JPS6137979Y2 - - Google Patents

Info

Publication number
JPS6137979Y2
JPS6137979Y2 JP7377482U JP7377482U JPS6137979Y2 JP S6137979 Y2 JPS6137979 Y2 JP S6137979Y2 JP 7377482 U JP7377482 U JP 7377482U JP 7377482 U JP7377482 U JP 7377482U JP S6137979 Y2 JPS6137979 Y2 JP S6137979Y2
Authority
JP
Japan
Prior art keywords
temperature
time constant
circuit
thyristor
ignition device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7377482U
Other languages
Japanese (ja)
Other versions
JPS58175369U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7377482U priority Critical patent/JPS58175369U/en
Publication of JPS58175369U publication Critical patent/JPS58175369U/en
Application granted granted Critical
Publication of JPS6137979Y2 publication Critical patent/JPS6137979Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Generation Of Surge Voltage And Current (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 この考案は例えば石油バーナー等に供せられる
点火装置に関し、特に点火装置を小型化するとと
もに低温着火特性の向上、性能の安定化を図るこ
とを目的とする。
[Detailed Description of the Invention] This invention relates to an ignition device used in, for example, an oil burner, and in particular aims to reduce the size of the ignition device, improve low-temperature ignition characteristics, and stabilize performance.

第1図は点火装置の従来例を示すもので、交流
電源1の両端に両方向性サイリスタ、いわゆるト
ライアツク2と、主コンデンサ3及び変圧器4の
1次巻線5の直列回路との直列接続が接続され
る。また発振コンデンサ6と充電抵抗器7及び8
の直列回路との直列接続も交流電源1の両端に接
続される。発振コンデンサ6及び充電抵抗器7の
接続点はトライアツク2の制御端にトリガ用スイ
ツチ素子9を介して接続され、トライアツク2及
び主コンデンサ3の接続点は帰還抵抗器10を介
して充電抵抗器7及び8の接続点に接続される。
変圧器4の2次巻線11の両端は出力端とされ
る。発振コンデンサ6、充電抵抗器7,8、トリ
ガ用スイツチ素子9はトライアツク2を制御する
弛張発振回路を構成し、発振コンデンサ6、充電
抵抗器7,8はその発振回路の時定数回路であ
る。
FIG. 1 shows a conventional example of an ignition device. A bidirectional thyristor, or so-called triac, 2 is connected in series to both ends of an AC power source 1, a main capacitor 3, and a series circuit of a primary winding 5 of a transformer 4. An oscillation capacitor 6 and charging resistors 7 and 8 are also connected.
The series connection with the series circuit of the above is also connected to both ends of the AC power source 1. The connection point of the oscillation capacitor 6 and the charging resistor 7 is connected to the control terminal of the triac 2 via a trigger switch element 9, and the connection point of the triac 2 and the main capacitor 3 is connected to the connection point of the charging resistors 7 and 8 via a feedback resistor 10.
Both ends of the secondary winding 11 of the transformer 4 are used as output terminals. The oscillation capacitor 6, charging resistors 7 and 8, and trigger switch element 9 constitute a relaxation oscillation circuit that controls the triac 2, and the oscillation capacitor 6 and charging resistors 7 and 8 form a time constant circuit of the oscillation circuit.

この装置において交流電源1より例えば第2図
Aに示す交流電圧が印加されると、発振コンデン
サ6が充電抵抗器7及び8との関係で決まる時定
数で時点t0より充電され、時点t1にその端子電圧
がトリガ用スイツチ素子9のブレークオーバー電
圧に達するとトリガ用スイツチ素子9がブレーク
オーバーし、発振コンデンサ6の充電電荷がトリ
ガ用スイツチ素子9及びトライアツク2の制御端
を通して放電し、トライアツク2がターンオンす
る。トライアツク2がターンオンすると電源1か
らトライアツク2、主コンデンサ3及び変圧器4
の1次巻線5を通してパルス電流が流れ、変圧器
4の1次巻線5にパルス電圧が発生し変圧器4の
2次巻線11に高圧パルス電圧が発生する。トラ
イアツク2の両端間の電圧は第2図Bに示すよう
に時点t0〜t1間で上昇し、ターンオンしている期
間t1〜t2はゼロとなり、このトライアツク2のパ
ルス電流により1次巻線5と主コンデンサ3との
共振電圧が時点t2〜t3間に発生してトライアツク
2はオフとなり、交流電圧が負となり、発振コン
デンサ6の負電圧が時点t4にトリガ用スイツチ素
子9のブレークオーバー電圧になるとスイツチ素
子9、トライアツク2が再びオンし、先のことを
繰返す。
In this device, when an AC voltage as shown in Fig. 2A is applied from the AC power supply 1, the oscillation capacitor 6 is charged from time t0 with a time constant determined by the relationship with the charging resistors 7 and 8, and when the terminal voltage reaches the breakover voltage of the trigger switch element 9 at time t1 , the trigger switch element 9 breaks over, and the charge in the oscillation capacitor 6 is discharged through the trigger switch element 9 and the control terminal of the triac 2, turning on the triac 2. When the triac 2 turns on, the charge is discharged from the power supply 1 to the triac 2, the main capacitor 3 and the transformer 4.
A pulse current flows through the primary winding 5 of the transformer 4, generating a pulse voltage in the primary winding 5 of the transformer 4 and a high voltage pulse voltage in the secondary winding 11 of the transformer 4. The voltage across the triac 2 rises between time points t0 and t1 as shown in Fig. 2B, and is zero during the turned-on period t1 to t2 . This pulse current of the triac 2 generates a resonant voltage between the primary winding 5 and the main capacitor 3 between time points t2 and t3 , turning the triac 2 off, the AC voltage becoming negative, and when the negative voltage of the oscillation capacitor 6 reaches the breakover voltage of the trigger switch element 9 at time point t4 , the switch element 9 and the triac 2 turn on again, and the above process is repeated.

最近石油バーナ等の点火に電子式のものが多く
用いられるようになつた。従来の変圧器型に比較
して電子式は装置の軽量、小型化が図れる反面、
放電エネルギーが小さい。一方寒冷期等の低温時
には、灯油が気化しにくくなるとともに、電極で
の放電開始電圧が上昇する等の原因により点火が
困難であつた。そのため点火装置の放電エネルギ
ーを増すとなると、装置が大型化し、コスト的に
も高くなる等の問題があつた。
Recently, electronic type ignition of oil burners and the like has come to be widely used. Compared to the conventional transformer type, the electronic type allows the device to be lighter and smaller, but on the other hand,
Discharge energy is small. On the other hand, at low temperatures such as during the cold season, kerosene becomes difficult to vaporize and ignition is difficult due to factors such as an increase in the discharge starting voltage at the electrodes. Therefore, if the discharge energy of the ignition device was increased, the device would become larger and the cost would increase.

第1図に示した従来の点火装置では放電エネル
ギーを大きくするには温度上昇等の問題から形状
を大きくする必要があつた。
In the conventional ignition device shown in FIG. 1, in order to increase the discharge energy, it was necessary to increase the size due to problems such as temperature rise.

この考案の目的はこのような問題点を解決する
ため、低温時のみ点火装置の放電エネルギーを増
し、低温時の着火性能を低下させず、かつ小型に
構成できる点火装置を提供することにある。この
考案によればサイリスタ制御用の弛張発振回路に
おける時定数回路に感温抵抗素子を設けて温度が
低下すると点弧角が自動的に大きくなるようにす
る。
The purpose of this invention is to solve such problems by providing an ignition device that increases the discharge energy of the ignition device only at low temperatures, does not reduce the ignition performance at low temperatures, and can be constructed in a small size. According to this invention, a temperature-sensitive resistance element is provided in the time constant circuit of the relaxation oscillator circuit for controlling the thyristor, so that the firing angle automatically increases as the temperature decreases.

第3図はこの考案の実施例を示し、第1図と対
応する部分には同一符号を付けてある。この実施
例では充電抵抗器7と並列に負温度係数感温抵抗
素子12が接続され、また発振コンデンサ6と並
列に抵抗器13が接続される。
FIG. 3 shows an embodiment of this invention, and parts corresponding to those in FIG. 1 are given the same reference numerals. In this embodiment, a negative temperature coefficient temperature sensitive resistance element 12 is connected in parallel with the charging resistor 7, and a resistor 13 is connected in parallel with the oscillation capacitor 6.

この第2図に示した点火装置において、トライ
アツク2のトリガの位相は、発振コンデンサ6、
抵抗器13、充電抵抗器7,8、感温抵抗素子1
2で決まる時定数によつて決定される。ところが
低温時にはこの感温抵抗素子12の抵抗温度係数
は負であるため、抵抗値が大きくなり、従つて前
記時定数は大きくなる。それ故トライアツク2の
トリガの位相は遅れ、つまり第2図Aの時点t0
t1間の、いわゆる点弧角が大となり、電源1から
トライアツク2、主コンデンサ3及び変圧器4の
1次巻線5を通して流れるパルス電流は大きくな
り、変圧器4の1次巻線5に発生するパルス電圧
は大きくなり、変圧器4の2次巻線11には大き
な高圧パルス電圧が発生し、従つて大きな放電エ
ネルギーが得られる。
In the ignition system shown in FIG.
Resistor 13, charging resistor 7, 8, temperature sensitive resistance element 1
It is determined by the time constant determined by 2. However, at low temperatures, the temperature coefficient of resistance of the temperature-sensitive resistance element 12 is negative, so the resistance value increases, and therefore the time constant increases. Therefore, the phase of the trigger of triator 2 is delayed, i.e. from time t 0 in FIG. 2A to
The so-called firing angle between t 1 and The generated pulse voltage increases, and a large high-voltage pulse voltage is generated in the secondary winding 11 of the transformer 4, so that large discharge energy is obtained.

この第3図に示した装置を連続で使用した場合
自己発熱のため装置の温度が上昇して来ると感温
抵抗素子12の抵抗値が減少し、前記時定数及び
点弧角が小となつて放電エネルギーは幾分減少す
る。しかし石油バーナーは一度着火すると燃焼を
継続するので幾分少ない放電エネルギーでも燃焼
を持続させることができる。
When the device shown in FIG. 3 is used continuously, as the temperature of the device rises due to self-heating, the resistance value of the temperature-sensitive resistance element 12 decreases, and the time constant and firing angle become small. The discharge energy decreases somewhat. However, once an oil burner is ignited, it continues to burn, so combustion can be sustained even with somewhat less discharge energy.

この点火装置を常温で使用する場合は、放電エ
ネルギーは低温時のような大きなものは必要でな
く、装置の容量も従来装置と同程度の大きさにな
るように前記時定数が選ばれてある。
When this ignition device is used at room temperature, the discharge energy does not need to be as large as at low temperatures, and the time constant is selected so that the device's capacity is about the same as that of conventional devices. .

第4図はこの考案の他の実施例を示し、第3図
では弛張発振回路を電源1に直接接続したが、変
圧器4の1次巻線5を介して接続した場合であ
る。即ち充電抵抗器8の電源1側を変圧器4の1
次巻線5及び主コンデンサ3の接続点に接続す
る。その動作及び効果は第3図の場合とまつたく
同等である。
FIG. 4 shows another embodiment of this invention, in which the relaxation oscillation circuit is connected directly to the power source 1 in FIG. 3, but it is connected via the primary winding 5 of the transformer 4. In other words, the power supply 1 side of the charging resistor 8 is connected to the power supply 1 side of the transformer 4.
Connect to the connection point of the secondary winding 5 and the main capacitor 3. Its operation and effect are exactly the same as in the case of FIG.

第5図は負温度係数感温抵抗素子の代りに正温
度係数感温抵抗素子を用いた例で、第1図に示し
た構成において発振コンデンサ6と並列に正温度
係数感温抵抗素子14が接続される。この装置も
第3図に示したものと同様の作用効果を示す。
FIG. 5 shows an example in which a positive temperature coefficient temperature sensitive resistance element is used instead of a negative temperature coefficient temperature sensitive resistance element. In the configuration shown in FIG. Connected. This device also exhibits effects similar to those shown in FIG.

以上述べたようにこの考案においてはサイリス
タを制御する弛張発振回路における時定数回路、
感温抵抗素子を設けることにより、低温時には前
記時定数回路の時定数が自動的に大きくなり、点
弧角が大きくなり、放電エネルギーが増し確実に
点火することができる。しかも周囲温度の上昇に
より点火装置の温度が高いときは弛張発振回路の
時定数が小さくなり、それによりサイリスタの点
弧角が小さくなり、変圧器の1次巻線に流れる電
流が減少して装置の温度上昇が抑えられる。また
周囲温度の上昇時にトライアツクの特性が変化し
て転流時の臨界電圧上昇率dv/dtの最大値が減
少し、導通中のトライアツクに逆方向電圧を印加
してもオフにし難くなる傾向にあるが、感温抵抗
素子の作用により点弧角が小さくなり、トライア
ツクに印加される電圧波形のdv〜dtも小さくな
るので誤点弧を防止することができる。仮りに誤
点弧を起して半サイクルに2回以上通電しても、
最初の信号による点弧角が小さいので主コンデン
サ3への充電量が少なく、次の信号で再点弧して
も1次巻線5を流れる電流値が抑えられて装置の
温度上昇が少ない、従つて小型に構成することが
できる。
As mentioned above, in this invention, the time constant circuit in the relaxation oscillation circuit that controls the thyristor,
By providing the temperature-sensitive resistance element, the time constant of the time constant circuit automatically increases at low temperatures, the ignition angle increases, the discharge energy increases, and ignition can be ensured. Moreover, when the temperature of the ignition device is high due to a rise in ambient temperature, the time constant of the relaxation oscillator circuit becomes smaller, which reduces the firing angle of the thyristor and reduces the current flowing through the primary winding of the transformer, reducing the temperature rise is suppressed. Additionally, when the ambient temperature rises, the characteristics of the triac change, and the maximum value of the critical voltage increase rate dv/dt during commutation decreases, making it difficult to turn off the triac even if a reverse voltage is applied to the conducting triac. However, the firing angle becomes smaller due to the action of the temperature-sensitive resistance element, and dv to dt of the voltage waveform applied to the triax also becomes smaller, so that erroneous firing can be prevented. Even if erroneous ignition occurs and the power is turned on more than once in a half cycle,
Since the firing angle caused by the first signal is small, the amount of charge to the main capacitor 3 is small, and even if the next signal fires again, the current value flowing through the primary winding 5 is suppressed, and the temperature rise of the device is small. Therefore, it can be configured to be compact.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は点火装置の従来例を示す回路図、第2
図は点火装置の動作を説明するための波形図、第
3図乃至第5図はそれぞれこの考案の実施例を示
す回路図である。 1……交流電源,2……サイリスタとしてのト
ライアツク、3……主コンデンサ、4……変圧
器、5……1次巻線、6……発振コンデンサ、
7,8……充電抵抗器、9……トリガ用スイツチ
素子、10……帰還抵抗器、12,14……感温
抵抗素子。
Figure 1 is a circuit diagram showing a conventional example of an ignition system;
The figure is a waveform diagram for explaining the operation of the ignition device, and FIGS. 3 to 5 are circuit diagrams each showing an embodiment of this invention. 1... AC power supply, 2... Triax as a thyristor, 3... Main capacitor, 4... Transformer, 5... Primary winding, 6... Oscillation capacitor,
7, 8... Charging resistor, 9... Trigger switch element, 10... Feedback resistor, 12, 14... Temperature sensitive resistance element.

Claims (1)

【実用新案登録請求の範囲】 (1) 交流電源の両端にサイリスタ、主コンデン
サ、変圧器1次巻線の直列回路が接続され、上
記電源の両端に弛張発振回路が接続され、その
弛張発振回路に上記主コンデンサは帰還抵抗器
を通じて接続され、上記弛張発振回路の出力端
が上記サイリスタの制御端に接続され、上記弛
張発振回路の発振周期を決定する時定数回路の
時定数により上記サイリスタの点弧角が決定さ
れ、かつ上記サイリスタの導通により、上記変
圧器の2次巻線に点火用高圧パルスを得る点火
装置において、上記時定数回路に感温抵抗素子
が設けられ、温度が低下すると上記感温抵抗素
子の抵抗値の変化により上記時定数が大になる
ように選定されていることを特徴とする点火装
置。 (2) 上記感温抵抗素子は上記時定数回路のコンデ
ンサと直列に接続された負の抵抗温度係数をも
つ素子であることを特徴とする実用新案登録請
求の範囲第1項記載の点火装置。 (3) 上記感温抵抗素子は上記時定数回路のコンデ
ンサと並列に接続された正の抵抗温度係数をも
つ素子であることを特徴とする実用新案登録請
求の範囲第1項記載の点火装置。 (4) 上記弛張発振回路は上記変圧器の1次巻線を
介してて上記交流電源に接続されていることを
特徴とする実用新案登録請求の範囲第1項乃至
第3項の何れかに記載の点火装置。
[Claims for Utility Model Registration] (1) A series circuit of a thyristor, a main capacitor, and a primary winding of a transformer is connected to both ends of an AC power supply, and a relaxation oscillation circuit is connected to both ends of the power supply. The main capacitor is connected through a feedback resistor, and the output terminal of the relaxation oscillation circuit is connected to the control terminal of the thyristor, and the point of the thyristor is connected to the control terminal of the thyristor by a time constant of a time constant circuit that determines the oscillation period of the relaxation oscillation circuit. In an ignition device in which the arc angle is determined and a high voltage pulse for ignition is obtained in the secondary winding of the transformer by conduction of the thyristor, a temperature-sensitive resistance element is provided in the time constant circuit, and when the temperature decreases, the above-mentioned An ignition device characterized in that the time constant is selected to be large due to a change in the resistance value of the temperature-sensitive resistance element. (2) The ignition device according to claim 1, wherein the temperature-sensitive resistance element is an element having a negative temperature coefficient of resistance and connected in series with the capacitor of the time constant circuit. (3) The ignition device according to claim 1, wherein the temperature-sensitive resistance element is an element having a positive temperature coefficient of resistance and connected in parallel with the capacitor of the time constant circuit. (4) The relaxation oscillation circuit is connected to the alternating current power source via the primary winding of the transformer. Ignition device as described.
JP7377482U 1982-05-19 1982-05-19 igniter Granted JPS58175369U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7377482U JPS58175369U (en) 1982-05-19 1982-05-19 igniter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7377482U JPS58175369U (en) 1982-05-19 1982-05-19 igniter

Publications (2)

Publication Number Publication Date
JPS58175369U JPS58175369U (en) 1983-11-24
JPS6137979Y2 true JPS6137979Y2 (en) 1986-11-04

Family

ID=30083267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7377482U Granted JPS58175369U (en) 1982-05-19 1982-05-19 igniter

Country Status (1)

Country Link
JP (1) JPS58175369U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330711Y2 (en) * 1985-04-15 1991-06-28

Also Published As

Publication number Publication date
JPS58175369U (en) 1983-11-24

Similar Documents

Publication Publication Date Title
US4461982A (en) High-pressure metal vapor discharge lamp igniter circuit system
US4291254A (en) Discharge lamp energization circuit, particularly for audio and supersonic frequency operation of high-pressure discharge lamps
US4168453A (en) Variable intensity control apparatus for operating a gas discharge lamp
GB1570926A (en) Circuit for starting and operating gas discharge lamp
US3958168A (en) Electronic control circuit
US5059870A (en) Electronic solid state starter for fluorescent lamps
US4306177A (en) Discharge lamp lighting device with a delayed-output oscillation circuit
JPS6137979Y2 (en)
US4282462A (en) Arc lamp lighting unit with means to prevent prolonged application of starting potentials
US3841287A (en) Ignition system
JPS5936394B2 (en) discharge lamp lighting device
JPS61151999A (en) Small ignition equipment for discharge lamp
JPS5817360Y2 (en) Starting device structure for discharge lamp
US4908754A (en) Trigger and control means for bridge inverter
JPH031919Y2 (en)
JPS6039642Y2 (en) timed ignition device
JPH0435722Y2 (en)
JPS6125353Y2 (en)
JPS6034928Y2 (en) igniter
JPH017999Y2 (en)
SU464133A3 (en) A device for igniting a flammable substance to the lighters
JPH09170760A (en) Pulse igniter for combustion apparatus
JPH10312893A (en) Inverter device
JPS6016173A (en) Phase control circuit of ac power
JPH0330711Y2 (en)