram in FIG. 3 is an excerpt from the temperature-vapor pressure diagram of the R123a-diethylene glycol dimethyl ether based refrigeration composition in FIG. It is something that

先ず、R123aを冷媒として溶解したジエチレングリ
コールジメチルエーテルの52%稀溶液(第3図A点)
を温度約88℃、圧力1100 rnmHg(絶対圧を
示す。以下同じ)において発生器l内で外部熱源3を用
いて約102℃まで加熱すると前記52%稀溶液は62
%濃溶液(第3図B点)に濃縮され、その間に圧力11
00mmHgに相当するR123aガスが発生する。次
にこのR123aガスを凝縮器2に導入し冷却管4で冷
却すると約40℃(B−Aの延長線がR123aの線と
交差する点の温度)で凝縮液化する。次いで液状のR1
23aを減圧弁5により減圧して蒸発器3に導入する。
First, a 52% dilute solution of diethylene glycol dimethyl ether in which R123a was dissolved as a refrigerant (point A in Figure 3) was prepared.
When heated to about 102°C using external heat source 3 in generator 1 at a temperature of about 88°C and a pressure of 1100 rnmHg (absolute pressure; the same applies hereinafter), the 52% dilute solution becomes 62%
% concentrated solution (point B in Figure 3), during which time the pressure was 11%.
R123a gas corresponding to 00 mmHg is generated. Next, this R123a gas is introduced into the condenser 2 and cooled by the cooling pipe 4, whereupon it is condensed and liquefied at about 40° C. (the temperature at which the extended line of B-A intersects the R123a line). Then liquid R1
23a is reduced in pressure by the pressure reducing valve 5 and introduced into the evaporator 3.

蒸発器3内は吸収器4内の温度を約42〜54℃に設定
した場合、その蒸気圧に相当する約230mm1(Hの
圧力に減圧され、液状のR123aはノズル6から散布
され約0℃で蒸発し、その蒸発熱を管7を流れるブライ
ンから奪ってこれを冷却し冷凍用に利用される。
When the temperature in the absorber 4 is set at approximately 42 to 54°C, the pressure inside the evaporator 3 is reduced to approximately 230 mm1 (H) corresponding to its vapor pressure, and liquid R123a is sprayed from the nozzle 6 at approximately 0°C. The brine is evaporated and the heat of evaporation is taken away from the brine flowing through the pipe 7 to cool it and use it for freezing.

次に蒸発したR123aガスを吸収器4に導入し、発生
器1から熱交換器8を経て冷却されノズル9から散布さ
れる約54℃のジエチレングリコールジメチルエーテル
62%濃溶液(第3図C点)に吸収させる。10は吸収
器4内の温度を所定の範囲内に調節するための冷却配管
である。
Next, the evaporated R123a gas is introduced into the absorber 4, cooled from the generator 1 through the heat exchanger 8, and turned into a 62% concentrated solution of diethylene glycol dimethyl ether at about 54°C (point C in Figure 3), which is sprayed from the nozzle 9. Let it absorb. 10 is a cooling pipe for adjusting the temperature inside the absorber 4 within a predetermined range.

R123aガスを吸収した前記濃溶液は稀釈されてジエ
チレングリコールジメチルエーテルの52%稀溶液(第
3図り点)となり、熱交換器8を経由し発生器1から吸
収器4へ送られる前記fM/8液と熱交換し加熱された
後ポンプ11により発生器1に導入され(第3図A点)
、以後同様のサイクルを繰り返す。
The concentrated solution that has absorbed the R123a gas is diluted to become a 52% dilute solution of diethylene glycol dimethyl ether (third point), and the fM/8 liquid is sent from the generator 1 to the absorber 4 via the heat exchanger 8. After being heated through heat exchange, it is introduced into the generator 1 by the pump 11 (point A in Figure 3).
, and then repeat the same cycle.

上記の例では蒸発器3内での液状R123aの蒸発温度
は0℃の場合について説明したが、要求される冷凍又は
冷却の程度或は速度に応じて上述の運転条件を適宜選択
して実施することができる。
In the above example, the case where the evaporation temperature of liquid R123a in the evaporator 3 was 0°C was explained, but the above operating conditions may be selected and implemented as appropriate depending on the degree or speed of freezing or cooling required. be able to.

以上説明したようにジクロロトリフルオロエタンを冷媒
とし、ジエチレングリコールジメチルエーテルを吸収剤
として使用する本発明の冷凍組成物によれば、上述の運
転サイクルからも明らかなように運転時の蒸気圧が最も
高い発生器内で約1100mmHgとメタン系フロンを
使用した場合の蒸気圧よりもかなり低く、冷凍機の耐圧
構造を大幅に緩和することができる。
As explained above, according to the refrigeration composition of the present invention which uses dichlorotrifluoroethane as a refrigerant and diethylene glycol dimethyl ether as an absorbent, as is clear from the above-mentioned operation cycle, the vapor pressure during operation is the highest. The vapor pressure inside the container is about 1100 mmHg, which is considerably lower than the vapor pressure when using methane-based fluorocarbons, and the pressure-resistant structure of the refrigerator can be significantly relaxed.

又、R123aのジエチレングリコールジメチルエーテ
ル95%濃溶液各5 m R中に鋼、ステンレス鋼及び
銅の小片を夫々別々に’11 ?Mして180℃で10
日間加熱還流したが、何れの場合にも溶液の着色は殆ど
認められず、又、/8液の変質も全く認められないこと
から、本発明の冷凍組成物は耐食性及び熱安定性にも優
れていることが判明し吸収式冷/!11機用冷凍組成物
として極めて好ましい特性を有することが実証された。
In addition, small pieces of steel, stainless steel, and copper were separately added to 5 m R of a 95% diethylene glycol dimethyl ether concentrated solution of R123a. M and 10 at 180℃
Although heated under reflux for several days, almost no coloration of the solution was observed in any case, and no deterioration of the /8 solution was observed at all, indicating that the freezing composition of the present invention also has excellent corrosion resistance and thermal stability. It turns out that absorption type cold/! It was demonstrated that the composition had extremely favorable properties as a refrigeration composition for aircraft.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はジクロロトリフルオロエタンとしてR123a
を冷媒として使用し、ジエチレングリコールジメチルエ
ーテルを吸収剤として使用した本発明の冷凍組成物の吸
収剤の各種濃度をパラメータとした温度−蒸気圧線図、
第2図は吸収式冷凍サイクルのフローシート、第3図は
本発明の冷凍組成物を使用した運転サイクル線図である
。 ■・・・・・・発生器、2・・・・・・凝縮器、3・・
・・・・蒸発器、4・・・・・・吸収器、5・・・・・
・減圧弁、8・・・・・・熱交換器、11・・・・・・
ポンプ。 特許出願人 矢 崎 総 業 株式会社第1図 1渡1(’C) 第2図
Figure 1 shows R123a as dichlorotrifluoroethane.
Temperature-vapor pressure diagram with parameters of various concentrations of the absorbent of the refrigeration composition of the present invention using as a refrigerant and diethylene glycol dimethyl ether as an absorbent,
FIG. 2 is a flow sheet of an absorption refrigeration cycle, and FIG. 3 is an operating cycle diagram using the refrigeration composition of the present invention. ■... Generator, 2... Condenser, 3...
...Evaporator, 4...Absorber, 5...
・Pressure reducing valve, 8...Heat exchanger, 11...
pump. Patent applicant Yazaki Sogyo Co., Ltd. Figure 1 1 Watari 1 ('C) Figure 2

Claims (1)

【特許請求の範囲】[Claims] ジクロロトリフルオロエタンを冷媒とし、ジエチレング
リコールジメチルエーテルを吸収剤として使用すること
を特徴とする吸収式冷凍機用冷凍組成物。
A refrigeration composition for an absorption refrigerator, characterized in that dichlorotrifluoroethane is used as a refrigerant and diethylene glycol dimethyl ether is used as an absorbent.
JP58148732A 1983-08-16 1983-08-16 Refrigerant composition for absorption refrigerator Granted JPS6040185A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58148732A JPS6040185A (en) 1983-08-16 1983-08-16 Refrigerant composition for absorption refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58148732A JPS6040185A (en) 1983-08-16 1983-08-16 Refrigerant composition for absorption refrigerator

Publications (2)

Publication Number Publication Date
JPS6040185A true JPS6040185A (en) 1985-03-02
JPS6356917B2 JPS6356917B2 (en) 1988-11-09

Family

ID=15459365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58148732A Granted JPS6040185A (en) 1983-08-16 1983-08-16 Refrigerant composition for absorption refrigerator

Country Status (1)

Country Link
JP (1) JPS6040185A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104564A (en) * 1989-12-19 1992-04-14 E. I. Du Pont De Nemours And Company High-boiling hydrochlorofluorocarbon solvent blends

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5104564A (en) * 1989-12-19 1992-04-14 E. I. Du Pont De Nemours And Company High-boiling hydrochlorofluorocarbon solvent blends

Also Published As

Publication number Publication date
JPS6356917B2 (en) 1988-11-09

Similar Documents

Publication Publication Date Title
JP3078837B2 (en) Steam absorbent composition
US6374630B1 (en) Carbon dioxide absorption heat pump
US3478530A (en) Absorption refrigeration system
JPS592477B2 (en) Absorption liquid for absorption refrigerators
JPH01139678A (en) Working medium mixture
US4593538A (en) Refrigeration cycle operatable by low thermal potential energy sources
JPS6040187A (en) Refrigerant composition for absorption refrigerator
CN1380525A (en) Refrigeration equipment with cryogenic refrigeration absorbent
JPS6040185A (en) Refrigerant composition for absorption refrigerator
JPS6356915B2 (en)
He et al. Analyses of an improved double-absorber absorption refrigeration system at low temperatures
JPS60118785A (en) Absorbing solution for absorption refrigerator
JPS6040186A (en) Refrigerant composition for absorption refrigerator
JPS6040184A (en) Refrigerant composition for absorption refrigerator
JPS60104174A (en) Freezing composition for absorption refrigerator
JP2011196580A (en) Absorbing liquid for absorption refrigeration machine
JPS5827300B2 (en) Refrigerant for absorption refrigerators
JPS6120598B2 (en)
JPS6114282A (en) Medium for absorption type refrigerator
JPS6236485A (en) Composition for absorption refrigerator
JPS5832301B2 (en) absorption refrigerator
JPH09318182A (en) Absorption room cooler
JPS58219938A (en) Absorbent for absorbing type heat pump
JPH01139676A (en) Working medium mixture
JPS606779A (en) Composition for absorption refrigerator