JPH0360025A - Manufacturing device of thin film - Google Patents

Manufacturing device of thin film

Info

Publication number
JPH0360025A
JPH0360025A JP19581989A JP19581989A JPH0360025A JP H0360025 A JPH0360025 A JP H0360025A JP 19581989 A JP19581989 A JP 19581989A JP 19581989 A JP19581989 A JP 19581989A JP H0360025 A JPH0360025 A JP H0360025A
Authority
JP
Japan
Prior art keywords
gas
thin film
substrate
inert gas
formation chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19581989A
Other languages
Japanese (ja)
Other versions
JP3091466B2 (en
Inventor
Hitoshi Hirano
均 平野
Seiichi Kiyama
木山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP01195819A priority Critical patent/JP3091466B2/en
Publication of JPH0360025A publication Critical patent/JPH0360025A/en
Application granted granted Critical
Publication of JP3091466B2 publication Critical patent/JP3091466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve crystallinity of a formed thin film by irradiating constitu ent atomic ion of inert gas from an ion gun to the thin film formed on a sub strate by constituent atomic ion of inert gas which is ionized by inert gas constit uent atomic ion. CONSTITUTION:Ar gas is introduced inside a cavity 3 through a first gas tube 5; microwave is applied to the Ar gas through a waveguide tube 4 and a current is made to flow to a coil 8 simultaneously; Ar is partially ionized to make the plasma condition wherein Ar atom and Ar<+> and e<-> are included; Ar<+> is made to proceed toward a film formation chamber 1 by an operation of a magnetic field and to project inside the film formation chamber 1 receiving absorption force by an electric field of a grid 9. At the same time, SiH4 gas is introduced from a second gas tube 12 to the film formation chamber 1 to be decomposed to Si<+> and H<+> by Ar<+>. The decomposed Si<+> is irradiated to a substrate 2 inside the film formation chamber 1 and a thin film of Si is lami nated on a surface of the substrate 2.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明はシリコン等の半導体薄膜の製造装置に係り、該
jij I漠の結晶化技術に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to an apparatus for manufacturing a thin film of a semiconductor such as silicon, and relates to a crystallization technique of the above.

(ロ)従来の技術 例えば特開昭64−271号公報には内部に成膜室を有
する真空容器と、該真空容器に接続する電子サイクロト
ロン共鳴イオン源と、支持体保持手段と、1Jij記電
子サイクロトロン源に接続するマイクロ波発生源と、前
記真空容器を排気する排気手段と、ガス供給手段より成
る電子サイクロトロン共鳴型(以下ECRという)プラ
ズマCVD装;nであって、前記支持体保持手段を、前
記イオン源から引き出されるプラズマの引出し方向と並
行になるように環状配置するとともに、該支持体保持手
段に、プラズマの引出し方向と一致した磁界が形成しう
るように磁石を付加したことを特徴とするマイクロ波プ
ラズマCVD装置が開示されている。
(b) Conventional technology For example, Japanese Patent Application Laid-open No. 64-271 discloses a vacuum vessel having a film forming chamber inside, an electron cyclotron resonance ion source connected to the vacuum vessel, a support holding means, and an electronic device described in 1 Jij. An electron cyclotron resonance type (hereinafter referred to as ECR) plasma CVD system comprising a microwave generation source connected to a cyclotron source, an exhaust means for evacuating the vacuum container, and a gas supply means; , characterized in that the ion source is arranged in a ring so as to be parallel to the direction of plasma extraction from the ion source, and a magnet is added to the support holding means so as to form a magnetic field that coincides with the direction of plasma extraction. A microwave plasma CVD apparatus is disclosed.

この例で支持体表面に形成される堆積膜は均一膜厚で均
質な堆1a+漠に形成できるものの、できた膜は非晶質
な部分を多分に含んでおり、結晶比が悪く、大面積の膜
を成長させることができないという問題点があった。
Although the deposited film formed on the surface of the support in this example has a uniform thickness and can be formed in a homogeneous layer 1a + vaguely, the formed film contains many amorphous parts, has a poor crystal ratio, and has a large area. There was a problem in that it was not possible to grow a film of

(ハ)発明が解決しようとする課題 本発明が解決しようとする課題はECRイオン源を用い
たプラズマCVD法により所望の薄膜を形成する際に、
形成される薄膜の結晶性を向上させることである。
(c) Problems to be Solved by the Invention The problems to be solved by the present invention are that when forming a desired thin film by plasma CVD using an ECR ion source,
The objective is to improve the crystallinity of the formed thin film.

(ニ)課題を解決するための手段 本発明は不活性ガスをマイクロ波によってプラズマ状態
にし該ガスの構成原子をイオン化して放出するECRイ
オン源と、前記不活性ガスの構成原r・イオンを導入す
ると共に該構成原子イオンによってこのイオンとは異な
るイオンに分解される反応性ガスを導入し該反応性ガス
を溝底する原子の薄膜を内部の基板上に形成する!&膜
室と、前記不活性ガスと同じか或るいは異なる不活性ガ
スをイオン化してその構成原子イオンを前記基板に照射
し該基板表面に形成された前記薄膜の結晶化を促進する
イオンガンと、より成る。
(d) Means for Solving the Problems The present invention provides an ECR ion source that turns an inert gas into a plasma state using microwaves, ionizes and releases constituent atoms of the gas, and ionizes the constituent atoms of the inert gas. At the same time, a reactive gas is introduced which is decomposed by the constituent atomic ions into ions different from the above ions, and a thin film of atoms is formed on the inner substrate to form a groove bottom of the reactive gas! & a film chamber, and an ion gun that ionizes an inert gas that is the same as or different from the inert gas and irradiates the substrate with its constituent atomic ions to promote crystallization of the thin film formed on the surface of the substrate. , consists of.

(ホ)作用 IζCRイオン源からの不活性ガスのFR戒原子イオン
と、該不活性ガスflir&原子イオンによってイオン
化された反応性ガスの構成原子・イオンとによって基板
上に形成された薄膜に、イオンガンからの不活性ガスの
h11戊原子イオンを照射すると、前記薄膜の非晶質な
部分の結晶化が促進される。
(E) Effect Iζ An ion gun is applied to a thin film formed on a substrate by the FR precept atomic ions of an inert gas from the CR ion source and the constituent atoms/ions of the reactive gas ionized by the inert gas flir & atomic ions. When irradiated with h11 atomic ions of an inert gas, crystallization of the amorphous portion of the thin film is promoted.

(へ)実施例 以下本発明薄膜の製造装置を図面の一実施例に塙づき詳
細に説明する。
(f) Example The apparatus for manufacturing a thin film of the present invention will be described in detail below with reference to an example of the drawings.

第1図は本発明装置の断面略図を示し、(1)は内部に
ガラス製や金属製等の基板(2)を配置せしめた金属製
の成膜室、(3)は前記成膜室(1)に隣接して設けら
れたECRキャビティ、(4)は前記キャビティ(3)
へマイクロ波を送るマイクロ波導波管、(5)は前記キ
ャビティ(3)へ励起ガスとしてArやHl等の不活性
ガス(図ではAr)を送る第1のガス管、(6)は前記
キャビティ(3)の内層間に形成された空間部(7)に
冷却水11.0を送る冷却管、(8)は前記キャビティ
(3)の外周囲に設置された電磁石コイルであり、該キ
ャビティ(3)内のマイクロ波により励起されたArガ
スイオン(Ar + )或るいは電子(e−)にローレ
ンツ力を与えて旋回させながら前記成膜室(1)の方向
へ進行させるためのものである。
FIG. 1 shows a schematic cross-sectional view of the apparatus of the present invention, in which (1) is a metal film forming chamber in which a substrate (2) made of glass or metal is placed, (3) is the film forming chamber ( 1) is an ECR cavity provided adjacent to the cavity (3);
(5) is a first gas pipe that sends an inert gas such as Ar or Hl (Ar in the figure) as an excitation gas to the cavity (3); (6) is a first gas pipe that sends the microwave to the cavity (3); (3) is a cooling pipe that sends cooling water 11.0 to the space (7) formed between the inner layers; (8) is an electromagnetic coil installed around the outer circumference of the cavity (3); 3) to apply a Lorentz force to the Ar gas ions (Ar + ) or electrons (e-) excited by the microwave in the chamber, causing them to rotate and advance toward the film forming chamber (1). be.

そして前記キャビティ(3)、導波W(4)、コイル(
8)、第1ガス管(5)はECRイオン源を構成してい
る。
The cavity (3), the waveguide W (4), the coil (
8), the first gas pipe (5) constitutes an ECR ion source.

(9)は前記キャビティ(3〉と成膜室(1)との境界
に配設されたグリッドであり、該グリッド(9)に−の
電位を与えてやることにより前記Arイオンの進行速度
が加速される。又(10)は前記成膜室(1)の−側に
設けられて該成膜室(1)内の基板(2)にイオンビー
ムを照射するホロカソード型イオンガン(直径3crn
のものを使用)であり、該イオンガン(10〉はフィラ
メント手段(11)を有し、前記第1ガス管(5)から
導入されたArガス及び第2のガス管(12)から導入
されたシランガス(Si11.)から夫々式r+及びS
i+を作り、前記成膜室(1)内の基板(2)l)に照
射する役目を担うものである。又前記第2ガス管(12
)は直接iij記戒膜室(1)にもシランガスを供給す
ることができる。
(9) is a grid disposed at the boundary between the cavity (3) and the film forming chamber (1), and by applying a negative potential to the grid (9), the advancing speed of the Ar ions can be increased. Further, (10) is a hollow cathode type ion gun (diameter 3 crn) which is installed on the - side of the film forming chamber (1) and irradiates the substrate (2) in the film forming chamber (1) with an ion beam.
The ion gun (10) has a filament means (11), and Ar gas introduced from the first gas pipe (5) and Ar gas introduced from the second gas pipe (12). Formulas r+ and S from silane gas (Si11.), respectively.
It plays the role of creating i+ and irradiating the substrate (2)l) in the film forming chamber (1). Further, the second gas pipe (12
) can also directly supply silane gas to the membrane chamber (1).

以りのFIirR,を有する薄膜の製造装置を使ってS
iの薄膜を形成する場合のL程について以下に説明する
S using a thin film manufacturing apparatus having the following FIirR.
The length L when forming a thin film of i will be explained below.

mlガス管(5)を介してキャビティ(3)内にArガ
スを約23CCM導入し、該キャビティ(3)内のAr
ガスに導波管(4)を介してマイクロ波を印加すると同
時にコイル(8)に電流を流してキャビティ(3)内に
磁場を形成すると、Arの一部がイオン化されてAr原
子と、Ar”と、e−と、が混在するプラズマ状態とな
り、Ar”が前記磁場の働きにより旋回しながら背圧約
lXl0−’Torr以下に設定されている成膜室(1
)の方向へ進む。
Approximately 23 CCM of Ar gas is introduced into the cavity (3) through the ml gas pipe (5), and the Ar gas in the cavity (3) is
When microwaves are applied to the gas through the waveguide (4) and at the same time a current is applied to the coil (8) to form a magnetic field in the cavity (3), part of the Ar is ionized and becomes Ar atoms and Ar atoms. A plasma state is formed in which ``,'', and
).

そしてグリッド(9)の電場による吸引力を受けて前記
^r+が成膜室(1)内基板(2)に形成される膜を損
傷しない程度の低エネルギーである約20eVのエネル
ギーに加速された状態で飛び出す。
Then, under the attractive force of the electric field of the grid (9), the ^r+ was accelerated to an energy of about 20 eV, which is low enough to not damage the film formed on the substrate (2) in the film forming chamber (1). Jump out in a state.

前記成膜室(1)にはこの特同時に第2ガス管(12)
からS i It 、ガスがこのまま約4 SCCM導
入されており、Ar”はこのS i H*に当ってこれ
をSげと114とに分解する。
At the same time, a second gas pipe (12) is connected to the film forming chamber (1).
From S i It , approximately 4 SCCM of gas is introduced as it is, and Ar'' hits this S i H* and decomposes it into S particles 114 .

そして分解されたSi″lは、成膜室(1)内の基板(
2)に照射され、該基板(2)表面にSiの薄膜が成膜
速度約1100n/min、にて積層される。
Then, the decomposed Si″l is transferred to the substrate (
2), and a thin film of Si is deposited on the surface of the substrate (2) at a deposition rate of about 1100 n/min.

尚、前記Ar+はSiの単結晶化には不要となるI+”
を基板(2)から遠くへ弾き飛ばす役目も担っている。
Note that the above Ar+ is I+, which is unnecessary for single crystallization of Si.
It also plays the role of repelling the particles far away from the board (2).

ところで1ユ記キヤビテイ(3)から照射される八r+
のエネルギーは形成された薄膜を損傷させない程度に低
く抑えられており、基板(2〉上に形成された薄膜に到
゛達しても、これを単結晶化できる程のエネルギーでは
なく、81g膜の結晶化率は極めて悪い。
By the way, the 8r+ irradiated from the 1U cavity (3)
The energy of The crystallization rate is extremely poor.

そこで結晶化の程度を更に進めるため、ホロカソードイ
オンガン(10)から高エネルギー(略100−100
0eV)の^r+を前記基板(2)上の5iit9膜に
照射し、^r1による5iR1I膜へのイオン衝撃を行
う。
Therefore, in order to further advance the degree of crystallization, high energy (approximately 100-100
The 5iit9 film on the substrate (2) is irradiated with ^r+ of 0 eV), and the 5iR1I film is bombarded with ions by ^r1.

この方法を用いれば、−皮形成された非晶質な部分を多
く含んだSi薄膜の結晶化を促進させることができる。
By using this method, it is possible to promote the crystallization of a Si thin film containing a large amount of amorphous portions.

その結果第2図のxH回折図に示されるような(111
)面の配向性に優れた結晶化Si薄膜が得られる。
As a result, (111
) A crystallized Si thin film with excellent plane orientation can be obtained.

1’l!6、反応性ガスとして上記5ill+等のケイ
素化合物の他にN1等の窒素化合物、C11,等の炭化
水素化合物をf′r、意に選択して用い、異なる薄膜を
形成することができる。
1'l! 6. In addition to the silicon compounds such as the above-mentioned 5ill+, nitrogen compounds such as N1, and hydrocarbon compounds such as C11 can be arbitrarily selected and used as reactive gases to form different thin films.

又、前記ホロカソードイオンガン(10)に例えばS 
i tl *を供給して該ホロカソードイオンガン(1
0)からイオン化されたSiを加速電圧1 kcV、イ
オン電流密度約10mA/cm”にて前記基板(2)に
照射して薄膜を形成し、同時に同じイオンガン(10)
から高エネルギーの^r4を前記基板(2)表面の薄膜
に照射することにより、ECRイオン源を用いずに結晶
化された薄膜を形成することもできる。
Further, the hollow cathode ion gun (10) is equipped with, for example, S.
i tl * is supplied to the hollow cathode ion gun (1
0) at an acceleration voltage of 1 kcV and an ion current density of about 10 mA/cm'' to form a thin film on the substrate (2), and at the same time the same ion gun (10)
A crystallized thin film can also be formed without using an ECR ion source by irradiating the thin film on the surface of the substrate (2) with high energy ^r4.

(ト)発明の効果 本発明は以上の説明の如く、不活性ガスをマイクロ波に
よってプラズマ状態にし該ガスの構成原子をイオン化し
て放出するECRイオン源と、前記不活性ガスの構成原
子イオンを導入すると共に該構成原子イオンによってこ
のイオンとは異なるイオンに分解される反応性ガスを導
入し該反応性ガスを構成する原子の薄膜を内部の基板上
に形成する成膜室と、前記不活性ガスと同じか或るいは
異なる不活性ガスをイオン化してそのHR戊原子イオン
を前記基板に照射し該基板表面に形成された前記薄膜の
結晶化を促進するイオンガンと、より成る薄膜の製造装
置であるから、この装置を用いて薄膜を形成すれば従来
、結晶性の悪かった薄膜の結晶化を促進させることがで
き、大面積の薄膜を結晶成長させる際の良質の核を得る
ことが可能となる効果が生まれる。
(G) Effects of the Invention As explained above, the present invention provides an ECR ion source that converts an inert gas into a plasma state using microwaves, ionizes and releases constituent atoms of the gas, and an ECR ion source that ionizes and releases the constituent atoms of the inert gas. a film forming chamber in which a reactive gas is introduced and decomposed into ions different from the ions by the constituent atomic ions, and a thin film of atoms constituting the reactive gas is formed on the substrate therein; A thin film manufacturing apparatus comprising: an ion gun that ionizes an inert gas that is the same as or different from the gas and irradiates the substrate with HR atomic ions to promote crystallization of the thin film formed on the surface of the substrate. Therefore, by forming thin films using this device, it is possible to promote the crystallization of thin films that conventionally had poor crystallinity, and it is possible to obtain high-quality nuclei for crystal growth of large-area thin films. The effect is created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明薄膜の製造装置の一実施例を示す断面略
図、第2図は第1図の装置を用いて形成される薄膜のX
線回折図である。 (1)・・・成膜室、    (2)・・・基板、(3
)・・ECRキャビティ、 (4)・・・マイクロ波導波管、 (5)・・・第1ガス管、  (12)・・・第2ガス
管、(10)・・・ホロカソードイオンガン。
FIG. 1 is a schematic cross-sectional view showing one embodiment of the thin film manufacturing apparatus of the present invention, and FIG. 2 is a cross-sectional view of the thin film formed using the apparatus shown in FIG.
It is a line diffraction diagram. (1)...Film forming chamber, (2)...Substrate, (3
)... ECR cavity, (4)... Microwave waveguide, (5)... First gas pipe, (12)... Second gas pipe, (10)... Holocathode ion gun.

Claims (1)

【特許請求の範囲】[Claims] (1)不活性ガスをマイクロ波によってプラズマ状態に
し該ガスの構成原子をイオン化して放出するECRイオ
ン源と、前記不活性ガスの構成原子イオンを導入すると
共に該構成原子イオンによってこのイオンとは異なるイ
オンに分解される反応性ガスを導入し該反応性ガスを構
成する原子の薄膜を内部の基板上に形成する成膜室と、
前記不活性ガスと同じか或るいは異なる不活性ガスをイ
オン化してその構成原子イオンを前記基板に照射し該基
板表面に形成された前記薄膜の結晶化を促進するイオン
ガンと、より成る薄膜の製造装置。
(1) An ECR ion source that converts an inert gas into a plasma state using microwaves, ionizes and releases the constituent atoms of the gas, and introduces the constituent atomic ions of the inert gas, and the constituent atomic ions that form the ions. a film forming chamber that introduces a reactive gas that is decomposed into different ions and forms a thin film of atoms constituting the reactive gas on an internal substrate;
an ion gun that ionizes an inert gas that is the same as or different from the inert gas and irradiates the substrate with its constituent atomic ions to promote crystallization of the thin film formed on the surface of the substrate; Manufacturing equipment.
JP01195819A 1989-07-27 1989-07-27 Thin film manufacturing method Expired - Fee Related JP3091466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01195819A JP3091466B2 (en) 1989-07-27 1989-07-27 Thin film manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01195819A JP3091466B2 (en) 1989-07-27 1989-07-27 Thin film manufacturing method

Publications (2)

Publication Number Publication Date
JPH0360025A true JPH0360025A (en) 1991-03-15
JP3091466B2 JP3091466B2 (en) 2000-09-25

Family

ID=16347524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01195819A Expired - Fee Related JP3091466B2 (en) 1989-07-27 1989-07-27 Thin film manufacturing method

Country Status (1)

Country Link
JP (1) JP3091466B2 (en)

Also Published As

Publication number Publication date
JP3091466B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
EP0477890B1 (en) Processing method and apparatus
US6660342B1 (en) Pulsed electromagnetic energy method for forming a film
JPS63195266A (en) Timepiece coated with carbon film
US5824455A (en) Processing method and apparatus
US5565247A (en) Process for forming a functional deposited film
JP3226315B2 (en) Fine processing method and fine processing device
JPS63224233A (en) Surface treatment
JPH03263827A (en) Digital etching apparatus
JPH0360025A (en) Manufacturing device of thin film
JPS6260876A (en) Device for vapor-depositing thin film
JP2985472B2 (en) Method of forming silicon film
JP2726149B2 (en) Thin film forming equipment
JP2691399B2 (en) Plasma processing method
JPS6348817A (en) Epitaxial growth method
JPH05213695A (en) Method for depositing thin diamond film
JPS62229841A (en) Vacuum treatment apparatus
JPS6212136A (en) Manufacture of silicon nitride thin film
JPS6277465A (en) Formation of amorphous silicon film
JPS62224923A (en) Formation of semiconductor thin film and device therefor
JPS619577A (en) Plasma chemical vapor phase growing method
JPS60180142A (en) Manufacture of semiconductor thin film
JPS6074534A (en) Method and equipment for forming thin film
JPH01246367A (en) Formation of film and device therefor
JPH0373528A (en) Manufacture of electrode wiring of semiconductor integrated circuit device
JPH0254758A (en) Thin film-forming equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees