JPH0360208B2 - - Google Patents

Info

Publication number
JPH0360208B2
JPH0360208B2 JP58051245A JP5124583A JPH0360208B2 JP H0360208 B2 JPH0360208 B2 JP H0360208B2 JP 58051245 A JP58051245 A JP 58051245A JP 5124583 A JP5124583 A JP 5124583A JP H0360208 B2 JPH0360208 B2 JP H0360208B2
Authority
JP
Japan
Prior art keywords
parallel
series resistance
signal wiring
converter
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58051245A
Other languages
Japanese (ja)
Other versions
JPS59176923A (en
Inventor
Hideaki Sadamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5124583A priority Critical patent/JPS59176923A/en
Publication of JPS59176923A publication Critical patent/JPS59176923A/en
Publication of JPH0360208B2 publication Critical patent/JPH0360208B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/0602Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M1/0612Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic over the full range of the converter, e.g. for correcting differential non-linearity
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • H03M1/36Analogue value compared with reference values simultaneously only, i.e. parallel type
    • H03M1/361Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type
    • H03M1/362Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider
    • H03M1/365Analogue value compared with reference values simultaneously only, i.e. parallel type having a separate comparator and reference value for each quantisation level, i.e. full flash converter type the reference values being generated by a resistive voltage divider the voltage divider being a single resistor string

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は並列型A/D変換器の中でも、特に高
精度のものに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to parallel A/D converters, particularly those with high precision.

従来例の構成とその問題点 ビデオ信号のデイジタル処理が最近注目をあび
ており、そのキーデバイスとしてA/D変換器が
ある。ビデオ信号帯域の様に高速度が要求される
場合には、通常並列方式が採用されている。第1
図はこの並列方式の10ビツトA/D変換器のブロ
ツク図を示す。第1図において、Aioは入力、VRH
〜VRLは基準電圧、rは補正抵抗、1〜8は補正
電圧を加えるためのアンプ、C1〜C1024は
比較器、N1〜N1024はゲート、ENはエン
コーダ、CKはクロツクであり、VRHRLとの間に
2ボルトの電圧を印加すると、基準バイアス抵抗
RSにより2/1024ボルトに分割された基準バイア
ス電位が比較器C1〜C1024に印加されると
ともにこの各比較器にアナログ信号がアナログ信
号入力端子(AIN)により入力される。比較器出
力信号は次段の比較器の出力信号の反転信号との
論理積をそれぞれゲート(N1)〜(N102
4)で取り、エンコーダ(EN)を通り、更にバ
ツフアOBを介してデジタル出力端子D0に出力さ
れる。CKはクロツク信号入力端子である。10ビ
ツトA/D変換器では高精度(ダイナミツクレン
ジ2ボルトで±1ミリボルト以内の誤差)を必要
とするとため、トリミング抵抗r及びオペアンプ
1〜8により高精度の補正電位が加えられる。
Conventional configuration and its problems Recently, digital processing of video signals has been attracting attention, and A/D converters are a key device therein. When high speed is required, such as in a video signal band, a parallel method is usually adopted. 1st
The figure shows a block diagram of this parallel type 10-bit A/D converter. In Figure 1, A io is the input, V RH
~V RL is a reference voltage, r is a correction resistor, 1 to 8 are amplifiers for applying the correction voltage, C1 to C1024 are comparators, N1 to N1024 are gates, EN is an encoder, CK is a clock, and V RH and When a voltage of 2 volts is applied between RL and RL, the reference bias resistor
A reference bias potential divided by 2/1024 volts by R S is applied to comparators C1 to C1024, and an analog signal is input to each comparator through an analog signal input terminal (A IN ). The comparator output signal is ANDed with the inverted signal of the output signal of the next stage comparator by gates (N1) to (N102), respectively.
4), passes through the encoder (EN), and is further output to the digital output terminal D0 via the buffer OB. CK is a clock signal input terminal. Since the 10-bit A/D converter requires high accuracy (error within ±1 millivolt with a dynamic range of 2 volts), a highly accurate correction potential is applied by the trimming resistor r and operational amplifiers 1 to 8.

この並列型の10ビツトA/D変換器を実際の平
面上に配置したのが第2図である。以下第2図に
より説明する。高精度を必要とするため、前述の
ようにトリミング補正抵抗r及びオペアンプ1〜
8により補正電位VR1〜VR8が印加されている。
トリミング補正抵抗rはレーザによるトリミング
Tにより所定の電囲に修正されるため、折れ曲げ
点の電位VR1〜VR8は所定電位に固定される。し
かしながら、並列方式においては多くの比較器C
1〜C1024が使用されるため、各比較器に流
れ込む電流は小さくてもその累積はかなり大きく
なる。また、逆にビツトが大きくなるに従つて精
度も厳しくなり、必要精度を満足しなくなるもの
である。
FIG. 2 shows this parallel type 10-bit A/D converter arranged on an actual plane. This will be explained below with reference to FIG. Since high precision is required, the trimming correction resistor r and the operational amplifier 1 to
8, correction potentials V R1 to V R8 are applied.
Since the trimming correction resistor r is corrected to a predetermined voltage range by laser trimming T, the potentials V R1 to V R8 at the bending points are fixed to predetermined potentials. However, in the parallel system, many comparators C
1 to C1024 are used, so even though the current flowing into each comparator is small, its accumulation is quite large. On the other hand, as the bit size increases, the accuracy becomes more severe, and the required accuracy is no longer satisfied.

第3図は第2図において破線の円Xで囲んだ部
分に流れる電流を示したものである。基準バイア
ス抵抗Rsには主電流Imと各比較器に流れ込む微
小電流ibが流れ、一方、信号入力側には各比較器
に流れ込む微小電流ib′が流れる。信号電流側の
配線抵抗が少ない方が望ましいが実際には抵抗
Riを有している。この場合における非線形誤差
の計算を行う。VRH側よりn番目の基準バイアス
抵抗Rsの抵抗値をRSn、電流をI(n)、電位を
VR(n)とすると、K列目及び(K+1)列目の
電流I(n)は次式で表わせる。
FIG. 3 shows the current flowing in the area surrounded by the broken line circle X in FIG. A main current Im and a minute current ib flowing into each comparator flow through the reference bias resistor Rs, while a minute current ib' flowing into each comparator flows through the signal input side. It is desirable that the wiring resistance on the signal current side is low, but in reality the resistance
It has Ri. The nonlinear error in this case will be calculated. The resistance value of the nth reference bias resistor Rs from the V RH side is RSn, the current is I(n), and the potential is
Assuming V R (n), the current I(n) in the K-th column and the (K+1)th column can be expressed by the following equation.

I(n)=I〔26×(2K−1)〕+〔26×(
2K−1)−n〕・ib… 27(K−1)+1≦n<27×K、但し、K=1、
3、5、7の各点の電位は VR(n)=VR(n−1)−I(n)・Rso … となる。ただし VR(o)=VRH、VR1=VRH+1/16(VRH−VRH)、 VR2=VRH+3/16(VRL−VRH)、VR8=VRH+15/16 (VRL−VRH)、VR(1024)=VRL となる。従つて基準バイアス抵抗の実際の非線形
誤差△VR(n)は、 △VR(n)=VR(n)−(VRL−VRH)×n/1024 … となる。
I(n)=I[2 6 × (2K-1)] + [2 6 × (
2K−1)−n]・i b … 2 7 (K−1)+1≦n<2 7 ×K, however, K=1,
The potential at each point 3, 5, and 7 is V R (n)=V R (n-1)-I(n)·R so . . . However, V R (o) = V RH , V R1 = V RH +1/16 (V RH − V RH ), V R2 = V RH +3/16 (V RL − V RH ), V R8 = V RH +15/16 (V RL −V RH ), V R (1024) = V RL . Therefore, the actual nonlinear error ΔV R (n) of the reference bias resistance is ΔV R (n)=V R (n)−(V RL −V RH )×n/1024 .

又信号配線に流れる微小電流により発生する信
号入力端子〜各比較器入力間の電位差は次式の様
にして求められる。
Further, the potential difference between the signal input terminal and each comparator input, which is generated by a minute current flowing through the signal wiring, can be obtained as shown in the following equation.

奇数列側では〔27×(K−1)+1≦n<27×
K、K=1、3、5、7〕 ΔVio〔26×(2K−1)+n〕=ΔVio〔26×(2K−
1)+n−1〕−Ri×j′b×(26−n+1)… となり、 偶数列側では〔27×K+1≦n<27×(K+
1)、K=1、3、5、7〕 ΔVio〔26×(2K+1)−n〕=ΔVio〔26×(2K+
1)−n+1〕−Ri×j′b×(26−n+1)… となる。
On the odd-numbered column side, [2 7 × (K-1) + 1≦n<2 7 ×
K, K=1, 3, 5, 7] ΔV io [2 6 × (2K-1) + n] = ΔV io [2 6 × (2K-
1)+n-1]-R i ×j'b×(2 6 -n+1)... On the even-numbered column side, [2 7 ×K+1≦n<2 7 ×(K+
1), K=1, 3, 5, 7] ΔV io [2 6 × (2K+1)−n] = ΔV io [2 6 × (2K+
1)-n+1]-R i ×j'b×(2 6 -n+1)...

従つて実際A/D変換器出力の非線形誤差は第
3式から第4式を引いたもの及び第3式から第5
式を引いたものになる。主電流I(1024)=3.5m
Aを微少電流ib=0.5μAとし、RS=Riとした時の
非線形誤差を第4図aに示す。第3図において奇
数別の場合と偶数列の場合では基準バイアス抵抗
RSと信号入力抵抗Riに流れる微少電流の方向が
異なるために比較器番号64、192、320…960の点
において大きな電位差が発生しており、非線形誤
差が約0.8LSB程度あり、A/D変換器に必要な
精度である0.5LSBを満足しない。さらにプロセ
スのバラツキが考えられる。10ビツトA/D変換
器においてはチツプサイズも9.2×9.8mm2程度で非
常に大きくチツプ内において、アルミ低抗体(基
準バイアス抵抗をアルミで形成している)の膜厚
バラツキが3%程度になる可能性があり、その場
合には第4図bに示す如くなり、この場合にも
0.5LSBを満足しない。
Therefore, the nonlinear error of the actual A/D converter output is calculated by subtracting the fourth equation from the third equation and by subtracting the fourth equation from the third equation.
It becomes the result of subtracting the expression. Main current I (1024) = 3.5m
Figure 4a shows the nonlinear error when A is a minute current ib = 0.5 μA and RS = Ri. In Figure 3, in the case of odd numbered columns and even numbered columns, the reference bias resistance
Because the direction of the minute current flowing through RS and the signal input resistor Ri is different, a large potential difference occurs at the points of comparator numbers 64, 192, 320...960, and there is a nonlinear error of about 0.8 LSB, which causes A/D conversion. The accuracy required for the device, 0.5LSB, is not satisfied. Furthermore, there may be variations in the process. In a 10-bit A/D converter, the chip size is approximately 9.2 x 9.8 mm2 , which is very large, and within the chip, the film thickness variation of the aluminum resistor (the reference bias resistor is made of aluminum) is approximately 3%. In that case, it will be as shown in Figure 4b, and in this case also.
Does not satisfy 0.5LSB.

発明の目的 本発明は各比較器入力に流れ込む微少電流の影
響をなくして非線形誤差を低減できる並列型A/
D変換器を提供することを目的とする。
Purpose of the Invention The present invention provides a parallel type A/
The purpose is to provide a D converter.

発明の構成 本発明の並列型A/D変換器は、複数の比較器
と、この比較器に入力される基準電位を与える複
数個の直列低抗体を構成し、折れ曲がつて配線さ
れた直列抵抗線と、前記比較器に入力され前記直
列抵抗線に平行に近接して配置された信号配線と
を設け、前記直列抵抗線と前記信号配線の平行な
領域において前記直列抵抗線と前記信号配線を流
れる電流方向を同一方向に構成したことを特徴と
する。
Structure of the Invention The parallel A/D converter of the present invention comprises a plurality of comparators and a plurality of series low antibodies that provide a reference potential input to the comparators, and a serial series connected in a bent manner. a resistance line and a signal wiring input to the comparator and arranged in parallel and close to the series resistance line; The present invention is characterized in that current flows in the same direction.

実施例の説明 以下、本発明の一実施例を第5図〜第7図に基
づいて説明する。なお、第1図〜第3図と同様の
作用を成すものには同一符号を付けてその説明を
省く。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 5 to 7. Components having the same functions as those in FIGS. 1 to 3 are designated by the same reference numerals, and their explanations will be omitted.

第5図は本発明の実施例における10ビツトA/
D変換器の変換器の配置図を示す。比較器C1〜
C1024、基準バイアス抵抗R、トリミング抵
抗r、オペアンプ1〜8、エンコーダEN、バツ
フアOBは従来と同じ配置である。信号入力端子
AINは基準バイアス抵抗のバイアス点VRH、VRL
補正バイアス点VR1〜VR8近傍とその反対側に第
5図の様に配置する。こうすることによつて、微
小電流の方向は第6図のように奇数列、偶数列に
おいても、同方向となり、信号入力端子と各比較
器入力間の電位差△Vi(n)は次式の様になる。
FIG. 5 shows the 10-bit A/
The layout diagram of the converter of the D converter is shown. Comparator C1~
C1024, reference bias resistor R, trimming resistor r, operational amplifiers 1 to 8, encoder EN, and buffer OB are arranged in the same manner as in the conventional case. Signal input terminal
A IN is the bias point of the reference bias resistor V RH , V RL ,
They are arranged near the correction bias points V R1 to V R8 and on the opposite side as shown in FIG. By doing this, the direction of the minute current is the same in both odd and even columns as shown in Figure 6, and the potential difference △Vi (n) between the signal input terminal and each comparator input is expressed by the following equation. It will be like that.

△Vi(n)=△Vi(n−1)+(26×(2K−
1)−n)i′b・Ri… ただし 27×(K−1)+1≦n<27×K K=1、3、
5、7である。Rs=Ri、ib=i′bであるため第2
式から第6式を引き算した場合にはibとi′bの項
がなくなる。すなわち、微小電流がない場合と等
しくなり、その計算結果は非線形誤差が零とな
る。さらにプロセス的なバラツキがある場合にお
いても基準バイアス抵抗Rsと信号入力配線抵抗
Riが等しくなるため、第7図のようにその非線
形誤差は確認できなかつた。
△Vi (n) = △Vi (n-1) + (2 6 × (2K-
1)-n)i'b・Ri... However, 2 7 × (K-1) + 1≦n<2 7 ×K K=1, 3,
5, 7. Since Rs=Ri and ib=i′b, the second
When the sixth equation is subtracted from the equation, the terms ib and i′b disappear. In other words, it is equivalent to the case where there is no minute current, and the nonlinear error in the calculation result is zero. Furthermore, even when there are process variations, the reference bias resistance Rs and signal input wiring resistance
Since Ri is equal, the nonlinear error could not be confirmed as shown in FIG.

なお、上記実施例においては、基準バイアス抵
抗Rsと信号配線を流れる電流の内、比較器入力
に流れ込む電流による電圧降下が基準バイアス抵
抗Rsと信号配線で同一としたが、これはほぼ同
じてあれば非線形誤差は従来に比べて低減でき
る。
In the above embodiment, it was assumed that the voltage drop due to the current flowing into the comparator input out of the current flowing through the reference bias resistor Rs and the signal wiring is the same between the reference bias resistor Rs and the signal wiring, but this may be approximately the same. For example, nonlinear errors can be reduced compared to the conventional method.

また、比較器入力に流れ込む電流によるで電圧
降下が基準バイアス抵抗Rsと信号配線で同一で
ある状態は、基準バイアス抵抗Rsと信号配線と
を同一材料で形成されるとともに同一幅、同一膜
厚とすることにより容易に得られる。
In addition, the state in which the voltage drop due to the current flowing into the comparator input is the same between the reference bias resistor Rs and the signal wiring is that the reference bias resistor Rs and the signal wiring are made of the same material, have the same width, and have the same film thickness. It can be easily obtained by

発明の効果 以上説明のように本発明の並列型A/D変換器
によると、比較器に基準電位を与える直列低抗体
に平行にしかも近接して前記比較器へアナログ信
号を供給する信号配線を設け、直列低抗体と信号
配線を流れる電流方向を同一方向にしたため、電
位差を軽減でき、ビツト数が多くとも非線形誤差
を従来に比べて大幅に改善できる。また、信号配
線の単位長さ当りの抵抗値を直列低抗体のそれと
同一にすることにより、各比較器入力に流れ込む
微小電流を実効的には影響を受けない様にするこ
とができ、非線形誤差もなくすことができると言
う高精度のA/D変換器とできるものである。
Effects of the Invention As explained above, according to the parallel A/D converter of the present invention, the signal wiring for supplying an analog signal to the comparator is arranged in parallel and close to the series low voltage antibody that supplies the reference potential to the comparator. Since the current direction flowing through the series low antibody and the signal wiring is the same, the potential difference can be reduced, and even if the number of bits is large, nonlinear errors can be significantly improved compared to the conventional method. In addition, by making the resistance value per unit length of the signal wiring the same as that of the series low-voltage antibody, the minute current flowing into each comparator input can be effectively made unaffected, resulting in nonlinear error. This is a highly accurate A/D converter that can be eliminated.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の並列型10ビツトA/D変換器の
ブロツク図、第2図は第1図の平面配置図、第3
図は第2図の要部電流分布図、第4図a,bは従
来の並列型A/D変換器の非線形誤差図、第5図
〜第7図は本発明の一実施例を示し、第5図は本
発明による並列型A/D変換器の平面配置図、第
6図は第5図の要部電流分布図、第7図は本発明
による並列型A/D変換器の非線形誤差の測定結
果を示す図である。 Rs……基準バイアス抵抗〔直列抵抗体〕、AIN
……アナログ信号入力端子、C1〜C1024…
…比較器、N1〜N1024……ゲート、1〜8
……オペアンプ、r……トリミング補正抵抗、
Ri……信号配線抵抗、ib,i′b……各比較器入力
に流れ込む微小電流、EN……エンコーダ、D0
…デジタル出力端子。
Fig. 1 is a block diagram of a conventional parallel type 10-bit A/D converter, Fig. 2 is a plan view of Fig. 1, and Fig. 3 is a block diagram of a conventional parallel type 10-bit A/D converter.
The figure shows the main part current distribution diagram of FIG. 2, FIGS. 4a and 4b show nonlinear error diagrams of a conventional parallel type A/D converter, and FIGS. 5 to 7 show an embodiment of the present invention. FIG. 5 is a plan layout diagram of the parallel A/D converter according to the present invention, FIG. 6 is a current distribution diagram of the main part of FIG. 5, and FIG. 7 is a nonlinear error of the parallel A/D converter according to the present invention. FIG. 3 is a diagram showing measurement results. Rs...Reference bias resistance [series resistor], A IN
...Analog signal input terminal, C1 to C1024...
... Comparator, N1 to N1024... Gate, 1 to 8
... operational amplifier, r ... trimming correction resistor,
Ri...Signal wiring resistance, ib, i'b...Minute current flowing into each comparator input, EN...Encoder, D 0 ...
...Digital output terminal.

Claims (1)

【特許請求の範囲】 1 複数の比較器と、この比較器に入力される基
準電位を与える複数個の直列低抗体を構成し、折
れ曲がつて配線された直列抵抗線と、前記比較器
に入力され前記直列抵抗線に平行に近接して配置
された信号配線とを設け、前記直列抵抗線と前記
信号配線の平行な領域において前記直列抵抗線と
前記信号配線を流れる電流方向を同一方向に構成
した並列型A/D変換器。 2 直列抵抗線と信号配線を流れる電流の内、比
較器入力に流れ込む電流による電圧降下が直列抵
抗線と信号配線とで同一となるよう構成したこと
を特徴とする特許請求の範囲第1項記載の並列型
A/D変換器。 3 直列抵抗線と信号配線とを同一材料でかつ同
一幅、同一膜厚に形成したことを特徴とする特許
請求の範囲第1項記載の並列型A/D変換器。 4 信号配線を複数としたことを特徴とする特許
請求の範囲第1項記載の並列型A/D変換器。 5 直列抵抗線の一部に複数の直列補正抵抗体お
よびオペアンプを接続して補正電位を与えるよう
構成したことを特徴とする特許請求の範囲第1項
記載の並列型A/D変換器。
[Claims] 1 A plurality of comparators and a plurality of series resistance wires that provide a reference potential input to the comparators are configured, and a series resistance line wired in a bent manner is connected to the comparators. a signal wiring that is inputted and arranged in parallel and close to the series resistance line, and in a region where the series resistance line and the signal wiring are parallel, the direction of current flowing through the series resistance line and the signal wiring is in the same direction. Parallel type A/D converter constructed. 2. Claim 1 is characterized in that the voltage drop due to the current flowing into the comparator input out of the current flowing through the series resistance wire and the signal wiring is the same between the series resistance wire and the signal wiring. parallel type A/D converter. 3. The parallel A/D converter according to claim 1, wherein the series resistance line and the signal wiring are made of the same material, have the same width, and have the same film thickness. 4. The parallel A/D converter according to claim 1, characterized by having a plurality of signal lines. 5. The parallel A/D converter according to claim 1, wherein a plurality of series correction resistors and operational amplifiers are connected to a part of the series resistance line to apply a correction potential.
JP5124583A 1983-03-25 1983-03-25 Parallel analog/digital converter Granted JPS59176923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5124583A JPS59176923A (en) 1983-03-25 1983-03-25 Parallel analog/digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5124583A JPS59176923A (en) 1983-03-25 1983-03-25 Parallel analog/digital converter

Publications (2)

Publication Number Publication Date
JPS59176923A JPS59176923A (en) 1984-10-06
JPH0360208B2 true JPH0360208B2 (en) 1991-09-13

Family

ID=12881563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5124583A Granted JPS59176923A (en) 1983-03-25 1983-03-25 Parallel analog/digital converter

Country Status (1)

Country Link
JP (1) JPS59176923A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860006877A (en) * 1985-02-12 1986-09-15 드로스트, 후흐스 High Speed Analog Digital Converter
JP2785498B2 (en) * 1991-02-06 1998-08-13 ヤマハ株式会社 D / A converter
JP6580847B2 (en) * 2015-03-25 2019-09-25 ラピスセミコンダクタ株式会社 Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689128A (en) * 1979-12-20 1981-07-20 Matsushita Electric Ind Co Ltd Analog-digital converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5689128A (en) * 1979-12-20 1981-07-20 Matsushita Electric Ind Co Ltd Analog-digital converter

Also Published As

Publication number Publication date
JPS59176923A (en) 1984-10-06

Similar Documents

Publication Publication Date Title
JPS5838029A (en) High resolution digital-analog converter
JPH01137831A (en) Analog/digital converter
US5119095A (en) D/a converter for minimizing nonlinear error
JPS6225295B2 (en)
KR950012977B1 (en) D/a converter
JPH0360208B2 (en)
JP2944442B2 (en) Digital-to-analog converter
US4942397A (en) Elimination of linearity superposition error in digital-to-analog converters
JP3091138B2 (en) Circuit device with multiplexer
JPS60189329A (en) Analog/digital converter
JPH06268523A (en) D/a converter
JP3429403B2 (en) D / A converter
JP2819787B2 (en) Constant current source circuit
JP4103849B2 (en) D / A converter
JP2806547B2 (en) High-speed AD converter
JP2580013B2 (en) DA converter
JPS596618A (en) Parallel type analog-digital converter
JP3125116B2 (en) AD converter
JP2705584B2 (en) Analog arithmetic unit
JPH0578214B2 (en)
JPH019237Y2 (en)
JP2604374B2 (en) Analog-to-digital converter
JPH02268523A (en) Digital/analog converter
JPS59140723A (en) Parallel type analog and digital converter
JPH0573274B2 (en)