JPH036105A - Wide range covering heat resistant antenna - Google Patents

Wide range covering heat resistant antenna

Info

Publication number
JPH036105A
JPH036105A JP13921389A JP13921389A JPH036105A JP H036105 A JPH036105 A JP H036105A JP 13921389 A JP13921389 A JP 13921389A JP 13921389 A JP13921389 A JP 13921389A JP H036105 A JPH036105 A JP H036105A
Authority
JP
Japan
Prior art keywords
heat
refractive index
antenna
heat protective
electromagnetic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13921389A
Other languages
Japanese (ja)
Inventor
Taiji Takatani
高谷 泰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13921389A priority Critical patent/JPH036105A/en
Publication of JPH036105A publication Critical patent/JPH036105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Aerials (AREA)

Abstract

PURPOSE:To improve heat resistance, to easily realize wide range coverage, and to miniaturize a device by providing a heat protective body with high refractive index of electromagnetic wave and heat resistance at an antenna main body, and providing the heat protective body with low refractive index of electromagnetic wave and high heat resistance at a plane at an opposite side. CONSTITUTION:First and second heat protective bodies 1 and 2 with heat resistance are mounted at the antenna main body 3, and the heat protective body 1 is formed in shape of convex lens and the heat protective body 2 in shape of concave lens. The heat protective body 1 is comprised of silica with a high refractive index of electromagnetic wave, etc,, and the heat protective body 2 of the one with a low refractive index of electromagnetic wave. The electromagnetic wave 5 radiated from the antenna main body is extended at a wide angle at the interface of the heat protective bodies 1 and 2, and furthermore, it is diffused at the interface between the heat protective body 2 and an external space, then, is radiated to the external space.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、宇宙往還機、ス堅−スプレーン等に適用され
る広覆域耐熱アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a wide-coverage heat-resistant antenna that is applied to spacecraft, space planes, and the like.

〔従来の技術〕[Conventional technology]

従来の宇宙往還機、スは−スプレーン等に適用されてい
る耐熱性アンテナを、第3図及び第4図によって説明す
る。
A heat-resistant antenna applied to a conventional spacecraft, spacecraft, etc. will be explained with reference to FIGS. 3 and 4.

同耐熱性アンテナ7は、アンテナ本体3にシリカ、例え
ばロッキード社製品商品名5ILICA−R8ILI 
−900,よりなる1種類の熱防護体4を固着していた
。第7図中、6は宇宙往還機、ス堅−スプレーン等の機
体に取付けられ、熱防護体4を取囲む金属熱防護構造で
ある。この従来のアンテナにおいては、シリカの熱防護
体4及び金属防護構造6によりて耐熱性が付与されるよ
うになりている。
The heat-resistant antenna 7 is made of silica in the antenna body 3, for example, Lockheed product product name 5ILICA-R8ILI.
-900, one type of thermal protector 4 was fixed thereon. In FIG. 7, reference numeral 6 denotes a metal thermal protection structure that is attached to a spacecraft, spacecraft, etc., and surrounds the thermal protection body 4. In this conventional antenna, heat resistance is provided by the silica thermal protector 4 and the metal protective structure 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の耐熱アンテナにおいては、1種類のシリカの
熱防護体令がアンテナ本体3に固着されているに止まる
ために、第4図に示すように、その覆域は同熱防護体率
の電磁波屈折率によって決まる一定の範囲に限られてい
る。このために、同耐熱アンテナで広い覆域を得ようと
すると、熱防護体4を大きくとる必要があり、従って、
広大なスイースを占有することとなっていた。
In the above-mentioned conventional heat-resistant antenna, since only one type of silica thermal protector is fixed to the antenna body 3, its coverage area is limited to electromagnetic waves with the same thermal protector rate, as shown in Figure 4. It is limited to a certain range determined by the refractive index. For this reason, in order to obtain a wide coverage area with the same heat-resistant antenna, it is necessary to make the heat protector 4 large.
It was to occupy a vast swiss.

しかし、宇宙往還機、スペースプレー7等空力加熱によ
り機体表面が非常に高温(tooo℃以上)に達っする
小型機体に取付けられるアンテナには、耐熱性はもちろ
ん省スペース、かつ、広覆域が要求される。
However, antennas installed on small aircraft, such as spacecraft and Space Play 7, whose surface reaches extremely high temperatures (over 100°F) due to aerodynamic heating, are not only heat resistant, but also space-saving and have a wide coverage area. required.

本発明は、上記のような点に鑑みなされたもので次を特
徴とする広覆域耐熱アンテナを提供することを目的とす
る。
The present invention has been made in view of the above points, and an object of the present invention is to provide a wide coverage heat-resistant antenna having the following features.

(1)  すぐれた耐熱性を有する。(1) It has excellent heat resistance.

(2)広覆域化が容易である。(2) Wide coverage is easy.

(3)小型であるため省スペース化を図ることができる
(3) Since it is small, space can be saved.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の広覆滅耐熱アンテナは、アンテナ本体に電磁波
の屈折率が大きく耐熱性のある第一の熱防護体を取付け
、同第一の熱防護体のアンテナ本体の反対側の面に電磁
波の屈折率が小さ(耐熱性のある第二の熱防護体を取付
けた。
The widely covered heat-resistant antenna of the present invention has a heat-resistant first heat protector having a large refractive index for electromagnetic waves attached to the antenna body, and a surface of the first heat protector opposite to the antenna body that refracts electromagnetic waves. low rate (a second heat-resistant heat protector was installed).

〔作用〕[Effect]

上記構成を備えた本発明によれば、アンテナ本体よシ放
射された電磁波は、屈折率の大きい第一の熱防護体から
屈折率の小さい第二の熱防護体に入る際にその境界面で
屈折されることによって拡がシ、また、第二の熱防護体
から空間に入る際にその境界面で屈折されることによっ
て更に拡がシ、広い範囲にわたって外部空間へ放射され
る。
According to the present invention having the above configuration, the electromagnetic waves radiated from the antenna main body pass through the interface between the first thermal protector having a large refractive index and the second thermal protector having a small refractive index. The radiation spreads by being refracted, and further spreads by being refracted at the boundary surface when entering the space from the second heat protector, and is radiated into the external space over a wide range.

また、この電磁波の放射の範囲は、第−及び第二の熱防
護体の屈折率及び形状を変化させることによシ、自由に
設定することが可能である。
Further, the range of radiation of this electromagnetic wave can be freely set by changing the refractive index and shape of the first and second thermal protectors.

また、第−及び第二の耐熱性のある熱防護体により、す
ぐれた耐熱性も兼ね備えている。
Furthermore, it also has excellent heat resistance due to the first and second heat-resistant heat protectors.

〔実施例〕〔Example〕

以下第1図及び第2図を参照して本発明の一実施例とし
ての広覆域耐熱アンテナについて説明する。
Hereinafter, a wide coverage heat resistant antenna as an embodiment of the present invention will be described with reference to FIGS. 1 and 2.

本実施例のアンテナ5は、アンテナ本体3に取付けられ
た耐熱性のある第一の熱防護体1.同熱防護体1のアン
テナ本体30反対側の面に取付けられた耐熱性のある第
二の熱防護体3よシ成っている。
The antenna 5 of this embodiment has a heat-resistant first thermal protector 1. attached to the antenna body 3. It consists of a heat-resistant second thermal protector 3 attached to the opposite surface of the antenna main body 30 of the thermal protector 1.

上記熱防護体1.2は、電磁波を屈折させる機能を有し
、第一の熱防護体1は凸レンズ、第二〇熱防護体2は凹
レンズの形状を成しておシ、第二〇熱防護体2の上側の
外部空間側の表面は平面状となっている。また、第一の
熱防護体1の電磁波の屈折率は、第二の熱防護体2の屈
折率よりも大きいようになっている。上記再熱防護体は
、耐熱性があシミ磁波を屈折するシリカ等によりて構成
することができ、例えば、第一〇熱防護体1としては、
電磁波の屈折率の大きい商品名5ILICA −R3I
 LI −1500(ロッキート9社商品)のシリカを
、また第二の熱防護体2としては、電磁波の屈折率の小
さい商品名5ILICA −R8I LI −900(
ロッキード社商品)のシリカを使用することができる。
The thermal protector 1.2 has a function of refracting electromagnetic waves, and the first thermal protector 1 has a convex lens shape, the 20th thermal protector 2 has a concave lens shape, and the 20th thermal protector 1.2 has a concave lens shape. The upper surface of the protective body 2 facing the external space is flat. Further, the refractive index of the first thermal protector 1 for electromagnetic waves is larger than the refractive index of the second thermal protector 2. The reheat protector can be made of heat-resistant silica or the like that refracts magnetic waves. For example, as the heat protector 1,
Product name 5ILICA-R3I with high refractive index of electromagnetic waves
Silica LI-1500 (a product of Rockito 9) was used, and as the second thermal protector 2, 5ILICA-R8I LI-900 (trade name), which has a small refractive index for electromagnetic waves, was used.
Silica manufactured by Lockheed Corporation can be used.

以上の構成をもつ本実施例では、アンテナ本体3よシ放
射された電磁波は、第一の熱防護体1と第二の熱防護体
2との境界面において、両者間の屈折率の相違及び上方
に凸に湾曲した境界面の形状とによって、第2図に示す
ように、拡散するように屈折されて広角度に拡がり、さ
らに第二の熱防護体2と外部空間との境界面で拡散する
よ5に屈折されて、広角度に拡がって外部空間へ放射さ
れる。
In this embodiment having the above configuration, the electromagnetic waves radiated from the antenna main body 3 are transmitted at the interface between the first thermal protector 1 and the second thermal protector 2 due to the difference in refractive index between them. Due to the shape of the boundary surface that is convexly curved upward, it is refracted and spread at a wide angle as shown in FIG. Then, the light is refracted to 5, spread out over a wide angle, and radiate into the external space.

従って、本実施例によれば、第4図に示す従来、の耐熱
アンテナに比して、その覆域角度が著しく拡大されるこ
とになる。
Therefore, according to this embodiment, the coverage angle is significantly expanded compared to the conventional heat-resistant antenna shown in FIG.

なお、上記実施例では、第−及び第二の熱防護体1.2
は、その境界面でそれぞれ凸レンズ状及び凹レンズ状に
なっているが、この境界面は平面を含む任意の形状に選
定することができる。
In addition, in the above embodiment, the first and second thermal protectors 1.2
have a convex lens shape and a concave lens shape at their boundary surfaces, respectively, but these boundary surfaces can be selected to have any shape including a flat surface.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、 (1)  第−及び第二の耐熱性のある熱防護体を備え
ているため耐熱性が非常によい。
As explained above, according to the present invention, (1) heat resistance is very good because the first and second heat-resistant heat protectors are provided.

(2)屈折率の異る第−及び第二の熱防護構造体を備え
ていることによって、覆域、即ち電磁波の放射範を拡大
することができる。
(2) By providing the first and second thermal protection structures having different refractive indexes, the coverage area, that is, the radiation range of electromagnetic waves can be expanded.

(3)第−及び第二の熱防護体の屈折率及び形状を適宜
選定することによシ、所望の電磁波の放射範囲を設定す
ることができる。
(3) By appropriately selecting the refractive index and shape of the first and second heat protectors, a desired radiation range of electromagnetic waves can be set.

(4)上記(2)、 (3)の効果に伴って、アンテナ
部の小型化及びアンテナ数の訓減が可能であるため省ス
ペース化を図ることができる。
(4) Along with the effects of (2) and (3) above, the antenna section can be made smaller and the number of antennas can be reduced, so space can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、康2図は同実施例
を機体に取付けた状態を示す断面図、第3図は従来の耐
熱アンテナの断面図、第4図は同従来の耐熱アンテナを
機体に取付けた状態を示す断面図である。 1・・・第一の熱防護体、  2・・・第二〇熱防護体
。 3・・・アンテナ本体、   5・・・アンテナ。
Fig. 1 is a cross-sectional view of an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the same embodiment installed on an aircraft body, Fig. 3 is a cross-sectional view of a conventional heat-resistant antenna, and Fig. 4 is a sectional view of the conventional heat-resistant antenna. FIG. 2 is a cross-sectional view showing the heat-resistant antenna attached to the aircraft body. 1...First heat protector, 2...20th heat protector. 3...Antenna body, 5...Antenna.

Claims (1)

【特許請求の範囲】[Claims] アンテナ本体に電磁波の屈折率が大きく耐熱性のある第
一の熱防護体を取付け、同第一の熱防護体のアンテナ本
体の反対側の面に電磁波の屈折率が小さく耐熱性のある
第二の熱防護体を取付けたことを特徴とする広覆域耐熱
アンテナ。
A first thermal protector that has a high refractive index for electromagnetic waves and is heat resistant is attached to the antenna body, and a second thermal protector that has a low refractive index for electromagnetic waves and is heat resistant is attached to the opposite surface of the first thermal protector from the antenna body. A wide-coverage heat-resistant antenna characterized by having a heat protector attached to it.
JP13921389A 1989-06-02 1989-06-02 Wide range covering heat resistant antenna Pending JPH036105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13921389A JPH036105A (en) 1989-06-02 1989-06-02 Wide range covering heat resistant antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13921389A JPH036105A (en) 1989-06-02 1989-06-02 Wide range covering heat resistant antenna

Publications (1)

Publication Number Publication Date
JPH036105A true JPH036105A (en) 1991-01-11

Family

ID=15240157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13921389A Pending JPH036105A (en) 1989-06-02 1989-06-02 Wide range covering heat resistant antenna

Country Status (1)

Country Link
JP (1) JPH036105A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098270A (en) * 2000-04-29 2001-11-08 김현용 Door assembly
US8665175B2 (en) 2005-05-20 2014-03-04 Astrium Limited Thermal control film for spacecraft

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010098270A (en) * 2000-04-29 2001-11-08 김현용 Door assembly
US8665175B2 (en) 2005-05-20 2014-03-04 Astrium Limited Thermal control film for spacecraft

Similar Documents

Publication Publication Date Title
US4479131A (en) Thermal protective shield for antenna reflectors
CN111367000B (en) Layered structure capable of simultaneously realizing low laser reflection, low infrared radiation and high microwave absorption
US5273815A (en) Thermal control and electrostatic discharge laminate
KR102122090B1 (en) The infrared ray stealth device using the dual band total absorption meta material
CN109343206B (en) Infrared optical system and optical equipment
ES2775774T3 (en) Spectral conversion element for electromagnetic radiation
US20050052310A1 (en) Adaptive modification of surface properties to alter the perception of its underlying structure
CN106644087B (en) Method for calculating spectral thermal radiance of multilayer optical thin film
CN103256985A (en) Transmission-type infrared temperature difference standard source applied to wide-temperature-range environment
KR102532609B1 (en) Electromagnetic wave absorber with metasurface
US3205937A (en) Control of effective emissivity and absorptivity
JPH036105A (en) Wide range covering heat resistant antenna
CN104181623B (en) Guide the method for thermal infrared energy and the equipment including covering
CN110990965B (en) Easy-shape-following space thermal protection assembly and protection method
US6403959B1 (en) Infrared detector element, and infrared sensor unit and infrared detecting device using it
CN203083708U (en) Transmission-type infrared temperature difference standard source adapted to wide-temperature-range environment
JP4235110B2 (en) Optical surface reflector for spacecraft such as geostationary satellite
KR102497710B1 (en) Stealth device
Sokolov et al. Cube-corner reflectors with interference dielectric coating
JPS5922403A (en) Electromagnetic lens for horn antenna
CN210602331U (en) Radiation refrigeration structure
CN208689193U (en) A kind of broadband Meta Materials wave absorbing device that infrared band polarizes insensitive
RU2794117C1 (en) Heat shield of onboard antenna in head antenna dome
US11851582B2 (en) Thermal signature control structures
Hartmann Airborne FLIR optical window examples