JPH0361204B2 - - Google Patents

Info

Publication number
JPH0361204B2
JPH0361204B2 JP57011110A JP1111082A JPH0361204B2 JP H0361204 B2 JPH0361204 B2 JP H0361204B2 JP 57011110 A JP57011110 A JP 57011110A JP 1111082 A JP1111082 A JP 1111082A JP H0361204 B2 JPH0361204 B2 JP H0361204B2
Authority
JP
Japan
Prior art keywords
secondary coil
bidirectional
voltage
terminal thyristor
leg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57011110A
Other languages
Japanese (ja)
Other versions
JPS58129516A (en
Inventor
Shinichi Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yashima Denki Co Ltd
Original Assignee
Yashima Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yashima Denki Co Ltd filed Critical Yashima Denki Co Ltd
Priority to JP1111082A priority Critical patent/JPS58129516A/en
Publication of JPS58129516A publication Critical patent/JPS58129516A/en
Publication of JPH0361204B2 publication Critical patent/JPH0361204B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/12Regulating voltage or current wherein the variable actually regulated by the final control device is ac
    • G05F1/40Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
    • G05F1/44Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
    • G05F1/45Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
    • G05F1/455Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load with phase control

Description

【発明の詳細な説明】 本発明は交流電力の位相制御に関する。[Detailed description of the invention] The present invention relates to phase control of AC power.

従来、双方向性三端子サイリスタ等を用いた交
流電源の位相制御回路は、すべて交流電源に直接
接続されていたため、位相の制御操作をする際に
感電事故の発生する危険があつた。本発明は、こ
のような従来回路の欠点に鑑み、交流電源と完全
に絶縁されている低電圧の点弧角制御部を漏洩型
3脚トランスの2次(低圧)側に設けると共に、
該制御部と電磁結合している第二の2次コイルの
出力信号により双方向性三端子サイリスタを開閉
して交流電源の位相を制御するため、制御部を操
作する際にも絶対に感電する惧れのない、極めて
新規且つ有用な交流電力の位相制御回路を提供す
ることを目的とする。
Conventionally, phase control circuits for AC power sources using bidirectional three-terminal thyristors, etc., were all directly connected to the AC power source, and there was a risk of electric shock when controlling the phase. In view of the drawbacks of the conventional circuit, the present invention provides a low-voltage firing angle control section that is completely insulated from the AC power source on the secondary (low voltage) side of a leaky three-legged transformer, and
Since the phase of the AC power supply is controlled by opening and closing a bidirectional three-terminal thyristor using the output signal of the second secondary coil that is electromagnetically coupled to the control unit, there is no risk of electric shock when operating the control unit. It is an object of the present invention to provide a completely novel and useful AC power phase control circuit.

本発明を、その実施例を示す図面に基づいて説
明すると、以下の通りである。すなわち、第1図
において1は漏洩型3脚トランスであつて、該漏
洩型3脚トランス1の1次コイル4は交流電源1
3に接続されている。また該漏洩型3脚トランス
1の第一の2次コイル6には後述のごとき制御部
か接続され、第二の2次コイル8の出力端子は、
ブリツジダイオードからなる全波整流回路16及
び抵抗15を介してトライアツク、サイリスタ等
の双方向性三端子サイリスタ14のゲート、カソ
ード間に接続されている。交流電源13の両端は
前記双方向性三端子サイリスタ14のカソード
と、該双方向性三端子サイリスタ14のアノード
に接続された負荷19の他端に接続されている。
The present invention will be described below based on drawings showing embodiments thereof. That is, in FIG. 1, 1 is a leaky three-legged transformer, and the primary coil 4 of the leaky three-legged transformer 1 is connected to the AC power supply 1.
Connected to 3. The first secondary coil 6 of the leaky three-legged transformer 1 is connected to a control unit as described below, and the output terminal of the second secondary coil 8 is
It is connected between the gate and cathode of a bidirectional three-terminal thyristor 14 such as a triac or thyristor via a full-wave rectifier circuit 16 consisting of a bridge diode and a resistor 15. Both ends of the AC power supply 13 are connected to the cathode of the bidirectional three-terminal thyristor 14 and the other end of a load 19 connected to the anode of the bidirectional three-terminal thyristor 14.

前記制御部は、第一の2次コイル6の両端に双
方向性三端子サイリスタ9を挿入し、該双方向性
三端子サイリスタ9のゲートにSBS、ダイアツク
等のトリガー素子10、可変抵抗11及びコンデ
ンサ12からなるトリガー回路を接続してなるも
のである。なお、図中7は第一の2次コイル6を
短絡するためのスイツチであり、17,18は過
渡電流吸収用の抵抗及びコンデンサである。
The control section includes a bidirectional three-terminal thyristor 9 inserted at both ends of the first secondary coil 6, and a trigger element 10 such as an SBS or a diagonal, a variable resistor 11, and a It is formed by connecting a trigger circuit consisting of a capacitor 12. In the figure, 7 is a switch for short-circuiting the first secondary coil 6, and 17 and 18 are resistors and capacitors for absorbing transient current.

本発明回路の動作を説明すると、第一の2次コ
イル6に誘起された低電圧(例えば12V)が可変
抵抗11を通してコンデンサ12に充電され、該
コンデンサ12の端子電圧がトリガー素子10の
ブレークオーバー電圧以上になると、トリガー素
子10が負性抵抗を示すので、コンデンサ12に
蓄えられていた電圧が双方向性三端子サイリスタ
9のゲートに放出され、該双方向性三端子サイリ
スタ9をトリガーする。SBS、ダイアツク等のト
リガー素子10は、両方向に略対称なパルスを発
生するので、双方向性三端子サイリスタ9を両方
向でトリガーしてその点弧角を制御する。従つて
第一の2次コイル6は入力電圧に対し一定の位相
で繰り返し短絡されることになる。
To explain the operation of the circuit of the present invention, a low voltage (for example, 12V) induced in the first secondary coil 6 is charged to the capacitor 12 through the variable resistor 11, and the terminal voltage of the capacitor 12 exceeds the break-out point of the trigger element 10. When the voltage exceeds the voltage, the trigger element 10 exhibits negative resistance, so that the voltage stored in the capacitor 12 is released to the gate of the bidirectional three-terminal thyristor 9, triggering the bidirectional three-terminal thyristor 9. The trigger element 10, such as an SBS or a diak, generates pulses that are substantially symmetrical in both directions, and thus triggers the bidirectional three-terminal thyristor 9 in both directions to control its firing angle. Therefore, the first secondary coil 6 is repeatedly short-circuited with a constant phase with respect to the input voltage.

ここで漏洩型3脚トランス1の作用を第2図及
び第3図を用いて説明し、後に本発明の動作作用
を説明する。
Here, the operation of the leaky three-legged transformer 1 will be explained using FIGS. 2 and 3, and the operation and operation of the present invention will be explained later.

第2図において、1次コイル4を電源13に接
続し通電すると、2次コイル6の両端のスイツチ
7が開路されている場合、1次コイル4により発
生する1次磁束Φ1は、、実線の如くその大部分は
磁束Φ1′として中央脚5に流れ、第一の2次コイ
ル6と鎖交し第3図A,ロの如く電源電圧波形
(第3図A,イ)と略々180゜位相のずれた低電圧
を誘起する。
In Fig. 2, when the primary coil 4 is connected to the power source 13 and energized, and the switches 7 at both ends of the secondary coil 6 are open, the primary magnetic flux Φ 1 generated by the primary coil 4 is expressed by the solid line. Most of the magnetic flux Φ 1 ' flows into the central leg 5 as shown in FIG. Induces low voltages that are 180° out of phase.

ギヤツプGのある開口脚2は、磁気抵抗が高い
ので極めて微量の漏洩磁束Φ1″しか通れず、従つ
て第二の2次コイル8と鎖交する磁束も微量で第
二の2次コイル8には極く僅かの電圧しか誘起し
ない。
Since the open leg 2 with the gap G has a high magnetic resistance, only an extremely small amount of leakage magnetic flux Φ 1 '' can pass through, and therefore the magnetic flux that interlinks with the second secondary coil 8 is also very small. induces only a very small voltage.

これに対し、2次コイル6の両端のスイツチ7
が閉路されると、2次コイル6には短絡電流が流
れ1次磁束Φ1′と略々逆位相の2次磁束Φ2が中央
脚5に発生し、第2図の点線の如く、1次コイル
4の巻回されている第1脚3に磁束Φ2′、開口脚
2に磁束Φ2′と分流する。
On the other hand, the switches 7 at both ends of the secondary coil 6
When the circuit is closed, a short-circuit current flows through the secondary coil 6, and a secondary magnetic flux Φ 2 having an approximately opposite phase to the primary magnetic flux Φ 1 ' is generated in the central leg 5, as shown by the dotted line in FIG. The magnetic flux Φ 2 ' is divided into the first leg 3 around which the secondary coil 4 is wound, and the magnetic flux Φ 2 ' is divided into the open leg 2.

第1脚3に2次コイル6の短絡磁束Φ2′が流れ
ると、当然電源13に接続された1次コイル4へ
の入力が増加し1次磁束Φ1は増加し、従つて開
口脚2に流れる磁束Φ1″も増加する。
When the short-circuit magnetic flux Φ 2 ' of the secondary coil 6 flows through the first leg 3, the input to the primary coil 4 connected to the power supply 13 naturally increases, the primary magnetic flux Φ 1 increases, and therefore the open leg 2 The magnetic flux Φ 1 ″ flowing in also increases.

開口脚2には2次コイル6の短絡磁束Φ2″と1
次磁束Φ1″の合成磁束が多量に流れ第二の2次コ
イル8と鎖交するために第二の2次コイル8に電
圧を誘起し電源電圧波形(第3図A,イ)より
360゜弱位相の遅れた(換言すれば若干位相の進ん
だ)第3図Bの如き出力が発生する。
The open leg 2 has the short-circuit magnetic flux Φ 2 ″ of the secondary coil 6 and 1
Since a large amount of the composite magnetic flux of the secondary magnetic flux Φ 1 '' flows and interlinks with the second secondary coil 8, a voltage is induced in the second secondary coil 8, and from the power supply voltage waveform (Fig. 3 A, A).
An output as shown in FIG. 3B, which is delayed in phase by a little less than 360 degrees (in other words, slightly advanced in phase) is generated.

漏洩型3脚トランスは上述の如き特性をもつて
いるので、この特性を利用した本発明の動作作用
を第1図及び第3図にて説明する。
Since the leaky three-legged transformer has the above-mentioned characteristics, the operation of the present invention utilizing these characteristics will be explained with reference to FIGS. 1 and 3.

第1図でスイツチ7を閉路すると、前述の漏洩
型3脚トランスの説明の如く第二の2次コイル8
の電圧(第3図B)が発生し、全波整流回路16
及び抵抗15を介して、電源13に負荷19と直
列に接続されたメインの双方向性三端子サイリス
タ14のゲートに印加され、該双方向性三端子サ
イリスタ14を点弧、導通させ負荷19に電力を
供給せしめる。
When the switch 7 is closed in FIG. 1, the second secondary coil 8
A voltage (Fig. 3B) is generated, and the full-wave rectifier circuit 16
and is applied to the gate of the main bidirectional three-terminal thyristor 14 connected in series with the load 19 to the power source 13 through the resistor 15 to ignite and conduct the bidirectional three-terminal thyristor 14 to the load 19. Supply electricity.

又第1図でスイツチ7を開路すると、可変抵抗
11及びコンデンサ12で構成されるタイミング
回路で、2次コイル6に発生した低電圧(例えば
12V)が可変抵抗11を通じてコンデンサ12を
充電し、該コンデンサ12の端子電圧がトリガー
素子10のブレークオーバ電圧以上になると、ト
リガー素子10は導通しコンデンサ12に蓄えら
れていた電荷を第1の双方向性三端子サイリスタ
9のゲートに放出、トリガーさせる。
In addition, when the switch 7 is opened in FIG.
12V) charges the capacitor 12 through the variable resistor 11, and when the terminal voltage of the capacitor 12 becomes equal to or higher than the breakover voltage of the trigger element 10, the trigger element 10 becomes conductive and transfers the charge stored in the capacitor 12 to the first two terminals. The gate of the tropic three-terminal thyristor 9 is released and triggered.

SBS、ダイアツク等のトリガー素子10は両方
向に対象的なパルスを発生するので第1の双方向
性三端子サイリスタ9は両方向で点弧する。第3
図Cに第1の双方向性三端子サイリスタ9のゲー
トに印加されるトリガー素子のパルスの波形を示
す。
The triggering element 10, such as an SBS or diak, generates symmetrical pulses in both directions, so that the first bidirectional three-terminal thyristor 9 fires in both directions. Third
FIG. C shows the waveform of the pulse of the trigger element applied to the gate of the first bidirectional three-terminal thyristor 9.

なお、このパルスは可変抵抗11の値を調整す
ることにより、2次コイル6の2次電圧(第3図
A,ロ)の半サイクルの期間に1回〜10数回に選
定でき、最初のパルスの発生時期も半サイクルの
中で任意に設定可能であり、電源周波数に同期し
て発生する。
By adjusting the value of the variable resistor 11, this pulse can be selected from 1 to 10 times per half cycle of the secondary voltage of the secondary coil 6 (Fig. 3 A, B). The pulse generation timing can also be set arbitrarily within a half cycle, and is generated in synchronization with the power supply frequency.

第1図で第1の双方向性三端子サイリスタ9が
トリガーされ、導通すると2次コイル6の両端は
瞬間的に短絡された状態となり2次コイル6の電
圧波形は第3図Dの様相を示す。
In Fig. 1, the first bidirectional three-terminal thyristor 9 is triggered and conducts, and both ends of the secondary coil 6 are momentarily shorted, and the voltage waveform of the secondary coil 6 takes the form shown in Fig. 3D. show.

2次コイル6の両端が短絡されると、漏洩型3
脚トランスの機能により第二の2次コイル8の出
力電圧が発生するが、その電圧波形は可変抵抗1
1の調整に依り発生した第1の双方向性三端子サ
イリスタ9のゲートに印加されたパルスの位相と
一致して、第3図Eの如くになる。
When both ends of the secondary coil 6 are short-circuited, leakage type 3
The output voltage of the second secondary coil 8 is generated by the function of the leg transformer, and the voltage waveform is changed by the variable resistor 1.
The phase of the pulse applied to the gate of the first bidirectional three-terminal thyristor 9, generated by the adjustment in step 1, coincides with the phase as shown in FIG. 3E.

第二の2次コイル8のパルス状の出力電圧(第
3図E)は全波整流回路16及び抵抗15を介し
て第2の(メインの)双方向性三端子サイリスタ
14のゲートに印加されるが、最初のパルスでト
リガーされ双方向性三端子サイリスタ14の両端
の電圧は第3図Fの様になり、電源13と直列に
接続された負荷19の両端には、第3図Gの如き
電圧が供給され負荷19に供給する電力を位相制
御した結果が得られる。
The pulsed output voltage (FIG. 3E) of the second secondary coil 8 is applied to the gate of the second (main) bidirectional three-terminal thyristor 14 via the full-wave rectifier circuit 16 and the resistor 15. However, the voltage across the bidirectional three-terminal thyristor 14 triggered by the first pulse is as shown in FIG. 3F, and the voltage across the load 19 connected in series with the power source 13 is as shown in FIG. The result of phase control of the power supplied to the load 19 is obtained by supplying such a voltage.

又前述の如く第二の2次コイル8の出力電圧波
形(第3図B)は、電源13の電圧波形(第3図
A,イ)により若干位相が進んでいるため電源1
3の電圧波形(第3図A,イ)のゼロ・クロス点
でも可変抵抗11の調整によりパルスを出力する
ことが可能である。従つて、可変抵抗11を調整
することで負荷19に供給する電力をゼロ・クロ
ス点、フル点弧から任意の電力まで位相制御する
ことができる。
Furthermore, as mentioned above, the output voltage waveform of the second secondary coil 8 (FIG. 3B) is slightly ahead in phase with the voltage waveform of the power supply 13 (FIG. 3A, A).
By adjusting the variable resistor 11, it is possible to output a pulse even at the zero-crossing point of the voltage waveform No. 3 (FIGS. 3A and 3A). Therefore, by adjusting the variable resistor 11, the phase of the power supplied to the load 19 can be controlled from the zero cross point and full ignition to any desired power.

なお、上記実施例において、スイツチ7は、こ
れを閉じることによつて常に第一の2次コイル6
を短絡状態とし、双方向性三端子サイリスタ14
を強制的にフル点弧させるものである。可変抵抗
11を調節してその抵抗値を零にすることによつ
ても双方向性三端子サイリスタ14をフル点弧さ
せることはできるが、スイツチ7を設けておく
と、瞬時にこれを実現できるという利点がある。
In the above embodiment, the switch 7 always closes the first secondary coil 6.
is short-circuited, and the bidirectional three-terminal thyristor 14
This is to force the full ignition. Although it is possible to fully fire the bidirectional three-terminal thyristor 14 by adjusting the variable resistor 11 to make its resistance value zero, this can be instantaneously achieved by providing the switch 7. There is an advantage.

本発明によれば、電源から完全に絶縁された低
電圧の制御部にある可変抵抗を操作するだけで、
電源側にある双方向性三端子サイリスタの点弧角
を制御できるので、従来回路の如く感電事故の生
じる惧れは全くない。
According to the present invention, by simply operating a variable resistor in a low-voltage control section that is completely isolated from the power supply,
Since the firing angle of the bidirectional three-terminal thyristor on the power supply side can be controlled, there is no risk of electric shock as in conventional circuits.

また、第三の脚にギヤツプを設けた漏洩型三脚
トランスを用いた位相制御回路なので、スイツチ
(又は可変抵抗)開放時に、双方向性三端子サイ
リスタのゲートに印加される信号電圧が≒0で誤
点弧の惧れがない。
In addition, since the phase control circuit uses a leaky tripod transformer with a gap in the third leg, the signal voltage applied to the gate of the bidirectional three-terminal thyristor is ≈0 when the switch (or variable resistor) is opened. There is no risk of false firing.

また、従来のように入力トランス、出力トラン
スを個別に使用するのではなく、漏洩型三脚トラ
ンスを用いるので、トランスが小型・軽量・低コ
ストで提供でき、当然の結果として応用回路の交
流電動機等の負荷の位相制御回路ユニツトも小
型・軽量・低コストで製作可能となる。
In addition, since a leaky tripod transformer is used instead of using input and output transformers separately as in the past, the transformer can be provided in a small, lightweight, and low-cost manner, which naturally results in applications such as AC motors in application circuits, etc. The phase control circuit unit for the load can also be manufactured in a small size, light weight, and low cost.

また、トランスの価格が従来のものに比し、
3/4になり、所要空間も70%で済むということ
は、我が国の家電業界にとつては生産規模が年/
数百万台という生産数見合いで考えると非常に大
きな価値を持つものである。
In addition, the price of the transformer is lower than that of the conventional one.
3/4, and the required space is 70%, which means that for Japan's home appliance industry, the production scale will be 3/4 / 2020.
Considering the number of units produced in the millions, it is extremely valuable.

さらに、また制御部の可変抵抗をトランス本体
から離れたところで設置して、いわゆるリモコン
スイツチとすることができ、大変便利である。
Furthermore, the variable resistor of the control section can be installed at a location separate from the main body of the transformer, so that it can be used as a so-called remote control switch, which is very convenient.

等の種々の利点がある。There are various advantages such as.

【図面の簡単な説明】[Brief explanation of drawings]

図面はいずれも本発明の実施例を説明するため
のものであつて、第1図は本発明に係る位相制御
回路の回路図、第2図は本発明に用いる漏洩型3
脚トランスの略示正面図、第3図A,B,C,
D,E,F,Gは、それぞれ、電源電圧及び2次
コイル6の誘起電圧、第二の2次コイル8の誘起
電圧、トリガー素子10の出力パルス、2次コイ
ル6の電圧、第二の2次コイル8の出力電圧、第
2の双方向性三端子サイリスタ14の両端電圧、
負荷の両端電圧、の各電圧波形である。 1…漏洩型3脚トランス、2…開口脚、3,5
…非開口脚、4…1次コイル、6…第一の2次コ
イル、8…第二の2次コイル、9…双方向性三端
子サイリスタ、11…可変抵抗、13…交流電
源、14…双方向性三端子サイリスタ、19…負
荷。
The drawings are all for explaining embodiments of the present invention, and FIG. 1 is a circuit diagram of a phase control circuit according to the present invention, and FIG. 2 is a circuit diagram of a leaky type 3 used in the present invention.
Schematic front view of leg transformer, Figure 3 A, B, C,
D, E, F, and G are the power supply voltage, the induced voltage of the secondary coil 6, the induced voltage of the second secondary coil 8, the output pulse of the trigger element 10, the voltage of the secondary coil 6, and the second The output voltage of the secondary coil 8, the voltage across the second bidirectional three-terminal thyristor 14,
These are the voltage waveforms of the voltage across the load. 1...Leaky type 3 leg transformer, 2...Open leg, 3,5
...Non-open leg, 4...Primary coil, 6...First secondary coil, 8...Second secondary coil, 9...Bidirectional three-terminal thyristor, 11...Variable resistor, 13...AC power supply, 14... Bidirectional three-terminal thyristor, 19...Load.

Claims (1)

【特許請求の範囲】[Claims] 1 3脚鉄心のうちの1脚をギヤツプのある開口
脚にした漏洩型3脚トランスの1つの非開口脚
に、交流電源に接続された1次コイルを巻回し、
他の非開口脚には第一の2次コイルを、前記開口
脚には第二の2次コイルを夫々巻回すると共に、
第一の2次コイルの両端にはトリガー回路中の可
変抵抗により点弧角が可変になされた第1の双方
向性三端子サイリスタを接続し、負荷を前記第二
の2次コイルの出力信号によつて開閉する第2の
双方向性三端子サイリスタを介して交流電源間に
接続したことを特徴とする漏洩型3脚トランスに
よる交流電力の位相制御回路。
1. Wound a primary coil connected to an AC power source around one non-open leg of a leaky three-legged transformer in which one leg of the three-legged core is an open leg with a gap,
A first secondary coil is wound around the other non-open leg, and a second secondary coil is wound around the open leg, and
A first bidirectional three-terminal thyristor whose firing angle is made variable by a variable resistor in a trigger circuit is connected to both ends of the first secondary coil, and the load is connected to the output signal of the second secondary coil. 1. A phase control circuit for AC power using a leaky three-legged transformer, characterized in that the circuit is connected between AC power sources via a second bidirectional three-terminal thyristor that is opened and closed by a leakage type three-legged transformer.
JP1111082A 1982-01-26 1982-01-26 Phase controlling circuit of ac power by contactless transformer relay Granted JPS58129516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111082A JPS58129516A (en) 1982-01-26 1982-01-26 Phase controlling circuit of ac power by contactless transformer relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111082A JPS58129516A (en) 1982-01-26 1982-01-26 Phase controlling circuit of ac power by contactless transformer relay

Publications (2)

Publication Number Publication Date
JPS58129516A JPS58129516A (en) 1983-08-02
JPH0361204B2 true JPH0361204B2 (en) 1991-09-19

Family

ID=11768865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111082A Granted JPS58129516A (en) 1982-01-26 1982-01-26 Phase controlling circuit of ac power by contactless transformer relay

Country Status (1)

Country Link
JP (1) JPS58129516A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039394A (en) * 1983-08-10 1985-03-01 Matsushita Electric Ind Co Ltd Speed controller of motor
JPS60216789A (en) * 1984-04-10 1985-10-30 Matsushita Electric Ind Co Ltd Electric cleaner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS446893Y1 (en) * 1966-11-21 1969-03-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS446893Y1 (en) * 1966-11-21 1969-03-14

Also Published As

Publication number Publication date
JPS58129516A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
US4443712A (en) Switch device for connecting AC power source to load
US3364386A (en) Pulse generating means for starting discharge lamps
US4441056A (en) High pressure sodium lamp ballast circuit
JPH0361204B2 (en)
US3781649A (en) High voltage pulse generating apparatus
US5440445A (en) High-energy ignition generator in particular for a gas turbine
JPH03155332A (en) Electric energy storage system
JPH0341020B2 (en)
US3440519A (en) Constant current regulator with moving coil transformer
US5025498A (en) Apparatus for controlling the trigger sequence in ignition systems
US3388294A (en) Saturable reactor dimmer
ES324531A1 (en) Spark ignition systems
JPH0557606B2 (en)
JPH0361205B2 (en)
US3222570A (en) Starter for multiple electrode lamps
US3624411A (en) Switching circuit for delayed phase firing of a power switch
JPS6016173A (en) Phase control circuit of ac power
JPH0568187B2 (en)
JPS59221718A (en) Phase control circuit of alternating current electric power using tripod transformer
US4639662A (en) Thyristor circuit for current regulation
JPS6117460Y2 (en)
JPS6137979Y2 (en)
JPS5834833B2 (en) flash device
US3576467A (en) High voltage spark generator from low voltage supply
US3107328A (en) Saturable reactor dimmer