JPH0361638B2 - - Google Patents

Info

Publication number
JPH0361638B2
JPH0361638B2 JP7656484A JP7656484A JPH0361638B2 JP H0361638 B2 JPH0361638 B2 JP H0361638B2 JP 7656484 A JP7656484 A JP 7656484A JP 7656484 A JP7656484 A JP 7656484A JP H0361638 B2 JPH0361638 B2 JP H0361638B2
Authority
JP
Japan
Prior art keywords
source
light
substrate
crystal
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7656484A
Other languages
Japanese (ja)
Other versions
JPS60221394A (en
Inventor
Junichi Nishizawa
Yoshihiro Kokubu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7656484A priority Critical patent/JPS60221394A/en
Publication of JPS60221394A publication Critical patent/JPS60221394A/en
Publication of JPH0361638B2 publication Critical patent/JPH0361638B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は高品質のGaAs単結晶を気相エピタキ
シヤル法により成長させる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for growing high quality GaAs single crystals by vapor phase epitaxial method.

従来技術およびその問題点 GaAsの気相エピタキシヤル成長法として、ハ
ロゲン輸送法が知られている。この方法ではあら
かじめAsで飽和したGaソースを800〜900℃に加
熱し、このソース上にAsCl3とH2を導入してGa
ソースと反応させる。そして、この反応によつて
生じたガスを下流に導いて700〜750℃の温度に保
たれた基板表面に供給することにより、GaAs結
晶が気相から析出しエピタキシヤル成長が起る。
Prior Art and its Problems A halogen transport method is known as a vapor phase epitaxial growth method for GaAs. In this method, a Ga source saturated with As is heated to 800-900℃, and AsCl 3 and H 2 are introduced onto the source to inject Ga.
React with the source. Then, by guiding the gas generated by this reaction downstream and supplying it to the substrate surface maintained at a temperature of 700 to 750°C, GaAs crystals are precipitated from the gas phase and epitaxial growth occurs.

ところで、結晶成長プロセスでは表面に吸着し
た粒子が表面上を泳動してキンクに組込まれて格
子を組んでいく。したがつて、表面における吸着
過程と表面反応を励起するのに必要なエネルギ
ー、表面泳動を励起するのに必要なエネルギー、
そして安定点に固着するのに必要なエネルギーが
それぞれの過程で必要である。従来、これらのエ
ネルギー源として熱エネルギーが用いられてい
る。このため前記のようにハロゲン輸送法による
GaAsの成長では基板の温度を700〜750℃に保つ
必要がある。しかし、温度を高くしていくと空位
や格子間原子などが存在するようにになるし、オ
ートドーピングなどにより不純物が取込まれるよ
うになり、完全性の高い結晶を成長するうえから
好ましくない。そのため、温度を高くせず結晶成
長の各過程の励起エネルギーを与える必要があ
る。
By the way, in the crystal growth process, particles adsorbed on the surface migrate on the surface and are incorporated into kinks to form a lattice. Therefore, the energy required to excite adsorption processes and surface reactions at the surface, the energy required to excite surface migration,
Each process requires the energy needed to anchor to a stable point. Conventionally, thermal energy has been used as an energy source for these. Therefore, as mentioned above, the halogen transport method is used.
When growing GaAs, it is necessary to maintain the substrate temperature at 700-750°C. However, as the temperature is raised, vacancies and interstitial atoms become present, and impurities are introduced through autodoping, which is undesirable in terms of growing highly perfect crystals. Therefore, it is necessary to provide excitation energy for each process of crystal growth without increasing the temperature.

発明の目的 本発明は高品質のGaAs単結晶を気相エピタキ
シヤル成長させる方法を提供するものである。
OBJECTS OF THE INVENTION The present invention provides a method for vapor phase epitaxial growth of high quality GaAs single crystals.

発明の構成 本発明は、前記特許請求の範囲に記載されたこ
とを要旨とするもので、Ga/AsCl3/H2系のハ
ロゲン輸送法によりGaAs単結晶をエピタキシヤ
ル成長させるに際し、基板結晶の温度を700℃以
下に保ち、かつその基板結晶の表面上に光を照射
することを特徴としている。
Structure of the Invention The present invention has the gist as described in the claims, and is directed to the epitaxial growth of a GaAs single crystal by a Ga/AsCl 3 /H 2 system halogen transport method. It is characterized by keeping the temperature below 700°C and irradiating light onto the surface of the substrate crystal.

以下本発明を具体的に説明する。第1図に使用
する装置の概略図を示した。光導入窓1を有する
石英反応管2内の所定の位置にあらかじめAsで
飽和したGaソース3とGaAs結晶基板4を設置す
る。電気炉5によりGaソース3と基板4をそれ
ぞれ所定の温度に加熱する。照射光源6からの光
を光導入窓1を通して基板結晶4上に照射する。
H2ガスが流量計7を通つてから恒温槽8により
所定の温度に保たれたAsCl3バブラ9を通り、反
応管2内に導入されることにより、GaAs単結晶
がエピタキシヤル成長させられる。
The present invention will be specifically explained below. FIG. 1 shows a schematic diagram of the apparatus used. A Ga source 3 saturated with As and a GaAs crystal substrate 4 are placed at predetermined positions in a quartz reaction tube 2 having a light introduction window 1. The electric furnace 5 heats the Ga source 3 and the substrate 4 to predetermined temperatures. Light from an irradiation light source 6 is irradiated onto the substrate crystal 4 through the light introduction window 1.
GaAs single crystal is epitaxially grown by passing the H 2 gas through the flow meter 7 and then through the AsCl 3 bubbler 9 kept at a predetermined temperature by the constant temperature chamber 8 and into the reaction tube 2 .

第1図の装置を用い、AsCl3バブラの温度を0
℃に保ち、H2ガスの流量を100ml/minとし、Ga
ソースの温度を720℃に保つて、基板温度を変化
させて成長させた。この際高圧水銀ランプからの
光を基板表面上に照射した。このようにして成長
させたGaAs結晶の77Kでのホール移動度を測定
した結果を第2図に示す。基板温度が低くなるに
つれて、移動度は急激に減少していくが、光照射
した場合の方が光照射しない場合と比べて10〜15
%程度移動度が大きくなつている。第3図には基
板温度650℃の場合に種々の波長のエキシマレー
ザ光を照射して成長させたGaAs結晶の77Kでの
移動度を示してある。紫外領域の光を照射するこ
とにより移動度が増大する。
Using the apparatus shown in Figure 1, the temperature of the AsCl 3 bubbler was set to 0.
℃, the H2 gas flow rate was 100ml/min, and the Ga
Growth was performed by keeping the source temperature at 720°C and varying the substrate temperature. At this time, light from a high-pressure mercury lamp was irradiated onto the substrate surface. Figure 2 shows the results of measuring the hole mobility at 77K of the GaAs crystal grown in this way. As the substrate temperature decreases, the mobility decreases rapidly, but the mobility with light irradiation is 10 to 15% higher than that without light irradiation.
% mobility has increased. FIG. 3 shows the mobility at 77K of GaAs crystals grown by irradiating excimer laser light of various wavelengths when the substrate temperature is 650°C. Mobility increases by irradiating with light in the ultraviolet region.

また、第4図は前記第1図の装置において、光
の導入方向をガスの流れ方向に対して直角方向に
変えた装置であり、この第4図の装置を用いて前
記と同様の成長を行なつたところ、全く同様の結
果が得られた。
Moreover, FIG. 4 shows a device in which the direction of light introduction is changed to the direction perpendicular to the gas flow direction in the device shown in FIG. 1. Using this device shown in FIG. When I did this, I got exactly the same results.

さらに、第5図は前記第4図の装置において、
光導入窓の部分を反応管本体から引出した構造に
なつており、光導入窓への反応生成物の付着によ
る照射光の減衰を防ぐことができる。
Furthermore, FIG. 5 shows that in the apparatus shown in FIG. 4,
The structure is such that the light introduction window is drawn out from the reaction tube main body, and it is possible to prevent the irradiated light from being attenuated due to adhesion of reaction products to the light introduction window.

発明の効果 以上のように本発明によれば、基板温度が低い
状態で移動度の大きな高品質GaAs単結晶のエピ
タキシヤル成長が容易となり、その工業上の効果
は大きい。
Effects of the Invention As described above, according to the present invention, epitaxial growth of a high quality GaAs single crystal with high mobility is facilitated at a low substrate temperature, and its industrial effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例の成長装置を概略
的に示す図である。第2図は77Kでのホール移動
度の基板温度依存性を示す図であり、第3図は
77Kでのホール移動度の照射光波長依存性を示す
図である。第4図は第1図と同様な効果が得られ
る成長装置を概略的に示す図、第5図は第4図の
変形例を示す図である。 1……光導入窓、2……石英反応管、3……
Gaソース、4……GaAs結晶基板、5……電気
炉、6……照射光源、7……流量計、8……恒温
槽、9……AsCl3バブラ。
FIG. 1 is a diagram schematically showing a growth apparatus according to an embodiment of the present invention. Figure 2 shows the dependence of hole mobility on substrate temperature at 77K, and Figure 3 shows the dependence of hole mobility on substrate temperature.
FIG. 3 is a diagram showing the dependence of hole mobility on wavelength of irradiation light at 77K. FIG. 4 is a diagram schematically showing a growth apparatus that can obtain the same effect as in FIG. 1, and FIG. 5 is a diagram showing a modification of FIG. 4. 1...Light introduction window, 2...Quartz reaction tube, 3...
Ga source, 4...GaAs crystal substrate, 5...Electric furnace, 6...Irradiation light source, 7...Flowmeter, 8...Thermostatic chamber, 9...AsCl 3 bubbler.

Claims (1)

【特許請求の範囲】 1 AsCl3蒸気及び水素ガスをGaソースあるいは
Asで飽和されたGaソースあるいはGaAs固体ソ
ース上に導入して反応させ、この反応によつて生
じたガスを前記ソースより下流に設置された基板
結晶の表面に供給することにより、前記基板結晶
表面上にGaAs単結晶をエピタキシヤル成長させ
る際、前記基板結晶の温度を700℃以下に保ち、
かつ、その基板結晶の表面上に光を照射すること
を特徴とするGaAs単結晶の製造方法。 2 照射する光の波長が400nmより短い光である
特許請求の範囲第1項記載のGaAs単結晶の製造
方法。
[Claims] 1. AsCl 3 vapor and hydrogen gas are used as Ga source or
By introducing As onto a Ga source or GaAs solid source saturated with As and causing a reaction, and supplying the gas generated by this reaction to the surface of the substrate crystal installed downstream of the source, the surface of the substrate crystal is When epitaxially growing a GaAs single crystal thereon, the temperature of the substrate crystal is kept below 700°C,
A method for producing a GaAs single crystal, characterized in that the surface of the substrate crystal is irradiated with light. 2. The method for producing a GaAs single crystal according to claim 1, wherein the irradiated light has a wavelength shorter than 400 nm.
JP7656484A 1984-04-18 1984-04-18 Manufacture of gaas single crystal Granted JPS60221394A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7656484A JPS60221394A (en) 1984-04-18 1984-04-18 Manufacture of gaas single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7656484A JPS60221394A (en) 1984-04-18 1984-04-18 Manufacture of gaas single crystal

Publications (2)

Publication Number Publication Date
JPS60221394A JPS60221394A (en) 1985-11-06
JPH0361638B2 true JPH0361638B2 (en) 1991-09-20

Family

ID=13608729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7656484A Granted JPS60221394A (en) 1984-04-18 1984-04-18 Manufacture of gaas single crystal

Country Status (1)

Country Link
JP (1) JPS60221394A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0630339B2 (en) * 1984-07-16 1994-04-20 新技術事業団 Method for producing GaAs single crystal

Also Published As

Publication number Publication date
JPS60221394A (en) 1985-11-06

Similar Documents

Publication Publication Date Title
JPH0319198B2 (en)
JPS6134929A (en) Growing device of semiconductor device
JPS6134928A (en) Growing process of element semiconductor single crystal thin film
Kräutle et al. Investigations on low temperature mo-cvd growth of GaAs
JPS6134927A (en) Growing process of compound semiconductor single crystal thin film
US4693207A (en) Apparatus for the growth of semiconductor crystals
JPH0361638B2 (en)
JPS6126215A (en) Manufacture of gaas single crystal
JPH0361637B2 (en)
JPS62120016A (en) Controlling method for carbon doping
JP3182584B2 (en) Compound thin film forming method
JPH01158721A (en) Method and apparatus for light irradiation type low temperature mocvd
JPS61161710A (en) Manufacture of compound semiconductor thin film
JPS62288194A (en) Epitaxy
JPH0136694B2 (en)
JPH05198518A (en) Compound semiconductor film formation method
JPH0267721A (en) Manufacture of compound semiconductor thin film
JPS62139319A (en) Compound semiconductor crystal growth method
JPH0633228B2 (en) Molecular beam epitaxy growth method
JPS5943815B2 (en) epitaxial growth method
JPS62138391A (en) Molecular beam epitaxy
Nishizawa Photoassisted deposition process
JPH0355440B2 (en)
JPS62182195A (en) Method for growing iii-v compound semiconductor
JPS63289923A (en) Crystal growth method for compound semiconductor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term