JPH0361370A - Thin film forming device - Google Patents

Thin film forming device

Info

Publication number
JPH0361370A
JPH0361370A JP19614389A JP19614389A JPH0361370A JP H0361370 A JPH0361370 A JP H0361370A JP 19614389 A JP19614389 A JP 19614389A JP 19614389 A JP19614389 A JP 19614389A JP H0361370 A JPH0361370 A JP H0361370A
Authority
JP
Japan
Prior art keywords
plasma
substrate
chamber
thin film
ionization chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19614389A
Other languages
Japanese (ja)
Inventor
Shigeki Hoshino
茂樹 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP19614389A priority Critical patent/JPH0361370A/en
Publication of JPH0361370A publication Critical patent/JPH0361370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PURPOSE:To form a good-quality thin film at a high rate by activating a reaction product with the ion electron in microwave plasma produced in an ionization chamber and further with the RF plasma produced below the chamber. CONSTITUTION:A raw gas is introduced into a vacuum vessel 1 in which a substrate holder 2 holding a substrate 3 is set. A microwave power 7 and a magnetic field 10 are impressed on the ionization chamber 5 above the vessel 1 to produce plasma. A power 8 is simultaneously impressed on an RF coil 4 to produce RF plasma. Consequently, the reaction product in the plasma produced in the chamber 5 is further activated to grow a film on the substrate 3.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は良質な薄膜を形成する装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an apparatus for forming high-quality thin films.

〔従来の技術〕[Conventional technology]

従来、ガスを導入し、RFプラズマで活性化させたガス
の反応物や、マイクロ波プラズマで活性させたガスの反
応物を基板上に堆積させるCVD法はすでに良く知られ
ている。
Conventionally, the CVD method is already well known, in which a gas is introduced and a gas reactant activated by RF plasma or a gas reactant activated by microwave plasma is deposited on a substrate.

〔発明が解決しようとする課題] ところで、RFプラズマだけではガス中のイオン化は低
く、ラジカルの量も低いのでラジカル量を増やすために
チャンバー内の圧ツノを高くしなければ充分の蒸着速度
が得られないが、広い面積に膜を合成する場合にはプラ
ズマの発生が難しかった利、不安定になりやすい。一方
、マイクロ波プラズマだけではガス圧力が高い場合には
発生されるプラズマの領域は狭いので広い面積には膜を
合成できない。もっとも、イオン化室より外側では比較
的広い面積には膜は合成できるが、その場所のプラズマ
中のイオン化は高くなく、ラジカルの量も少なくなる。
[Problem to be solved by the invention] By the way, with RF plasma alone, the ionization in the gas is low and the amount of radicals is also low, so it is not possible to obtain a sufficient deposition rate unless the pressure horn in the chamber is increased to increase the amount of radicals. However, when synthesizing a film over a large area, it is difficult to generate plasma and it tends to become unstable. On the other hand, when the gas pressure is high using microwave plasma alone, the area of the generated plasma is narrow, so it is not possible to synthesize a film over a wide area. However, although a film can be synthesized over a relatively wide area outside the ionization chamber, the ionization in the plasma at that location is not high and the amount of radicals is small.

本発明の目的はイオン化室でマイクロ波プラズマを発生
させ、かつ同時にRFプラズマによってガスの活性化を
促進することによって、高速で成膜し、かつ良質な薄膜
を形成しつる装置を提供することにある。
An object of the present invention is to provide an apparatus that can form a high-quality thin film at high speed by generating microwave plasma in an ionization chamber and simultaneously promoting gas activation using RF plasma. be.

〔課題を解決するための手段] 前記目的を達成するため、本発明に係る薄膜形或装置に
おいては、基板を保持させる基板ホルダを設置した真空
槽と、マイクロ波及び磁界の作用によりプラズマを発生
させるイオン化室と、RFプラズマを発生し、前記イオ
ン化室内に発生させて真空槽内の基板に作用させるプラ
ズマ中の反応生成物を活性化するRFコイルとを有する
ものである。
[Means for Solving the Problems] In order to achieve the above object, the thin film type device according to the present invention includes a vacuum chamber in which a substrate holder for holding a substrate is installed, and a plasma generated by the action of microwaves and a magnetic field. and an RF coil that generates RF plasma and activates reaction products in the plasma that are generated in the ionization chamber and act on the substrate in the vacuum chamber.

[作用] 本発明においては、真空槽の上部に設けられたイオン化
室で発生されたマイクロ波プラズマの中にあるイオンや
電子によって反応した生成物を、その下方に設置された
RFコイル電極で発生されたプラズマによってさらに活
性化を高めることができるので、良質かつ高速で薄膜が
形成できることになる。
[Function] In the present invention, products reacted by ions and electrons in the microwave plasma generated in the ionization chamber provided at the top of the vacuum chamber are generated by the RF coil electrode installed below. Since activation can be further enhanced by the generated plasma, thin films can be formed with high quality and at high speed.

[実施例1 以下に本発明の実施例を図によって説明する。[Example 1 Embodiments of the present invention will be described below with reference to the drawings.

第1図において、脱気口16を有する真空槽lの上方に
イオン化室5が設置され、真空槽lとイオン化室5とは
石英管13でつながれている。真空槽1内にはヒータ1
5を内蔵した基板ホルダ2が設置され、イオン化室5に
通ずる石英管13に向き合わせて基板3を搭載するよう
になっている。14は前記ヒータI5の加熱用AC電源
である。真空槽1に通ずる前記石英管13にはRFプラ
ズマを発生させるRFコイル4を設置する。8はRFコ
イル4に通電するRF電源である。
In FIG. 1, an ionization chamber 5 is installed above a vacuum chamber l having a degassing port 16, and the vacuum chamber I and the ionization chamber 5 are connected through a quartz tube 13. There is a heater 1 inside the vacuum chamber 1.
A substrate holder 2 containing a substrate 5 is installed, and a substrate 3 is mounted facing the quartz tube 13 communicating with the ionization chamber 5. 14 is an AC power source for heating the heater I5. An RF coil 4 for generating RF plasma is installed in the quartz tube 13 communicating with the vacuum chamber 1. Reference numeral 8 denotes an RF power source that energizes the RF coil 4.

イオン化室5にはその周囲にマグネット10が配置され
、その一部に取付けられた石英窓12にのぞませてマイ
クロ波電源に通ずる導波管11が接続されている。また
イオン化室5にはバルブ6を有するガス導入管9が接続
されている。
A magnet 10 is arranged around the ionization chamber 5, and a waveguide 11 connected to a microwave power source is connected through a quartz window 12 attached to a part of the ionization chamber 5. Further, a gas introduction pipe 9 having a valve 6 is connected to the ionization chamber 5 .

この装置によって、−例としてダイヤモンド薄膜を形成
する場合を具体的に説明する。
A case in which a diamond thin film is formed using this apparatus will be specifically described as an example.

まず、拡散ポンプあるいはターボポンプと油回転ポンプ
を用い、脱気口16まり脱気して真空槽l内をlXl0
−“Torr以下まで排気する。基板3を約500℃に
設定し、次に、ガスを導入するためにバルブ6を開き、
ガス導入管9を通して高純度のH3ガスと炭化水素ガス
あるいは有機化合物ガスを導入し、真空槽1内全体の真
空度をlO丁orr程度に設定する。この状態でイオン
化室5に500〜100OWのマイクロ波電力と1.2
kG程度の磁界を印加して放電を起こし、それと同時に
RFコイル4に500〜1000WのRF’にカを印加
してRFプラズマを発生させて基板3に膜を成長させる
First, use a diffusion pump or a turbo pump and an oil rotary pump to evacuate the air from the deaeration port 16 and clean the inside of the vacuum chamber lXl0.
- "Evacuate to below Torr. Set the substrate 3 at about 500°C, then open the valve 6 to introduce gas,
High-purity H3 gas and hydrocarbon gas or organic compound gas are introduced through the gas introduction pipe 9, and the degree of vacuum in the entire vacuum chamber 1 is set to about 10,000 orr. In this state, microwave power of 500 to 100 OW and 1.2
A magnetic field of approximately kG is applied to cause a discharge, and at the same time, an RF' power of 500 to 1000 W is applied to the RF coil 4 to generate RF plasma and grow a film on the substrate 3.

本実施例ではこの状態で約10分間膜形成を行った。こ
のようにして形成されたダイヤモンド膜の膜厚は約10
pmであった。その膜をラマン分光法で測定したところ
1330cm ’だけに鋭いピークが得られた。
In this example, film formation was performed in this state for about 10 minutes. The thickness of the diamond film formed in this way is approximately 10
It was pm. When the film was measured by Raman spectroscopy, a sharp peak was obtained only at 1330 cm'.

また、この膜のビッカース硬度を測定したところ約12
000という値が得られた。この値は天然ダイヤモンド
と同じ値である。また、薄膜の熱伝導率を測定したとこ
ろ約200W/Kcmという値が得られた。これは高圧
合成されたダイヤモンドと同じである。このように、本
発明によって低温での良質のダイヤモンド薄膜が得られ
ることが分かる。
In addition, the Vickers hardness of this film was measured and was approximately 12.
A value of 000 was obtained. This value is the same as that of natural diamond. Furthermore, when the thermal conductivity of the thin film was measured, a value of about 200 W/Kcm was obtained. This is the same as high-pressure synthesized diamond. Thus, it can be seen that a high quality diamond thin film can be obtained at low temperatures according to the present invention.

〔発明の効果1 本発明は以上のようにRFプラズマとその上方に発生さ
せたマイクロ波プラズマとを組合せて、ガスの活性化を
高めることによって、比較的低温で良質な薄膜を形成で
きる。なお、マイクロ波イオン化室の出口に設けた引出
し電極と基板間にバイアスを加えても同様に良質なダイ
ヤモンド膜が得られる。
[Advantageous Effects of the Invention 1] As described above, the present invention combines RF plasma and microwave plasma generated above it to enhance the activation of gas, thereby making it possible to form a high-quality thin film at a relatively low temperature. Note that a high-quality diamond film can be similarly obtained by applying a bias between the extraction electrode provided at the outlet of the microwave ionization chamber and the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の薄膜形成装置を示す断
面図である。
FIG. 1 is a sectional view showing a thin film forming apparatus according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】[Claims] (1)基板を保持させる基板ホルダを設置した真空槽と
、マイクロ波及び磁界の作用によりプラズマを発生させ
るイオン化室と、RFプラズマを発生し、前記イオン化
室内に発生させて真空槽内の基板に作用させるプラズマ
中の反応生成物を活性化するRFコイルとを有すること
を特徴とする薄膜形成装置。
(1) A vacuum chamber in which a substrate holder for holding a substrate is installed, an ionization chamber that generates plasma by the action of microwaves and a magnetic field, and an RF plasma that is generated in the ionization chamber and applied to the substrate in the vacuum chamber. 1. A thin film forming apparatus comprising: an RF coil that activates reaction products in plasma.
JP19614389A 1989-07-28 1989-07-28 Thin film forming device Pending JPH0361370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19614389A JPH0361370A (en) 1989-07-28 1989-07-28 Thin film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19614389A JPH0361370A (en) 1989-07-28 1989-07-28 Thin film forming device

Publications (1)

Publication Number Publication Date
JPH0361370A true JPH0361370A (en) 1991-03-18

Family

ID=16352941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19614389A Pending JPH0361370A (en) 1989-07-28 1989-07-28 Thin film forming device

Country Status (1)

Country Link
JP (1) JPH0361370A (en)

Similar Documents

Publication Publication Date Title
EP0074212A1 (en) Apparatus for forming thin film
JPH0361371A (en) Thin film forming device
JPH0361372A (en) Thin film forming device
JPH0361370A (en) Thin film forming device
JPS5935092A (en) Vapor-phase synthesis of diamond
JPH02232371A (en) Thin-film forming device
KR100358952B1 (en) Chemical vapor deopositon apparatus and the method thereof
JPS6124467B2 (en)
JPH0362435A (en) Thin film formation device
JP2680574B2 (en) Method for producing cubic boron nitride film
JPH01246357A (en) Production of cubic boron nitride film
JPS63128179A (en) Method and apparatus for synthesizing hard boron nitride
JPH02115379A (en) Device for forming thin film
JPH07240379A (en) Method and device for forming thin film
JPH02111882A (en) Producing device of cubic boron nitride film
JPS6383271A (en) Production of diamond-like carbon film
JPH064915B2 (en) Method for synthesizing cubic boron nitride
JP3388837B2 (en) Plasma CVD equipment
JPS5833830A (en) Plasma deposition apparatus
JPH0499871A (en) Synthetic method for cubic carbon nitride
JPS63118074A (en) Thin film forming device
JPH05259094A (en) Thin film forming device
JPH02230734A (en) Thin film formation device
JPH02213481A (en) Thin film forming device
JPH02116118A (en) Thin-film formation device