JPS59221718A - Phase control circuit of alternating current electric power using tripod transformer - Google Patents
Phase control circuit of alternating current electric power using tripod transformerInfo
- Publication number
- JPS59221718A JPS59221718A JP9759283A JP9759283A JPS59221718A JP S59221718 A JPS59221718 A JP S59221718A JP 9759283 A JP9759283 A JP 9759283A JP 9759283 A JP9759283 A JP 9759283A JP S59221718 A JPS59221718 A JP S59221718A
- Authority
- JP
- Japan
- Prior art keywords
- tripod
- capacitor
- coil
- circuit
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/12—Regulating voltage or current wherein the variable actually regulated by the final control device is ac
- G05F1/40—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices
- G05F1/44—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only
- G05F1/45—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load
- G05F1/455—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using discharge tubes or semiconductor devices as final control devices semiconductor devices only being controlled rectifiers in series with the load with phase control
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Control Of Electrical Variables (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は三脚トランスを用いて電源と操作回路とを絶縁
すると共に、2次コイルの制御操作によ98次コイルに
起電力を発生させてトライアックを位相制御し交流電力
を制御する回路に関するものである。Detailed Description of the Invention The present invention uses a tripod transformer to insulate the power supply and the operation circuit, and also generates an electromotive force in the 98th coil by controlling the secondary coil to control the phase of the triac and generate AC power. This relates to a circuit that controls the
従来、scR,)ライアソク等を用いた交流電力の制御
回路は第1図の如くすべて交流電源に直接接続されてい
たため、電力制御をする際に感電事故の発生する危険が
あった。これを解消するだめ低電圧操作回路からリモー
トコントロールを行う場合、第2図の如くホトカプラの
無接点リレーを用いる場合には操作入力に電源が必要で
、オン、オフ制御ができても位相制御ができないので、
位相制御する場合に別途に制御回路が必要で更に高価な
ものとなった。Conventionally, all alternating current power control circuits using scR, Liasoc, etc. were directly connected to an alternating current power source as shown in FIG. 1, so there was a risk of electric shock during power control. To solve this problem, when performing remote control from a low voltage operation circuit, when using a photocoupler non-contact relay as shown in Figure 2, a power supply is required for operation input, and even if on/off control is possible, phase control is not possible. Because I can't
When controlling the phase, a separate control circuit is required, making it even more expensive.
本発明はこれら従来の欠点を解消するため、三脚トラン
スを用いて操作スイッチと電源を絶縁し、2次コイルに
接続した抵抗の変化及びスイッチの短絡開放によって、
3次コイルの起電力を加減又はゼロとなし、抵抗、コン
デンサ、トリガー素子SBBよりなる発振回路の発振を
制御してトライアックを位相制御し、それに直列接続さ
れた負荷の電力を制御するものである。In order to solve these conventional drawbacks, the present invention uses a tripod transformer to insulate the operation switch and the power supply, and changes the resistance connected to the secondary coil and shorts and opens the switch.
It adjusts the electromotive force of the tertiary coil or makes it zero, controls the oscillation of the oscillation circuit consisting of a resistor, capacitor, and trigger element SBB, controls the phase of the triac, and controls the power of the load connected in series with it. .
本発明の詳細な説明するに当り、先づ三脚トランスの構
成から述べる。三脚トランスには第4図及び第5図に示
すごとく二種類の三脚鉄心による三脚トランスがあり、
第4図の三脚トランス1は三脚鉄心に外側脚2及び4、
中央脚3を有し、外側脚4にはギャップ5を設けている
。外側脚2には1次コイル6が捲回してあり、中央脚3
には2次コイル7が、他のギャップ5のある外側脚4に
は8次コイル8が夫々低電圧が誘起されるように捲回し
である。第5図の三脚トランス1は2つの内鉄型鉄心9
.10が非磁性体11にて隔離結合されて三脚鉄心を形
成していて、外側脚2に1次コイル6、幅広の中央脚3
に2次コイル7、他の外側脚4に8次コイル8が夫々捲
回してあシ、三脚鉄心の構造が第4図の場合と異ってい
る。In explaining the present invention in detail, the structure of the tripod transformer will first be described. There are two types of tripod transformers with tripod cores, as shown in Figures 4 and 5.
The tripod transformer 1 in Fig. 4 has outer legs 2 and 4 on the tripod core.
It has a central leg 3 and an outer leg 4 with a gap 5. A primary coil 6 is wound around the outer leg 2, and the central leg 3
A secondary coil 7 is wound on the outer leg 4, and an octagonal coil 8 is wound on the outer leg 4 with the other gap 5 so that a low voltage is induced. The tripod transformer 1 in Fig. 5 has two inner iron cores 9.
.. 10 are isolated and coupled with a non-magnetic material 11 to form a tripod iron core, with a primary coil 6 on the outer leg 2 and a wide central leg 3.
The structure of the tripod core is different from that shown in FIG. 4 in that the secondary coil 7 is wound around the outer leg 4, and the 8th coil 8 is wound around the other outer leg 4.
第3図は本発明の実施例回路にして前記の三脚トランス
1を使用しており、2次コイル70両端に可変抵抗12
とスイッチ13を直列にして接続し、1次コイル6と全
波整流器14、抵抗15、コンデンサ16の直列回路を
電源17に並列接続し、3次コイル8の両端に全波整流
器18を接続し、その直流側にパルス吸収用のコンデン
サ19を挿入した直流出力を前記全波整流器14の直流
側に接続されたトランジスタ2oのベース、エミッタ間
に抵抗21.22にて分圧して与えると共に、前記抵抗
15とコンデンサ16との結合点を電源17に接続され
た負荷23と直列のトライア、り24のゲートに5BS
25を介して接続した回路であってコンデンサ26、抵
抗27はトライアックの保護回路である。第6図は第8
図において1次コイル6と全波整流器14、抵抗15、
コンデンサ16の直列回路の結合点Cを負荷28とトラ
イアック24の結合点Bに接続した回路でその他は第8
図と同一である。FIG. 3 shows a circuit according to an embodiment of the present invention, which uses the above-mentioned tripod transformer 1, and has a variable resistor 12 connected to both ends of the secondary coil 70.
and the switch 13 are connected in series, the series circuit of the primary coil 6, full-wave rectifier 14, resistor 15, and capacitor 16 is connected in parallel to the power supply 17, and the full-wave rectifier 18 is connected to both ends of the tertiary coil 8. , a DC output from which a pulse absorbing capacitor 19 is inserted on the DC side is divided between the base and emitter of the transistor 2o connected to the DC side of the full-wave rectifier 14 using resistors 21 and 22, and the voltage is divided and applied. The connection point between the resistor 15 and the capacitor 16 is connected to the load 23 connected to the power supply 17, and the trier is connected in series to the gate of the triator 24.
A capacitor 26 and a resistor 27 are connected to each other through a triac protection circuit. Figure 6 is the 8th
In the figure, a primary coil 6, a full-wave rectifier 14, a resistor 15,
The circuit connects the connection point C of the series circuit of the capacitor 16 to the connection point B of the load 28 and the triac 24, and the rest is the 8th circuit.
Same as figure.
先づ三脚トランス1の特性を説明し、続いて本発明回路
の作用を説明する。第4図において、1次コイル6を電
源17に接続して通電すると、2次コイル7が開放され
ていれば1次磁束ψ、は実線の如く大部分の磁束ψ1′
が中央脚3を通り、2次コイル7に鎖交して低電圧を誘
起するが、ギャップ5のある外側脚4には微量の漏洩磁
束ψrしが通らないので8次コイル8には極めて僅かの
電圧しが発生しない。しかるに2次コイル7をスイッチ
1a′にて短絡すると短絡電流が流れ、磁束ψfと逆方
向の2次磁束ψ、が発生し、外側脚4側の磁束ヴイ′と
外側脚2側の磁束ψざに点線で示す如く分流し、短絡に
よって増加した磁束何′と前記磁束ψf′との合成磁束
がギャップ5のある外側脚4に通るので8次コイル8に
鎖交して電源電圧より360度弱遅れた電圧が発生する
。即ちこの8次電圧は電源電圧(第7図イの太線)より
僅か進んだ電圧(第7図イの細線)と見做される。又第
5図の内鉄複合型の三脚トランス1は1次コイル6によ
り1次磁束ψrが実線の如く内鉄型鉄心9内を通電、2
次コイル7に低電圧を誘起するが、内鉄型鉄心10の外
側脚4には漏洩磁束は殆んど通らないので8次コイル8
には何ら電圧は発生しない。しかるにスイッチ18′に
て2次コイル7を短絡すると短絡電流が流れ、1次磁束
ψ、に対し逆方向の2次磁束ψ、が発生し、磁気抵抗の
少ない内鉄型鉄、1j10内に点線の如く殆んど大部分
が3次コイル8に鎖交して磁気回路を作るので電源電圧
より360度弱遅れた低電圧が発生する。即ちこの電圧
は電源電圧より僅か進んだ電圧と見做される。第4図及
び第5図の三脚トランスは共に2次コイル7の短絡に対
応して3次コイル8に860度弱遅れだ電圧即ち11t
@と略同相と見做され、しかも少し進み気味の電圧が誘
起する特性をもっている。又2次コイルに可変抵抗を接
続して0オーム(短絡に相当)から抵抗値を増加して行
けば、短絡電流が減少して行き、それに対応して8次電
圧は減少するので8次電圧を制御することができる。こ
の特性を利用した本発明回路の作用を実施例の第8図の
回路について説明する。First, the characteristics of the tripod transformer 1 will be explained, and then the operation of the circuit of the present invention will be explained. In FIG. 4, when the primary coil 6 is connected to the power source 17 and energized, if the secondary coil 7 is open, the primary magnetic flux ψ is the majority of the magnetic flux ψ1' as shown by the solid line.
passes through the center leg 3 and interlinks with the secondary coil 7, inducing a low voltage.However, since a small amount of leakage magnetic flux ψr does not pass through the outer leg 4 with the gap 5, very little leakage magnetic flux ψr passes through the 8th coil 8. No voltage is generated. However, when the secondary coil 7 is short-circuited with the switch 1a', a short-circuit current flows, and a secondary magnetic flux ψ in the opposite direction to the magnetic flux ψf is generated, and the magnetic flux V' on the outer leg 4 side and the magnetic flux ψ on the outer leg 2 side are separated. As shown by the dotted line, the composite magnetic flux of the magnetic flux increased by the short circuit and the magnetic flux ψf' passes through the outer leg 4 with the gap 5, so it interlinks with the 8th coil 8 and is 360 degrees weaker than the power supply voltage. A delayed voltage is generated. That is, this 8th voltage is regarded as a voltage (thin line in FIG. 7A) that is slightly more advanced than the power supply voltage (bold line in FIG. 7A). In addition, in the inner iron composite type tripod transformer 1 shown in FIG.
A low voltage is induced in the secondary coil 7, but since almost no leakage magnetic flux passes through the outer legs 4 of the inner iron core 10, the 8th coil 8
No voltage is generated. However, when the secondary coil 7 is short-circuited with the switch 18', a short-circuit current flows, and a secondary magnetic flux ψ in the opposite direction to the primary magnetic flux ψ is generated. As most of the magnetic circuit is linked to the tertiary coil 8 to form a magnetic circuit, a low voltage that lags the power supply voltage by a little less than 360 degrees is generated. In other words, this voltage is considered to be slightly more advanced than the power supply voltage. Both the tripod transformers in FIGS. 4 and 5 have a voltage that lags the tertiary coil 8 by a little less than 860 degrees in response to a short circuit in the secondary coil 7, that is, 11t.
It is considered to be approximately in phase with @, and has the characteristic of being induced by a slightly leading voltage. Also, if you connect a variable resistor to the secondary coil and increase the resistance value from 0 ohm (corresponding to a short circuit), the short circuit current will decrease, and the 8th voltage will decrease accordingly. can be controlled. The operation of the circuit of the present invention utilizing this characteristic will be explained with reference to the circuit of FIG. 8 of the embodiment.
スイッチ18を開放した状態では前述の三脚トランスの
特性から8次コイル8には電圧を発生しない。よってト
ランジスタ20のベース、エミッタ間に伺ら電圧が印加
されないのでコレクタ、エミッタ間は導通しない。従っ
てコンデンサ16に電圧が印加されないので充電されず
5BS25、トライアック24は動作しない。しかるに
スイッチ18を閉成して例えば可変抵抗12が0オーム
の場合2次コイル7が短絡されたことになり、8次コイ
ル8には電圧が発生し整流器18にて整流された電圧が
トランジスタ200ベース、エミッタ間に印加されトラ
ンジスタ2oは完全に導通状態となシ内部抵抗が非常に
小さくなυ、抵抗15との合成抵抗を通してコンデ/す
16に交流電圧が印加され、充電されて5B825のブ
レークオーバ電圧を超えるとトライアック24のゲート
G、端子TIを通して放電する。この作用が繰返えされ
発振状態となる。半サイクル毎に行われる充放電はトラ
ンジスタ20の内部抵抗と抵抗15の合成抵抗によって
決定するが実験では大体10数回以下の発振であった。When the switch 18 is open, no voltage is generated in the 8th coil 8 due to the characteristics of the tripod transformer described above. Therefore, since no voltage is applied between the base and emitter of the transistor 20, there is no conduction between the collector and emitter. Therefore, since no voltage is applied to the capacitor 16, it is not charged and the 5BS 25 and triac 24 do not operate. However, when the switch 18 is closed and the variable resistor 12 is 0 ohm, for example, the secondary coil 7 is short-circuited, a voltage is generated in the 8th coil 8, and the voltage rectified by the rectifier 18 is applied to the transistor 200. The voltage is applied between the base and the emitter, and the transistor 2o is completely conductive.The internal resistance is very small υ, and an AC voltage is applied to the capacitor 16 through the combined resistance with the resistor 15, which charges it and breaks the 5B825. When the overvoltage is exceeded, discharge occurs through the gate G of the triac 24 and the terminal TI. This action is repeated, resulting in an oscillation state. The charging and discharging performed every half cycle is determined by the combined resistance of the internal resistance of the transistor 20 and the resistor 15, but in experiments, the number of oscillations was about 10 or less times.
トライアックのゲートG1端子71間の電圧波形は第7
図1の如くなる。可変抵抗12の抵抗値を増加して行く
と2次短絡電流が減り3次コイルの電圧も減少してトラ
ンジスタ20のベース、エミッタ間に印加されるのでコ
レクタ、エミッタ間の内部抵抗は次第に増大して抵抗1
5との合成抵抗値が大きくなり半サイクル中の発振回数
は減り極限はOとなる。トライアックのゲートG1端子
71間の電圧波形が第7図口の如きときがある。従って
可変抵抗12を変化することにより充電時間を遅らせ放
電のタイミングが位相の変化となり、半サイクルの最初
の放電がトライアック24のターンオン電流となり位相
制御することとなり、負荷電力を位相制御することがで
き、2次コイル旬絡時ではフル点弧に近い位相制御がで
き(第7図ホ)尚次の半サイクルでは極性が反転して同
一の作用が行われる。この発振は電源電圧の半サイクル
毎に同期して行われる。The voltage waveform between the gate G1 terminal 71 of the triac is the seventh
It will look like Figure 1. As the resistance value of the variable resistor 12 increases, the secondary short-circuit current decreases and the voltage of the tertiary coil decreases, which is applied between the base and emitter of the transistor 20, so the internal resistance between the collector and emitter gradually increases. resistance 1
The combined resistance value with 5 increases, and the number of oscillations during a half cycle decreases, reaching a limit of 0. There are times when the voltage waveform between the gate G1 terminal 71 of the triac is as shown in FIG. Therefore, by changing the variable resistor 12, the charging time is delayed and the discharge timing changes in phase, and the first discharge of a half cycle becomes the turn-on current of the triac 24, which is controlled in phase, and the load power can be controlled in phase. When the secondary coil is short-circuited, phase control close to full ignition can be achieved (FIG. 7(e)).In the next half cycle, the polarity is reversed and the same effect is performed. This oscillation is performed synchronously every half cycle of the power supply voltage.
第6図の回路ではトライアック24が前述の作用の最初
の放電によって点弧すると制御回路への電圧は殆んどな
くなるので(トライアック24の電圧降下のみ)第7図
ロ′及び二′の如く半サイクルについて最初のパルス信
号のみとなるが同一作用である。In the circuit of Fig. 6, when the triac 24 is ignited by the first discharge of the above-mentioned action, the voltage to the control circuit is almost gone (only the voltage drop of the triac 24), so as shown in Fig. 7 B' and 2', The effect is the same, but only the first pulse signal per cycle.
尚スイッチ13と可変抵抗12に並列にもう1つのスイ
ッチを設ければどの位相からでもフル点弧近くの位置(
最高電力)にすることができて便利であり、又可変抵抗
を固定抵抗として適宜の抵抗値を選定して切替えれば電
力の段階的制御が可能であり、2次コイルとスイッチ、
抵抗器との間の配線を延長すればリモートコントロール
が可能となる。If another switch is installed in parallel with switch 13 and variable resistor 12, it will be possible to reach a position close to full ignition from any phase (
It is convenient because the variable resistor can be used as a fixed resistor and the appropriate resistance value can be selected and switched to enable stepwise control of the power.
Remote control is possible by extending the wiring between the resistor and the resistor.
本発明は前述した如き構成と作用をもっているので次の
特徴、効果がおり極めて有用である。Since the present invention has the structure and operation as described above, it has the following features and effects and is extremely useful.
(1)三脚トランスを用いているため、操作スイ、。(1) Since a tripod transformer is used, the operation switch is difficult.
チ、可変抵抗器は電源と完全に絶縁された上、回路電圧
は低電圧に設計されるので感電事故の発生は全くない。H. The variable resistor is completely isolated from the power supply and the circuit voltage is designed to be low, so there is no risk of electric shock.
(2)交流電力の位相制御はフル点弧(0度)近くから
180度近くまで広範囲にできるので民生機器は勿論産
業機器其の他にも採用でき、その用途は極めて広い。(2) Since the phase control of AC power can be performed over a wide range from near full ignition (0 degrees) to near 180 degrees, it can be applied not only to consumer equipment but also to industrial equipment, and its applications are extremely wide.
(3)三脚トランスに流れる電流は極めて少ないので、
小型にでき又制御装置全体も小型に纒めることが出来る
ので安価となる。(3) Since the current flowing through the tripod transformer is extremely small,
Since it can be made small and the entire control device can be made compact, it is inexpensive.
(4)スイッチ、可変抵抗への配線を延長してリモート
コントロールすることが可能である。(4) Remote control is possible by extending the wiring to the switch and variable resistor.
(5)可変抵抗を1個又は複数個の固定抵抗にして、別
のスイッチで短絡開放構造にすれば段階的電力制御も可
能である。(5) Stepwise power control is also possible by replacing the variable resistor with one or more fixed resistors and creating a short-circuit/open structure with another switch.
第1図及び第2図は従来例の回路図、第3図は本発明の
実施例回路図、第4図は本発明に用いた一脚にギャップ
を有する三脚トランスの構成図、第5図は同じく内鉄型
鉄心結合型の三脚トランスの構成図、第6図は第3図円
内の接続を換えた部分回路図、第7図は電圧波形図で、
イは電源電圧(太線)と8次電圧(細線、2次短絡時)
との関係波形図、口、ゴはトライアックのゲートに印加
されるパルス電圧(可変抵抗挿入時の一例)、ノ・は口
、dのときの負荷電圧、二、二′は2次コイル短絡時の
トライアックG−T、間に印加されるノ(ルス電圧、ホ
は二、二′のときの負荷電圧の波形図である。
1・・・・三脚トランス 5 ・・・・・・ギャップ
6−・1次コイル 7 ・・・・・2次コイル8・
・・・8次コイル 11 ・・・ 非磁性体12・
−・・−可変抵抗 14.18・・・・・・全波整
流器16・・・・ コンデンサ 20・・・・・・
・・・トランジスタ24・ ・・・トライアック 2
5・・・・・・・SBS特許出願人 八洲電機株式会社
第1図Figures 1 and 2 are circuit diagrams of a conventional example, Figure 3 is a circuit diagram of an embodiment of the present invention, Figure 4 is a block diagram of a tripod transformer with a gap in the monopod used in the present invention, and Figure 5. Figure 6 is a partial circuit diagram with the connections in the circles in Figure 3 changed, and Figure 7 is a voltage waveform diagram.
A is the power supply voltage (thick line) and the 8th voltage (thin line, at the time of secondary short circuit)
Relationship waveform diagram with ``G'' and ``G'' are pulse voltages applied to the gate of the triac (an example when inserting a variable resistor); This is a waveform diagram of the load voltage when the voltage is applied between the triac G-T, and E is 2 and 2'. 1...Tripod transformer 5...Gap 6-・Primary coil 7...Secondary coil 8・
... 8th coil 11 ... Non-magnetic material 12.
-...-Variable resistor 14.18... Full wave rectifier 16... Capacitor 20...
...Transistor 24...Triac 2
5... SBS patent applicant Yasu Electric Co., Ltd. Figure 1
Claims (4)
抗とスイッチを直列に接続し、且つ外側脚の1つに1次
コイルを捲回して、全波整流器、抵抗、コンデンサの直
列回路と共に電源に並列接続し、他の外側脚に3次コイ
ルを捲回してその出力を整流して、前記全波整流器の直
流側に接続されたトランジスタのベース、エミッタ間に
分圧して与えると共に、前記抵抗とコンデンサとの結合
点を負荷と直列接続されたトライアックのゲートにトリ
ガー素子を介して接続したことを特徴とする三脚トラン
スを用いた交流電力の位相制御回路。(1) A secondary coil is wound around the central leg of the tripod core, and a variable resistor and a switch are connected in series.A primary coil is wound around one of the outer legs, and a full-wave rectifier, resistor, and capacitor are connected in series. It is connected in parallel to the power supply together with the circuit, and a tertiary coil is wound around the other outer leg to rectify the output and divide the voltage between the base and emitter of the transistor connected to the DC side of the full-wave rectifier. A phase control circuit for AC power using a tripod transformer, characterized in that a connection point between the resistor and the capacitor is connected to a gate of a triac connected in series with a load via a trigger element.
3次コイルを捲回したことを特徴とする特許請求の範囲
第1項記載の三脚トランスを用いた交流電力の位相制御
回路。(2) An alternating current power phase control circuit using a tripod transformer according to claim 1, characterized in that a tertiary coil is wound with a gap provided in one of the outer legs of the tripod iron ICr.
結合した三脚鉄心の中央脚に2次コイルを捲回したこと
を特徴とする特許請求の範囲第1項記載の三脚トランス
を用いた交流電力の位相制御回路。(3) A tripod transformer according to claim 1, characterized in that a secondary coil is wound around the central leg of a tripod core which is isolated and coupled with a non-magnetic material between the legs of two inner iron cores. The AC power phase control circuit used.
直列回路をトライアックに並列接続したことを特徴とす
る特許請求の範囲第2項又は第8項記載の三脚トランス
を用いた交流電力の位相制御回路(4) AC power phase using a tripod transformer according to claim 2 or 8, characterized in that a series circuit of a primary coil, a full-wave rectifier, a resistor, and a capacitor is connected in parallel to a triac. control circuit
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9759283A JPS59221718A (en) | 1983-05-31 | 1983-05-31 | Phase control circuit of alternating current electric power using tripod transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9759283A JPS59221718A (en) | 1983-05-31 | 1983-05-31 | Phase control circuit of alternating current electric power using tripod transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59221718A true JPS59221718A (en) | 1984-12-13 |
JPH0361206B2 JPH0361206B2 (en) | 1991-09-19 |
Family
ID=14196503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9759283A Granted JPS59221718A (en) | 1983-05-31 | 1983-05-31 | Phase control circuit of alternating current electric power using tripod transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59221718A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS446893Y1 (en) * | 1966-11-21 | 1969-03-14 |
-
1983
- 1983-05-31 JP JP9759283A patent/JPS59221718A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS446893Y1 (en) * | 1966-11-21 | 1969-03-14 |
Also Published As
Publication number | Publication date |
---|---|
JPH0361206B2 (en) | 1991-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5363035A (en) | Phase controlled transformer | |
US4386395A (en) | Power supply for electrostatic apparatus | |
US3851239A (en) | High voltage d.c. supply circuit | |
JP2567034Y2 (en) | Battery charger | |
JPS59221718A (en) | Phase control circuit of alternating current electric power using tripod transformer | |
JPS59124705A (en) | Composite tripod transformer | |
JPS58129516A (en) | Phase controlling circuit of ac power by contactless transformer relay | |
JPH0756126Y2 (en) | Power supply for welding | |
JPH0568187B2 (en) | ||
JPH0341892Y2 (en) | ||
JPS61296965A (en) | Power unit for arc welding | |
US2895563A (en) | Electrical precipitator | |
JP2503948B2 (en) | DC power supply | |
US3932802A (en) | Controlled power transferring device and method utilizing a reactance controlled by development of opposing magnetic fluxes | |
JPH0557606B2 (en) | ||
JPH11285253A (en) | Power supply | |
JP3196299B2 (en) | Remote control relay controller | |
JPH0722872Y2 (en) | Arrestor aging circuit | |
RU1815054C (en) | Domestic welding rectifier | |
JPH0119473Y2 (en) | ||
JPH029370Y2 (en) | ||
JPS6311063A (en) | Power source | |
JPH0713431Y2 (en) | Power supply circuit | |
JPS59165113A (en) | Phase control circuit for alternating current electric power using tripod transformer | |
JPS59142622A (en) | Phase control circuit of ac power using composite tripod transformer |