JPH0360767B2 - - Google Patents

Info

Publication number
JPH0360767B2
JPH0360767B2 JP58040430A JP4043083A JPH0360767B2 JP H0360767 B2 JPH0360767 B2 JP H0360767B2 JP 58040430 A JP58040430 A JP 58040430A JP 4043083 A JP4043083 A JP 4043083A JP H0360767 B2 JPH0360767 B2 JP H0360767B2
Authority
JP
Japan
Prior art keywords
carbon
diamond
lattice constant
nuclei
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58040430A
Other languages
Japanese (ja)
Other versions
JPS59164609A (en
Inventor
Eiichi Iizuka
Makoto Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP58040430A priority Critical patent/JPS59164609A/en
Publication of JPS59164609A publication Critical patent/JPS59164609A/en
Publication of JPH0360767B2 publication Critical patent/JPH0360767B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • B01J3/062Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies characterised by the composition of the materials to be processed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/065Composition of the material produced
    • B01J2203/0655Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2203/00Processes utilising sub- or super atmospheric pressure
    • B01J2203/06High pressure synthesis
    • B01J2203/0675Structural or physico-chemical features of the materials processed
    • B01J2203/068Crystal growth

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はダイヤモンド合成法に関し、さらに詳
しくは包有物が少なく結晶粒形の良いダイヤモン
ドを合成する方法に関する。 ダイヤモンドは工業的に主として研磨、研削、
切削等に使用されるが、この場合ダイヤモンドの
粒形が問題で、研削等の性能が良いものは、粒形
が多面体でなるべく球形に近いもの(いわゆる自
形粒)であるといわれている。また粒径の大きい
ダイヤモンドを出来るだけ高い収率で得ることが
望ましい。 本発明は自形の優れた大きいダイヤモンドを収
率よく製造することを目的とする。 従来、このために最も良く知られた方法はダイ
ヤモンドと非ダイヤモンド炭素(以下後者を単に
炭素という)の相平衡線の近傍のダイヤモンド安
定領域で合成を行なう方法である。良質のダイヤ
モンド結晶を得るためにはダイヤモンド結晶核の
発生を抑制して少なくし、かつその少ない核をも
とに徐々に結晶を成長させる必要がある。上記合
成を相平衡線の近傍で行なうのもこのためであ
る。しかし、ダイヤモンド合成は高温、高圧下で
行なわれるので、直接温度、圧力を制御すること
はできず、間接的方法で合成系内の温度、圧力を
推定するしかない。従つて、温度、圧力を厳密に
相平衡線の近傍に保持するのは困難であり、実際
の工業的方法では、結晶形のよいものを収率よく
得ることは不可能である。 本発明は特定の原料炭素を用いることによつて
合成核の発生が制御され、かつ結晶成長が良好に
なることを見出したものである。 すなわち、本発明は炭素原料として易黒鉛化性
であるが、未だ十分に黒鉛化していないものを使
用することを特徴とする。これを炭素の黒鉛化度
の指標である格子定数C0(002)で表わせば、上
記原料は使用する時点では格子定数C0(002)が
6.720〜6.740であるが、これを3000℃に加熱して
黒鉛化すれば格子定数C0(002)が6.715以下とな
るものである。 ダイヤモンドの原料としての炭素については無
定形炭素や黒鉛など多くの研究がなされている
が、上記のように黒鉛化し易い性質をもつが、未
だ完全に黒鉛化してない状態のものを出発原料と
する考えはこれまで見られなかつた。 良質、かつ大粒のダイヤモンドを収率よく得る
ためには昇温過程において核の発生は少ないが、
一旦核が発生した後は結晶の成長はある程度早い
ことが望ましい。 本発明における上記の炭素原料は出発時におけ
る黒鉛化度は高くないので、ダイヤモンド合成下
の初期においては炭素の溶媒金属に対する溶解度
は低い。従つて核の発生も少ないと考えられる。
一方ダイヤモンド合成は千数百度、数万気圧下で
行なわれるので、この範囲に保持されれば炭素の
黒鉛化が進む。特に本発明では易黒鉛化性の炭素
を用いているので黒鉛化の進行が早い。黒鉛化が
進めば溶媒金属に対する溶解度が上り、これがす
でに発生している核の成長に寄与する。このため
結晶成長時においては、相平衡線からダイヤモン
ド安定領域にかなり離れた温度、圧力条件でも溶
解炭素は核の成長に消費され、新たな核の発生が
抑制されるので、大きくかつ結晶形の良いものが
得られる。 初めから黒鉛化度の高いものを出発原料に用い
ると溶媒金属への溶解度が高いので、核の発生が
多過ぎ良質のものが得られない。また反面、黒鉛
化性の悪い原料では、核の発生の少ない点は本発
明と変りないが、ダイヤモンド結晶成長時におい
ても溶媒金属に対する炭素の溶解度が低いため、
十分なダイヤモンド成長が起らない。 本発明における格子定数C0(002)が上記範囲
の炭素は、例えば石油コークスをそのまま或いは
このコークス粉粒に石油ピツチ等を加えて成形
し、2000〜2500℃程度に焼成して得ることが出来
る。温度があまり低過ぎて格子定数C0(002)が
6.800より大きいと初期の核発生自体が十分でな
いためか、或いはダイヤモンド合成条件は十分に
炭素が黒鉛化する温度でないので、結晶成長時に
おける炭素の溶解性に問題があるためか、良好な
結果が得られなかつた。 本発明においては、炭素原料として上記のもの
を選ぶほかは通常のダイヤモンド合成条件と同じ
でよい。溶媒金属にはNi,Fe,C0,Cr,Mn,
Ta,Pt及びこれらを含む金属等が使用できる。
溶媒金属と炭素原料の組立方法はそれぞれを薄板
状に構成し、これらを交互に積層配置してもよ
く、また両者の粉末を単に混合したものでもよ
い。金属と炭素の比は重量で金属100に対して炭
素30〜500である。温度は1300〜2000℃、圧力は
50〜70Kbarの範囲が適する。 本発明の方法はダイヤモンド結晶成長方法とし
てよく知られているシード(Seed)法、すなわ
ちダイヤモンド種子をダイヤモンド系内に予め混
合しておき、この種子の結晶を成長させる方法に
も適用出来る。合成系内の炭素原料に本発明の炭
素を使用すれば核の発生が殆どなく種子上にダイ
ヤモンドが成長し良好な結晶系のダイヤモンドに
なる。 次に実施例および比較例を示し本発明を具体的
に説明する。 〔実施例 1〕 炭素原料として石油コークスを粉砕し、これに
石油ピツチを加えて成形し、約2400℃で焼成した
ものを使用した。このものの粉末X線回折法によ
る格子定数C0(002)は6.730であつた。この同じ
ものの3000℃での黒鉛化品は格子定数C0(002)
が6.713であつた。 この炭素成形体より28.6mm直径、1.6mm厚さの
薄板状に切出して炭素原料として用い、溶媒金属
には30Ni−70Fe合金の28.6mm直径、0.25mm厚さの
薄板を用い、これらを交互に24枚ずつ積層配置
し、ベルト型超高圧装置に装填し、推定で1450
℃、57Kbarで15分間保持し、それぞれ2回のダ
イヤモンド合成を行つた。 〔実施例 2〕 炭素原料として、石炭ピツチ系コークス粉砕品
に石炭系ピツチを混ぜたものを成形し、約2500℃
で焼成したものを使用した。この格子定数C0
(002)は6.740であつた。 この黒鉛炭素を用いて、実施例1と同様にし
て、ダイヤモンドの合成を2回行つた。なお、こ
の炭素をさらに3000℃まで焼成した時のC0(002)
は6.714であつた。 〔実施例 3〕 ポリ塩化ビニール塊を、約2800℃で焼成した。
この時の格子定数C0(002)は6.725であつた。 これより直径28.6mmの丸棒を切り出し、厚さ1
mmの薄板とした。溶媒金属には、厚さ0.2mmのコ
バルト板を使用して実施例1と同様に交互に積層
し、1500℃、58Kbarで、それぞれ2回のダイヤ
モンド合成を行つた。 この炭素を3000℃まで焼成した時のC0(002)
は6.715であつた。 〔比較例 1〕 実施例1と同じ成形体を1000℃で焼成したもの
を使用した。このものの粉末X線回折法による格
子定数C0(002)は6.810であつた。 〔比較例 2〕 実施例1と同じ成形体を3000℃で焼成したもの
を使用した。 〔比較例 3〕 フラン樹脂を約2400℃で処理したものを使用し
た。このものの格子定数C0(002)は6.840で、ま
た3000℃で処理した黒鉛化品の格子定数C0(002)
は6.740であつた。 実施例1〜3、比較例1〜3の結果を第1表に
示す。
The present invention relates to a diamond synthesis method, and more particularly to a method for synthesizing diamond with few inclusions and good crystal grain shape. Industrially, diamonds are mainly polished, ground,
It is used for cutting, etc., but in this case, the grain shape of the diamond is a problem, and diamonds with good performance in grinding, etc. are said to have a polyhedral grain shape that is as close to a spherical shape as possible (so-called euhedral grains). It is also desirable to obtain diamonds with large particle sizes in as high a yield as possible. The object of the present invention is to produce large diamonds with excellent self-shape in a high yield. Conventionally, the most well-known method for this purpose is to carry out synthesis in the diamond stability region near the phase equilibrium line of diamond and non-diamond carbon (hereinafter the latter will simply be referred to as carbon). In order to obtain high-quality diamond crystals, it is necessary to suppress and reduce the generation of diamond crystal nuclei, and to gradually grow crystals based on the few nuclei. This is also the reason why the above synthesis is performed near the phase equilibrium line. However, since diamond synthesis is carried out at high temperatures and high pressures, it is not possible to directly control the temperature and pressure, and the only way to estimate the temperature and pressure within the synthesis system is through indirect methods. Therefore, it is difficult to maintain the temperature and pressure strictly in the vicinity of the phase equilibrium line, and in actual industrial methods, it is impossible to obtain a product with a good crystalline form in a high yield. The present invention is based on the discovery that by using a specific raw material carbon, the generation of synthetic nuclei can be controlled and crystal growth can be improved. That is, the present invention is characterized by using a carbon material that is easily graphitizable but has not yet been sufficiently graphitized. If this is expressed as the lattice constant C 0 (002), which is an index of the degree of graphitization of carbon, the above raw material has a lattice constant C 0 (002) at the time of use.
6.720 to 6.740, but if it is heated to 3000°C and graphitized, the lattice constant C 0 (002) becomes 6.715 or less. A lot of research has been done on carbon as a raw material for diamonds, such as amorphous carbon and graphite, but as mentioned above, carbon that has the property of being easily graphitized but has not yet completely graphitized is used as a starting material. The idea had never been seen before. In order to obtain high quality and large diamonds with a good yield, the generation of nuclei during the heating process is small, but
Once the nucleus is generated, it is desirable that the crystal growth be relatively rapid. Since the carbon raw material in the present invention does not have a high degree of graphitization at the time of starting, the solubility of carbon in the solvent metal is low at the initial stage of diamond synthesis. Therefore, it is thought that the number of nuclei generated is small.
On the other hand, diamond synthesis is carried out at several hundred degrees Celsius and tens of thousands of atmospheric pressures, so if the temperature is maintained within this range, graphitization of carbon will proceed. In particular, since graphitizable carbon is used in the present invention, graphitization progresses quickly. As graphitization progresses, the solubility in the solvent metal increases, which contributes to the growth of the already generated nuclei. Therefore, during crystal growth, dissolved carbon is consumed in the growth of nuclei even under conditions of temperature and pressure that are far away from the phase equilibrium line and the diamond stability region, and the generation of new nuclei is suppressed. You can get something good. If a material with a high degree of graphitization is used as a starting material, the solubility in the solvent metal will be high, so too many nuclei will be generated, making it impossible to obtain a good quality product. On the other hand, when using a raw material with poor graphitizability, the generation of fewer nuclei is the same as in the present invention, but the solubility of carbon in the solvent metal is low even during diamond crystal growth.
Not enough diamond growth occurs. Carbon having a lattice constant C 0 (002) in the above range in the present invention can be obtained, for example, by forming petroleum coke as it is or by adding petroleum pitch or the like to this coke powder and calcining it at about 2000 to 2500°C. . The temperature is too low and the lattice constant C 0 (002)
If it is larger than 6.800, good results may not be obtained, either because the initial nucleation itself is not sufficient, or because the diamond synthesis conditions are not at a temperature sufficient for carbon to graphitize, so there is a problem with the solubility of carbon during crystal growth. I couldn't get it. In the present invention, the conditions for synthesizing diamonds may be the same as those for ordinary diamond synthesis, except that the carbon raw material mentioned above is selected. Solvent metals include Ni, Fe, C 0 , Cr, Mn,
Ta, Pt, and metals containing these can be used.
The method for assembling the solvent metal and the carbon raw material may be such that each of them is formed into a thin plate and these are alternately stacked, or the powders of both may be simply mixed. The metal to carbon ratio is 100 parts metal to 30 to 500 parts carbon by weight. The temperature is 1300~2000℃, the pressure is
A range of 50-70Kbar is suitable. The method of the present invention can also be applied to the well-known seed method for growing diamond crystals, that is, a method in which diamond seeds are mixed in advance in a diamond system and crystals from these seeds are grown. If the carbon of the present invention is used as a carbon raw material in a synthesis system, diamonds will grow on the seeds with almost no generation of nuclei, resulting in a diamond with a good crystalline system. Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. [Example 1] As a carbon raw material, petroleum coke was pulverized, petroleum pitch was added thereto, molded, and fired at about 2400°C. The lattice constant C 0 (002) of this product was 6.730 as determined by powder X-ray diffraction. The graphitized version of this same product at 3000℃ has a lattice constant C 0 (002)
was 6.713. A thin plate with a diameter of 28.6 mm and a thickness of 1.6 mm was cut from this carbon compact and used as a carbon raw material. Thin plates of 30Ni-70Fe alloy with a diameter of 28.6 mm and a thickness of 0.25 mm were used as the solvent metal, and these were cut out alternately. Stacking 24 sheets at a time and loading them into a belt-type ultra-high pressure device, it is estimated that 1450
℃ and 57 Kbar for 15 minutes, and diamond synthesis was performed twice each. [Example 2] As a carbon raw material, a mixture of pulverized coal pitch coke and coal pitch was molded and heated to approximately 2500°C.
I used the one that was fired. This lattice constant C 0
(002) was 6.740. Using this graphitic carbon, diamond synthesis was performed twice in the same manner as in Example 1. Furthermore, when this carbon is further fired to 3000℃, C 0 (002)
was 6.714. [Example 3] A polyvinyl chloride mass was fired at about 2800°C.
The lattice constant C 0 (002) at this time was 6.725. From this, cut out a round bar with a diameter of 28.6 mm and a thickness of 1
It was made into a thin plate of mm. Cobalt plates with a thickness of 0.2 mm were used as the solvent metal, and they were alternately laminated in the same manner as in Example 1, and diamond synthesis was performed twice at 1500° C. and 58 Kbar. C 0 (002) when this carbon is fired to 3000℃
was 6.715. [Comparative Example 1] The same molded body as in Example 1 was used, which was fired at 1000°C. The lattice constant C 0 (002) of this product was found to be 6.810 by powder X-ray diffraction. [Comparative Example 2] The same molded body as in Example 1, which was fired at 3000°C, was used. [Comparative Example 3] Furan resin treated at about 2400°C was used. The lattice constant C 0 (002) of this product is 6.840, and the lattice constant C 0 (002) of the graphitized product treated at 3000℃
was 6.740. The results of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in Table 1.

【表】 但し、表中収率は、炭素のダイヤモンド
への変換割合。
石炭ピツチ系コークス、ポリ塩化ビニールにつ
いても本発明の格子定数C0(002)の範囲の場合
に自形が整つたダイヤモンドが合成される。 以上のように本発明の方法により合成したダイ
ヤモンドは、結晶が大きく、かつ自形が整つてお
り、収率は比較例2よりやや劣るが、総合的に極
めて優れていることがわかる。
[Table] However, the yield in the table is the conversion rate of carbon to diamond.
Even for coal pitch coke and polyvinyl chloride, diamonds with regular self-shapes can be synthesized when the lattice constant of the present invention is within the range of C 0 (002). As described above, it can be seen that the diamond synthesized by the method of the present invention has large crystals and is well-shaped, and although the yield is slightly lower than that of Comparative Example 2, it is extremely superior overall.

Claims (1)

【特許請求の範囲】[Claims] 1 非ダイヤモンド炭素と溶媒金属とよりなるダ
イヤモンドを合成する方法において、非ダイヤモ
ンド炭素として格子定数Co(002)が6.720〜6.740
であつて、3000℃で黒鉛化処理した場合の格子定
数Co(002)が6.715以下となる易黒鉛化性の炭素
を用い、高温、高圧処理することを特徴とするダ
イヤモンド合成法。
1. In the method of synthesizing diamond made of non-diamond carbon and solvent metal, the non-diamond carbon has a lattice constant Co(002) of 6.720 to 6.740.
A diamond synthesis method characterized by using easily graphitizable carbon whose lattice constant Co(002) is 6.715 or less when graphitized at 3000°C, and treating at high temperature and high pressure.
JP58040430A 1983-03-11 1983-03-11 Method for synthesizing diamond Granted JPS59164609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58040430A JPS59164609A (en) 1983-03-11 1983-03-11 Method for synthesizing diamond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58040430A JPS59164609A (en) 1983-03-11 1983-03-11 Method for synthesizing diamond

Publications (2)

Publication Number Publication Date
JPS59164609A JPS59164609A (en) 1984-09-17
JPH0360767B2 true JPH0360767B2 (en) 1991-09-17

Family

ID=12580427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58040430A Granted JPS59164609A (en) 1983-03-11 1983-03-11 Method for synthesizing diamond

Country Status (1)

Country Link
JP (1) JPS59164609A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62269701A (en) * 1986-05-16 1987-11-24 Natl Inst For Res In Inorg Mater Method for synthesizing needle-like diamond particle

Also Published As

Publication number Publication date
JPS59164609A (en) 1984-09-17

Similar Documents

Publication Publication Date Title
KR100503542B1 (en) Diamond growth
KR100503541B1 (en) Sintering process for diamond and diamond growth
CN103209923B (en) Single-crystal silicon carbide manufacture silicon carbide powder and manufacture method thereof
US5273730A (en) Method of synthesizing diamond
JPS62274034A (en) Manufacture of polycrystalline diamond sintered compact by reaction sintering
JPH0360767B2 (en)
CA1157626A (en) Process for growing diamonds
JPH0360768B2 (en)
KR20020062920A (en) Growth of diamond clusters
JP2645719B2 (en) Diamond synthesis method
JPS6225602B2 (en)
US3773903A (en) Method of manufacturing diamond crystals
JP2932559B2 (en) Synthesis method of large diamond single crystal
JPH052369B2 (en)
JPH02164433A (en) Manufacture of polycrystalline cubic boron nitride particles
JPH06238154A (en) Synthesizing method for diamond
JPS59203717A (en) Manufacture of diamond crystal
JPS5848483B2 (en) Synthesis method of cubic boron titanide
JP4190196B2 (en) Diamond synthesis method
JPS63236531A (en) Synthesis of diamond
JPH0433489B2 (en)
JPH0330828A (en) Synthesizing of diamond
JP3282249B2 (en) Method of synthesizing diamond single crystal
JPS60195007A (en) Synthesis of cubic boron nitride
CN114086252A (en) Diamond cluster and preparation method thereof