JPH0359976B2 - - Google Patents

Info

Publication number
JPH0359976B2
JPH0359976B2 JP58205465A JP20546583A JPH0359976B2 JP H0359976 B2 JPH0359976 B2 JP H0359976B2 JP 58205465 A JP58205465 A JP 58205465A JP 20546583 A JP20546583 A JP 20546583A JP H0359976 B2 JPH0359976 B2 JP H0359976B2
Authority
JP
Japan
Prior art keywords
less
magnetic
magnetic properties
steel
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58205465A
Other languages
Japanese (ja)
Other versions
JPS6096749A (en
Inventor
Tsuguyuki Kawai
Izumi Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58205465A priority Critical patent/JPS6096749A/en
Publication of JPS6096749A publication Critical patent/JPS6096749A/en
Publication of JPH0359976B2 publication Critical patent/JPH0359976B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 近年科学技術の進歩につれ大型鋼構造物の一部
に磁気を用いる装置、例えば直径1Km、円周約3
Kmの衝突型加速器中で電子と陽電子をお互いに反
対方向に約300Meνまで加速蓄積しそれを正面衝
突させてその時に生ずる反応を調べ新しい素粒子
を見出す装置が開発され、そこにおいて直流磁化
条件で使用される磁石の鉄芯用等に供される厚鋼
板に優れた磁気特性が要求されている。 本発明はこのような用途に好適な高磁気特性を
有する直流磁化用厚板及びその製造方法に関する
ものである。 (従来技術) 従来、直流磁化条件で使用され磁気特性の優れ
た鋼材としては純鉄及びJISC22503,C2504に規
定される電磁軟鉄棒、電磁軟鉄板が公知である。
しかるに純鉄は工業的に大型のものが得られ難
く、又たとえ得られたとしても大型鋼構造物に組
込んで構造物を形成するには強度上の問題があり
採用できないものである。JISC2503のものは1.0
〜16mmφ径の棒でありJISC2504のものは0.5〜4.5
mm厚の薄板で何れもリレー用、電磁石用として用
いられるが小型のものに限定されている。 本発明が対象とする例えば厚さ500mm×巾4000
mm×長8000mmにも達する大型磁性個体を得ようと
すれば、相当な枚数を積層して構成する必要があ
り製作費、製作技術の点から実質上製作不能であ
る。又、板厚方向にも優れた磁気特性をもつこと
は困難である。 一方、磁気用として分類されていない
JISG4051機械構造用炭素鋼鋼材のS10Cを用い、
250mm中に熱間加工し磁性材として使用している
例があるが、この場合には磁気特性については何
ら考慮されていないため、磁気特性の指標である
最大透磁率μ=B/H(Hは磁化力(Oe),Bは
磁束密度(Gs)を示す)が1800以下と低く極く
限られた用途にしか適用し得ない。 更に、電磁鋼板としては磁気時効による磁性劣
化の少ないことが磁気特性の上から重要であり、
このためモーター等回転機の鉄芯に使用される板
厚1mm以下の電磁鋼板及びトランス等の鉄芯に使
用される板厚1mm以下の電磁鋼板においては、例
えば特公昭58−34532号公報に示される如く脱炭
焼鈍によつて、磁気時効を起さない炭素量に到達
させている。しかして本発明が対象とする板厚20
mm以上の厚鋼板の場合厚さの面から脱炭すること
は不可能である。 (発明の目的) 本発明の目的は以上の点に鑑みなされたもの
で、電磁薄板と同等ないしは同等以上の磁気特性
を具備しもつて磁気特性が要求される大型鋼構造
物用等に供する直流磁化用厚板及びその厚さ方向
で磁気特性差の少い製造方法を提供することにあ
る。 (発明の構成) このような目的を達成するため本発明は以下の
ように構成したものである。重量%でC:0.01%
以下、Si:0.30%以下、Mn:0.50%以下、Cr:
0.05%以下、Mo:0.02%以下、Cu:0.05%以下、
Al:0.005〜0.06%、N:0.01%以下、O:0.003
%以下、P:0.01%以下、S:0.01%以下、残部
実質的に鉄からなり、最大透磁率(μ=B/
H):2000以上の磁気特性を有する厚さ20mm以上
の直流磁化用厚板。及び上記成分の鋼塊又はスラ
ブを熱間加工して所定の寸法としたのち引きつづ
き600〜720℃で3〜10時間の焼鈍、または850〜
980℃で10分間〜2時間の焼準の結晶粒調整およ
び/または脱水素熱処理を施こすことを特徴とす
る最大透磁率(μ=B/H):2000以上の磁気特
性を有する厚さ20mm以上の直流磁化用厚板の製造
方法。 本発明者等は磁気特性の良好な直流磁化用厚板
を得るべく種々実験をくり返し、高磁気特性を具
備するために重要な点は、薄板、棒鋼とは異なり
板厚が大のため厚さ方向における磁気的特性の均
質性を確保すること及び磁気特性を高めるために
減磁率を大きくする成分を極力少なくすることの
二点であることを知見した。 第1点目の磁気的特性の均質性を確保するに
は、 イ 非金属介在物原因成分を減減らす。(P,S,
O) ロ 偏析しやすい成分を減少させる。(P,S,
O等) ハ 空隙性欠陥をなくす。(Hの低下等) ニ 結晶粒を板厚方向で可能な限り均一にする。 ことが極めて有効な手段であることを確認した。 さらに第2点目の減磁率を大きくする成分とし
てはC,Si,Mn,Cu,Cr,Mo,Nがありこれ
らを極力少なくすることが有効であることを確認
し本発明を完成させたものである。 次に本発明の成分限定理由を述べる。 は磁気特性の減磁率が最も高い元素であり極力
下げることが減磁率を大きくしないことに寄与す
る。又、磁気時効の点からも低いほど経時劣化が
少なく磁気特性の良い状態で恒久的に使用できる
ものであり、含有しないことが最良である。 しかし含有量を0%にするには製錬コストが著
しく上昇し、工業上採算がとれない。そこで磁気
特性劣化を許容できる範囲として0.01%以下に限
定する。 Si,Mnは磁気特性の減磁率の点から、少ない
程好ましく、含有しないことが最良である。しか
し大型鋼構造物に組込まれて使用される場合には
磁気特性に加えて必要最少限の強度の確保が必要
となる。この意味から磁気特性劣化を許容できる
範囲としてSiは0.30%以下、Mnは0.50%以下に
限定する。 Cr、Mo、Cu、Nは磁気特性の減磁率を大きく
するので少ない程好ましく、また偏析度合を少な
くすることから極力低くすることが必要であり、
含有しないことが最良である。しかし含有量を0
%にするには製錬コストが著しく上昇し、工業上
採算がとれない。そこで磁気特性劣化を許容でき
る範囲として夫々Crは0.05%以下、Moは0.02%
以下、Cuは0.05%以下、Nは0.01%以下とする。 Alは脱酸剤として用いるもので本発明の如く
板厚の厚い場合には内質の均質化に不可欠の元素
であり0.005%以上添加されるが多くなりすぎる
と介在物を生成し鋼の性質を損うので上限は
0.060%以下とする。 P,S,Oは鋼中において非金属介在物を形成
しかつ偏析することにより磁壁の移動を妨げる害
を及ぼし含有量が多くなるに従つて保磁力の増加
がみられ磁気特性を低下させるので少ない程よ
く、含有しないことが最良である。しかし含有量
を0%にするに製錬コストが著しく上昇し、工業
上採算がとれない。そこで磁気特性劣化を許容で
きる範囲としてP,Sは夫々0.010%以下、Oは
0.003%以下とした。 最大透磁率μは磁気特性を利用する装置に用い
られ充分な磁気特性を発揮するために必要最小限
の値としてμ=200以上とした。板厚は直流磁化
用厚板としての板厚方向均質性、空隙性欠陥対策
を必要とする下限板厚が20mmであるため20mm以上
とした。上限は熱間鍛造による成型が鋼塊厚さ以
上のものまで製造可能であるため制限されない。 次に製造法について述べる。 鋼の溶剤は転炉溶製法あるいは電気炉溶製法の
いずれの溶製でもよく、さらに必要に応じて取鍋
精錬あるいは真空脱ガス等の精錬工程を経て減磁
率を大きくする成分(C,Si,Mn,Cr,Mo,
Cu,N)を極力少なくすると共に、非金属介在
物の形成および偏析することによつて磁束の障壁
の移動を阻害するP,S,Oを減少させる。 さらに、板厚大なるが故の空隙性欠陥は磁束密
度を高める障害となり磁気特性の均質性を損うの
で該空隙性欠陥を助長するHの低減は有効であり
公知の低水素吹錬、真空脱ガス等の水素低下によ
り後工程の造塊及び連続鋳造段階での空隙性欠陥
の微小化を図ることが好ましい。 次に熱間加工工程においては加工前の加熱条件
は特別な作業は不要であり熱間加工の形態は圧延
機による圧延又は鍛造機による鍛圧のいずれでも
よい。 前述の空隙性欠陥は鋼の凝固過程で大小はある
が必ず発生するものでありこれをなくす手段は圧
延または鍛造によらなければならないので熱間加
工工程の役目は重要である。すなわち、具体的に
は熱間加工1回当りの加工量を大きくして板厚中
心部にまで変形が及ぶ熱間加工が有効であり、圧
延法の場合には公知の高形状比圧延を適用するこ
とが好ましい。 次に、熟間加工に引きつづき結晶粒調整およ
び/または製品板厚によつて脱水素熱処理を施す
ものであるが、省エネルギー上熱間加工後冷却す
ることなく熱処理炉に装入しフエライト結晶粒の
均一化粗粒化を通じて磁束密度を高めること、脱
水素によつて空隙性欠陥の徹底した解消を図る。 この熱処理としては磁気特性上焼鈍が最も好ま
しく、またある程度強度を確保する必要がある場
合には若干磁気特性が低下するが焼準が有効であ
る。上記結晶粒調整と脱水素処理は別々に実施し
ても良いが省エネルギー上1回の熱処理で行うの
が効率的である。 しかして磁気特性上好ましい結晶粒の大きさに
ついて本発明者らが実験結果を整理して第1図の
関係を得た。これによれば最大透磁率2000以上を
確保するにはフエライト結晶粒度を−3〜4程度
の粗粒かつ整粒にする必要がある。 そして、このための熱処理条件は、焼鈍の場合
は600℃〜720℃×3〜10時間、焼準の場合は850
℃〜980℃×10分間〜2時間の熱処理が必要であ
る。焼鈍温度が600℃未満では十分な脱水素効率
が期待できない。720℃超では初期の水素溶解度
が増大するため厚手材の脱水素効率の負荷を軽減
することが難しくなり好ましくない。 焼鈍時間が3時間未満では十分な脱水素ができ
ないので不都合である。一方10時間を超えると脱
水素効果が少なくなり経済的でない。 焼準温度が850℃未満では結晶粒が混粒になる
おそれがあり好ましくない。一方980℃を超える
高い温度では再結晶により細粒化が進み好ましく
ない。 焼準時間が10分未満では十分な焼準効果が得ら
れず整粒を得にくい。一方2時間を超える処理を
しても結晶粒調整の効果は少ないうえ、板厚の薄
い鋼板では鋼板形状が悪化するため好ましくな
い。 前記結晶粒調整,脱水素処理加熱が焼鈍の場合
は炉中で少くとも500℃まで徐冷し以後大気中で
放冷する。焼準の場合は所定温度に加熱後徐冷も
しくは大気中で放冷する。 次に実施例を比較例とともに挙げる。 転炉製鋼法により精錬した溶鋼を更に取鍋精錬
及び真空脱ガス処理をして表1に示す化学成分を
有する鋼を得た。該鋼を造塊−均熱したのち空隙
性欠陥対策を考慮した熱間鍛造又は熱間圧延によ
り20〜500mmの板厚に仕上げた。引きつづき焼鈍
又は焼準を加え焼鈍の場合500℃まで炉中で徐冷
して以後大気中で放冷して結晶粒調整と脱水素熱
処理を加えた。得られた厚鋼板のフエライト結晶
粒度,最大透磁率、引張強度を併せて表1に示
す。
(Industrial application field) In recent years, with the advancement of science and technology, devices that use magnetism as part of large steel structures, such as devices with a diameter of 1 km and a circumference of approximately 3
A device was developed to discover new elementary particles by accelerating and accumulating electrons and positrons in opposite directions to approximately 300 Meν in a Km collider, causing them to collide head-on, and investigating the reactions that occur at that time. Excellent magnetic properties are required of the thick steel plates used for the iron core of the magnets used. The present invention relates to a thick plate for direct current magnetization having high magnetic properties suitable for such uses, and a method for manufacturing the same. (Prior Art) Conventionally, pure iron, electromagnetic soft iron rods and electromagnetic soft iron plates specified in JISC22503 and C2504 are known as steel materials that are used under DC magnetization conditions and have excellent magnetic properties.
However, pure iron is difficult to obtain in large scale industrially, and even if it were obtained, it would not be possible to incorporate it into a large steel structure to form a structure due to strength problems. JISC2503 is 1.0
~16mmφ diameter rod, JISC2504 0.5~4.5
They are thin plates with a thickness of mm, and are used for relays and electromagnets, but are limited to small sizes. For example, the object of the present invention is 500mm thick x 4000mm wide.
In order to obtain a large magnetic solid of up to 8000 mm x 8000 mm, it would be necessary to laminate a considerable number of sheets, making it virtually impossible to manufacture in terms of production costs and manufacturing technology. Furthermore, it is difficult to have excellent magnetic properties in the thickness direction as well. On the other hand, it is not classified as magnetic.
Using JISG4051 carbon steel for machine structure S10C,
There is an example of a 250 mm diameter being hot worked and used as a magnetic material, but in this case no consideration is given to the magnetic properties, so the maximum magnetic permeability μ = B/H (H (indicates the magnetizing force (Oe) and B indicates the magnetic flux density (Gs)) is low at 1800 or less, and can only be applied to extremely limited applications. Furthermore, from the viewpoint of magnetic properties, it is important for electrical steel sheets to have little magnetic deterioration due to magnetic aging.
Therefore, for electromagnetic steel sheets with a thickness of 1 mm or less used for the iron core of rotating machines such as motors, and electromagnetic steel sheets with a thickness of 1 mm or less used for the iron core of transformers, for example, Through decarburization annealing, we have reached a carbon content that does not cause magnetic aging. However, the plate thickness 20 that the present invention targets
In the case of steel plates with a thickness of mm or more, it is impossible to decarburize them due to the thickness. (Object of the Invention) The object of the present invention has been made in view of the above points. It is an object of the present invention to provide a thick plate for magnetization and a manufacturing method with little difference in magnetic properties in the thickness direction thereof. (Structure of the Invention) In order to achieve the above object, the present invention is structured as follows. C in weight%: 0.01%
Below, Si: 0.30% or less, Mn: 0.50% or less, Cr:
0.05% or less, Mo: 0.02% or less, Cu: 0.05% or less,
Al: 0.005-0.06%, N: 0.01% or less, O: 0.003
% or less, P: 0.01% or less, S: 0.01% or less, the remainder substantially consists of iron, and the maximum magnetic permeability (μ = B /
H): A thick plate for direct current magnetization with a thickness of 20 mm or more and a magnetic property of 2000 or more. And after hot working a steel ingot or slab with the above ingredients to a predetermined size, it is subsequently annealed at 600-720℃ for 3-10 hours, or 850-720℃.
Maximum magnetic permeability (μ=B/H): 20mm thick with magnetic properties of 2000 or more, characterized by grain adjustment and/or dehydrogenation heat treatment at 980℃ for 10 minutes to 2 hours. The above method for producing a thick plate for direct current magnetization. The inventors of the present invention have repeatedly conducted various experiments in order to obtain a thick plate for direct current magnetization with good magnetic properties. It was discovered that there are two points to be solved: ensuring homogeneity of magnetic properties in the direction, and minimizing the component that increases the demagnetization rate in order to improve the magnetic properties. To ensure the first point, homogeneity of magnetic properties, a. Reduce components that cause non-metallic inclusions. (P,S,
O) B Reduce components that are likely to segregate. (P,S,
C) Eliminate void defects. (Decrease in H, etc.) D. Make crystal grains as uniform as possible in the thickness direction of the plate. It was confirmed that this is an extremely effective method. Furthermore, as for the second point, components that increase the demagnetization rate include C, Si, Mn, Cu, Cr, Mo, and N, and it was confirmed that it is effective to reduce these as much as possible, and the present invention was completed. It is. Next, the reason for limiting the ingredients of the present invention will be described. is the element with the highest demagnetization rate of magnetic properties, and reducing it as much as possible contributes to not increasing the demagnetization rate. Also, from the point of view of magnetic aging, the lower the magnetic aging, the less deterioration over time and the ability to use it permanently with good magnetic properties, so it is best not to contain it. However, reducing the content to 0% requires a significant increase in smelting costs, making it industrially unprofitable. Therefore, the acceptable range for magnetic property deterioration is limited to 0.01% or less. From the viewpoint of demagnetization rate of magnetic properties, it is preferable that Si and Mn be as small as possible, and it is best not to include them. However, when used in a large steel structure, it is necessary to ensure the minimum necessary strength in addition to magnetic properties. In this sense, Si is limited to 0.30% or less and Mn is limited to 0.50% or less as a range in which magnetic property deterioration can be tolerated. Cr, Mo, Cu, and N increase the demagnetization rate of magnetic properties, so the smaller the content, the better, and in order to reduce the degree of segregation, it is necessary to keep them as low as possible.
It is best not to contain it. However, the content is 0
%, the smelting cost increases significantly and it is not industrially profitable. Therefore, the acceptable range for magnetic property deterioration is 0.05% or less for Cr and 0.02% for Mo.
Hereinafter, Cu is 0.05% or less and N is 0.01% or less. Al is used as a deoxidizing agent and is an essential element for homogenizing the internal material when the plate thickness is thick as in the present invention.Although it is added in an amount of 0.005% or more, if it is added too much, inclusions will be formed and the properties of the steel will change. The upper limit is
Must be 0.060% or less. P, S, and O form nonmetallic inclusions in steel and segregate, which hinders the movement of domain walls.As their content increases, the coercive force increases and the magnetic properties deteriorate. The less the better, and it is best not to include it. However, reducing the content to 0% significantly increases smelting costs, making it unprofitable industrially. Therefore, the acceptable range for deterioration of magnetic properties is 0.010% or less for P and S, and 0.010% or less for O.
It was set to 0.003% or less. The maximum magnetic permeability μ is used in a device that utilizes magnetic properties, and is set to 200 or more as the minimum value necessary to exhibit sufficient magnetic properties. The plate thickness was set to 20 mm or more because the minimum plate thickness is 20 mm, which requires uniformity in the thickness direction as a thick plate for DC magnetization and measures against void defects. There is no upper limit because forming by hot forging can produce products that are thicker than the steel ingot. Next, the manufacturing method will be described. The steel solvent may be melted by either the converter melting method or the electric furnace melting method, and if necessary, it may be added through a refining process such as ladle refining or vacuum degassing to add components that increase the demagnetization rate (C, Si, Mn, Cr, Mo,
In addition to minimizing the amount of P, S, and O that inhibit the movement of the magnetic flux barrier by forming and segregating nonmetallic inclusions, the amount of P, S, and O that inhibits the movement of the magnetic flux barrier is reduced. Furthermore, since void defects due to the large plate thickness become an obstacle to increasing the magnetic flux density and impair the homogeneity of magnetic properties, it is effective to reduce H, which promotes void defects, by known low hydrogen blowing, vacuum It is preferable to reduce the amount of hydrogen by degassing or the like to reduce the size of void defects in the later steps of ingot formation and continuous casting. Next, in the hot working step, no special operation is required for heating conditions before processing, and the form of hot working may be either rolling using a rolling mill or forging using a forging machine. The above-mentioned void defects are always generated in the solidification process of steel, although they may be large or small, and the means to eliminate them must be through rolling or forging, so the role of the hot working process is important. In other words, specifically, hot working that increases the amount of work per hot working and causes deformation to reach the center of the plate thickness is effective, and in the case of rolling, the well-known high shape ratio rolling is applied. It is preferable to do so. Next, following hot working, a dehydrogenation heat treatment is performed to adjust the crystal grains and/or to adjust the thickness of the product plate, but in order to save energy, the ferrite crystal grains are charged into a heat treatment furnace without cooling after hot working. The objective is to increase the magnetic flux density by making the particles more uniform and coarser, and to thoroughly eliminate void defects by dehydrogenation. As for this heat treatment, annealing is most preferable in terms of magnetic properties, and if it is necessary to ensure a certain degree of strength, normalizing is effective although the magnetic properties are slightly degraded. Although the grain adjustment and dehydrogenation treatment described above may be performed separately, it is efficient to perform the heat treatment once in order to save energy. The present inventors organized the experimental results regarding the preferable crystal grain size in terms of magnetic properties and obtained the relationship shown in FIG. 1. According to this, in order to ensure a maximum magnetic permeability of 2000 or more, it is necessary to make the ferrite crystal grain size coarse and regular, with a grain size of about -3 to 4. The heat treatment conditions for this are 600°C to 720°C x 3 to 10 hours for annealing, and 850°C for normalizing.
Heat treatment for 10 minutes to 2 hours at 980°C is required. If the annealing temperature is less than 600°C, sufficient dehydrogenation efficiency cannot be expected. If it exceeds 720°C, the initial hydrogen solubility increases, making it difficult to reduce the load on the dehydrogenation efficiency of thick materials, which is not preferable. If the annealing time is less than 3 hours, sufficient dehydrogenation cannot be achieved, which is disadvantageous. On the other hand, if it exceeds 10 hours, the dehydrogenation effect decreases and it is not economical. If the normalization temperature is less than 850°C, the crystal grains may become mixed grains, which is not preferable. On the other hand, at a high temperature exceeding 980°C, grains become finer due to recrystallization, which is undesirable. If the normalizing time is less than 10 minutes, a sufficient normalizing effect cannot be obtained and it is difficult to obtain a uniform grain size. On the other hand, even if the treatment exceeds 2 hours, the effect of grain adjustment is small and the shape of the steel sheet deteriorates in the case of thin steel sheets, which is not preferable. When the grain adjustment and dehydrogenation treatment heating is annealing, it is slowly cooled in a furnace to at least 500°C and then allowed to cool in the atmosphere. In the case of normalizing, the material is heated to a predetermined temperature and then slowly cooled or left to cool in the atmosphere. Next, examples will be listed together with comparative examples. The molten steel refined by the converter steel manufacturing method was further subjected to ladle refining and vacuum degassing treatment to obtain steel having the chemical components shown in Table 1. After ingot-forming and soaking the steel, it was finished into a plate with a thickness of 20 to 500 mm by hot forging or hot rolling in consideration of countermeasures against void defects. Subsequently, annealing or normalization was applied, and in the case of annealing, the material was slowly cooled in a furnace to 500°C, and then allowed to cool in the atmosphere to perform grain adjustment and dehydrogenation heat treatment. Table 1 shows the ferrite grain size, maximum magnetic permeability, and tensile strength of the obtained thick steel plate.

【表】【table】

【表】 しかして例1〜例7は本発明実施例を示し、例
8〜例10は比較例を示す。 例1,2は鍛造により500mm,400mmに仕上げ焼
鈍による結晶粒調整と脱水素を施したもので、均
一かつ粗粒で高い磁気特性値を有する。 例4は成分的にC,Si,Mnを高目とし、圧延
−焼準により400mm厚に仕上げたもので、磁気特
性を若干犠牲とし構造用として使用可能な強度を
もたせたものである。例3,5,6,7は圧延−
焼鈍によつて製造したもので特に例3のものは例
2に比してC,Si,Mnの含有量を低くしたもの
でフエライト結晶粒度が−2であるにも拘らず高
磁気特性を有する。 例5はC,Siを若干高目にしたものでそれだけ
磁気特性レベルは中位である。 例6は例4と同一成分の鋼を45mm厚にしたもの
で焼鈍処理によつてフエライト結晶粒を粗粒とし
磁気特性を確保しつつ強度も高めたものである。 例7は板厚20mmに仕上げたものであり減磁率を
高める成分が何れも低レベルであるため高磁気特
性を得ている。 これに対して例8〜例10は圧延ままで250〜200
mmに仕上げたものである。例8の場合は、C,
Si,P,S,Cu,Cr,Mo,Alの含有量が何れも
上限を越える量あり減磁率が高い成分系のためと
熱処理を施していないため低磁気特性となつてい
る。 例9は化学成分は本発明範囲内にあるが熱処理
を施していないためフエライト結晶粒度が細粒側
となり磁気特性レベルが低いことに加え板厚方向
での特性値差が大きい。 例10はCが上限を外れていること及び熱処理を
施していないため低磁気特性となつている。 第2図はJISG4051のS10C材(圧延まま)と
JISC2504の0種及び本発明材について磁界の強
さ(横軸)と磁束密度(縦軸)について調査した
ものでJISC2504は規格値を示し他は実測値であ
る。 図から明らかなように低中磁界の強さにおいて
本発明材はJISC2504よりも優れた値を示す。こ
のことは一般に実用的に使用される磁界の強さが
低中磁界の強さである点からみても本発明による
直流磁化用厚板は広範囲の磁気特性用途に使用可
能であることを示している。 (発明の効果) 以上詳細に述べた如く、本発明によれば適切な
成分限定により板厚の厚い厚鋼板に均質な高電磁
特性を具備せしめることに成功し、直流磁化によ
る磁気性質を利用する構造物に適用可能としたも
のであり、かつその製造法も前述の成分限定と熱
間加工後冷却することなく結晶粒調整及び脱水素
熱処理を同時に行う方式であり極めて経済的な製
造法を提供するもので産業上多大な効果を奏する
ものである。
Table Thus, Examples 1 to 7 show examples of the invention, and Examples 8 to 10 show comparative examples. Examples 1 and 2 were forged to 500 mm and 400 mm, subjected to grain adjustment and dehydrogenation by finish annealing, and have uniform, coarse grains and high magnetic property values. Example 4 has a high content of C, Si, and Mn, and is finished to a thickness of 400 mm by rolling and normalizing, and has a strength that can be used for structural purposes at the expense of some magnetic properties. Examples 3, 5, 6, and 7 are rolled-
In particular, the one manufactured by annealing, Example 3, has a lower content of C, Si, and Mn than Example 2, and has high magnetic properties even though the ferrite crystal grain size is -2. . In Example 5, the C and Si contents are slightly higher, and the magnetic properties are at a medium level. Example 6 is made of steel having the same composition as Example 4, made to a thickness of 45 mm, and is annealed to coarsen the ferrite crystal grains to ensure magnetic properties and increase strength. Example 7 is finished with a plate thickness of 20 mm and has high magnetic properties because all the components that increase the demagnetization rate are at low levels. On the other hand, in Examples 8 to 10, the rolling temperature was 250 to 200.
It is finished in mm. In the case of example 8, C,
The content of Si, P, S, Cu, Cr, Mo, and Al exceeds the upper limit, and the magnetic properties are low because the composition has a high demagnetization rate and because no heat treatment is performed. In Example 9, the chemical components are within the range of the present invention, but since no heat treatment was performed, the ferrite crystal grain size is on the fine grain side, resulting in a low magnetic property level and a large difference in property values in the thickness direction. Example 10 has low magnetic properties because C is outside the upper limit and no heat treatment was performed. Figure 2 shows JISG4051 S10C material (as rolled).
The magnetic field strength (horizontal axis) and magnetic flux density (vertical axis) were investigated for JISC2504 type 0 and the present invention material.JISC2504 shows the standard value, and the other values are actually measured values. As is clear from the figure, the material of the present invention exhibits superior values to JISC2504 in low and medium magnetic field strengths. This shows that the thick plate for DC magnetization according to the present invention can be used for a wide range of magnetic properties, even considering that the magnetic field strength generally used in practical use is low to medium strength. There is. (Effects of the Invention) As described in detail above, according to the present invention, it is possible to successfully provide a thick steel plate with uniform high electromagnetic properties by appropriately limiting the ingredients, and to utilize the magnetic properties caused by direct current magnetization. It can be applied to structures, and its manufacturing method is extremely economical as it simultaneously performs grain adjustment and dehydrogenation heat treatment without cooling after hot working and limiting the ingredients described above. It has great industrial effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフエライト粒度番号と最大透磁率の関
係を示す説明図、第2図は磁界の強さと磁束密度
の関係を示す説明図である。
FIG. 1 is an explanatory diagram showing the relationship between ferrite particle size number and maximum magnetic permeability, and FIG. 2 is an explanatory diagram showing the relationship between magnetic field strength and magnetic flux density.

Claims (1)

【特許請求の範囲】 1 重量%でC:0.01%以下、Si:0.30%以下、
Mn:0.50%以下、Cr:0.05%以下、Mo:0.02%
以下、Cu:0.05%以下、Al:0.005〜0.06%、
N:0.01%以下、O:0.003%以下、P:0.01%以
下、S:0.01%以下、残部実質的に鉄からなり、
最大透磁率(μ=B/H):2000以上の磁気特性
を有する厚さ20mm以上の直流磁化用厚板。 2 重量%でC:0.01%以下、Si:0.30%以下、
Mn:0.50%以下、Cr:0.05%以下、Mo:0.02%
以下、Cu:0.05%以下、Al:0.005〜0.06%、
N:0.01%以下、O:0.003%以下、P:0.01%以
下、S:0.01%以下、残部実質的に鉄からなる鋼
塊又はスラブを熱間加工して所定の寸法としたの
ち、引きつづき600〜720℃で3〜10時間の焼鈍、
または850〜980℃で10分間〜2時間の焼準を施す
ことを特徴とする最大透磁率(μ=B/H):
2000以上の磁気特性を有する厚さ20mm以上の直流
磁化用厚板の製造方法。
[Claims] 1% by weight: C: 0.01% or less, Si: 0.30% or less,
Mn: 0.50% or less, Cr: 0.05% or less, Mo: 0.02%
Below, Cu: 0.05% or less, Al: 0.005-0.06%,
N: 0.01% or less, O: 0.003% or less, P: 0.01% or less, S: 0.01% or less, the remainder substantially consisting of iron,
Maximum magnetic permeability (μ=B/H): Thick plate for direct current magnetization with a thickness of 20 mm or more and a magnetic property of 2000 or more. 2 C: 0.01% or less, Si: 0.30% or less,
Mn: 0.50% or less, Cr: 0.05% or less, Mo: 0.02%
Below, Cu: 0.05% or less, Al: 0.005-0.06%,
N: 0.01% or less, O: 0.003% or less, P: 0.01% or less, S: 0.01% or less, the remainder being substantially iron after hot working a steel ingot or slab to the specified dimensions. Annealing at 600-720℃ for 3-10 hours,
Or maximum magnetic permeability (μ=B/H) characterized by normalizing at 850-980℃ for 10 minutes to 2 hours:
A method for producing a thick plate for direct current magnetization with a thickness of 20 mm or more and a magnetic property of 2000 or more.
JP58205465A 1983-11-01 1983-11-01 Thick plate for dc magnetization and preparation thereof Granted JPS6096749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58205465A JPS6096749A (en) 1983-11-01 1983-11-01 Thick plate for dc magnetization and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58205465A JPS6096749A (en) 1983-11-01 1983-11-01 Thick plate for dc magnetization and preparation thereof

Publications (2)

Publication Number Publication Date
JPS6096749A JPS6096749A (en) 1985-05-30
JPH0359976B2 true JPH0359976B2 (en) 1991-09-12

Family

ID=16507314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58205465A Granted JPS6096749A (en) 1983-11-01 1983-11-01 Thick plate for dc magnetization and preparation thereof

Country Status (1)

Country Link
JP (1) JPS6096749A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01139739A (en) * 1987-11-26 1989-06-01 Kawasaki Steel Corp Pure iron excellent in magnetic property
US4950336A (en) * 1988-06-24 1990-08-21 Nippon Steel Corporation Method of producing non-oriented magnetic steel heavy plate having high magnetic flux density
JPH0745689B2 (en) * 1988-06-27 1995-05-17 新日本製鐵株式会社 Manufacturing method of good electromagnetic thick plate
JPH0711026B2 (en) * 1988-06-24 1995-02-08 新日本製鐵株式会社 Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JPH0745688B2 (en) * 1988-06-24 1995-05-17 新日本製鐵株式会社 Method for manufacturing high magnetic flux density electromagnetic thick plate
JPH06104866B2 (en) * 1988-06-24 1994-12-21 新日本製鐵株式会社 Method for manufacturing electromagnetic thick plate for direct current magnetization
JPH0768579B2 (en) * 1988-12-13 1995-07-26 新日本製鐵株式会社 Manufacturing method of electromagnetic steel pipe with excellent magnetic properties
JPH0611903B2 (en) * 1989-10-19 1994-02-16 住友金属工業株式会社 Magnetic steel sheet for magnetic shield and manufacturing method thereof
US5019191A (en) * 1988-12-22 1991-05-28 Sumitomo Metal Industries, Ltd. Magnetic steel plate for use as a magnetic shielding member and a method for the manufacture thereof
JPH0713263B2 (en) * 1989-03-16 1995-02-15 新日本製鐵株式会社 Method for manufacturing non-oriented electromagnetic thick plate having uniform magnetic properties in the thickness direction
JPH0713264B2 (en) * 1989-03-16 1995-02-15 新日本製鐵株式会社 Manufacturing method of non-oriented electromagnetic thick plate with uniform magnetic properties in the thickness direction
JPH0713265B2 (en) * 1989-03-16 1995-02-15 新日本製鐵株式会社 Manufacturing method of good electromagnetic thick plate with uniform magnetic properties in the thickness direction
JPH0753883B2 (en) * 1989-04-28 1995-06-07 住友金属工業株式会社 Manufacturing method of electromagnetic soft iron for thick plate
JPH066778B2 (en) * 1989-06-15 1994-01-26 住友金属工業株式会社 Electromagnetic soft iron for thick plates
JPH0762174B2 (en) * 1989-08-18 1995-07-05 新日本製鐵株式会社 Method for manufacturing non-oriented electromagnetic thick plate with high magnetic flux density
JPH0762175B2 (en) * 1989-08-18 1995-07-05 新日本製鐵株式会社 Method for manufacturing non-oriented electromagnetic thick plate having uniform magnetic properties in the thickness direction
JPH0613747B2 (en) * 1989-09-07 1994-02-23 住友金属工業株式会社 Magnetic steel sheet for magnetic shield and manufacturing method thereof
JPH0472532A (en) * 1990-07-13 1992-03-06 Honda Motor Co Ltd Steering torque sensor
JP2503110B2 (en) * 1991-02-20 1996-06-05 新日本製鐵株式会社 Method for manufacturing non-oriented electromagnetic thick plate with excellent magnetic properties
JP2503112B2 (en) * 1991-02-20 1996-06-05 新日本製鐵株式会社 Manufacturing method of good electromagnetic plate
JPH04265580A (en) * 1991-02-20 1992-09-21 Fujitsu Ltd Magnetic disk device
JP2503111B2 (en) * 1991-02-20 1996-06-05 新日本製鐵株式会社 Manufacturing method of non-oriented electromagnetic thick plate with excellent magnetic properties

Also Published As

Publication number Publication date
JPS6096749A (en) 1985-05-30

Similar Documents

Publication Publication Date Title
JPH0359976B2 (en)
JP5854182B2 (en) Method for producing non-oriented electrical steel sheet
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
WO1996000306A1 (en) Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
JPH0569910B2 (en)
JP2019026891A (en) Nonoriented magnetic steel sheet, and method of producing the same
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JP3350285B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
JP6816516B2 (en) Non-oriented electrical steel sheet
JPS6345443B2 (en)
CN115261737B (en) Air-cooled high-strength and high-toughness light austenitic steel and preparation method thereof
JP2708682B2 (en) Non-oriented electrical steel sheet having extremely excellent magnetic properties and method for producing the same
JP3350214B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent surface properties and magnetic properties
KR20160080121A (en) Soft magnetic steel having excellent forging characteristic, soft magnetic part and method of manufacturing the same
JP5826284B2 (en) Wire rods, steel wires having excellent magnetic properties, and methods for producing them
JPH06104866B2 (en) Method for manufacturing electromagnetic thick plate for direct current magnetization
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
WO2024095666A1 (en) Method for manufacturing non-oriented magnetic steel sheet
JPH0711026B2 (en) Manufacturing method of non-directional electromagnetic thick plate with high magnetic flux density
JP6852965B2 (en) Electrical steel sheet and its manufacturing method
JP3073598B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP3387971B2 (en) Manufacturing method of electrical steel sheet for stationary equipment with excellent bidirectional magnetic properties
JP2024114604A (en) Fe-Co alloy for soft magnetic members, and soft magnetic members using the same
JPH0734127A (en) Ultrahigh silicon electrical steel sheet excellent in magnetic property and heat treating method therefor
JPH0798976B2 (en) Manufacturing method of thin high magnetic flux density grain-oriented electrical steel sheet with low iron loss