JPH0359964A - Non-water solvent medium secondary battery - Google Patents

Non-water solvent medium secondary battery

Info

Publication number
JPH0359964A
JPH0359964A JP1194055A JP19405589A JPH0359964A JP H0359964 A JPH0359964 A JP H0359964A JP 1194055 A JP1194055 A JP 1194055A JP 19405589 A JP19405589 A JP 19405589A JP H0359964 A JPH0359964 A JP H0359964A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
secondary battery
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1194055A
Other languages
Japanese (ja)
Inventor
Yuji Mochizuki
裕二 望月
Hiroyoshi Nose
博義 能勢
Hitoshi Tsuchiyama
土山 等
Takumi Uchida
内田 卓美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP1194055A priority Critical patent/JPH0359964A/en
Publication of JPH0359964A publication Critical patent/JPH0359964A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To maintain high energy density at the time of high current discharging whereas pollution problems are eliminated with safety maintained against explosion by specifying the quantity of water contained in a positive electrode active material. CONSTITUTION:A battery is made up out of a positive electrode 6 including a positive electrode active material mainly composed of spinel type Li-Mn2-O4 wherein the quantity of water is specified within a range of 0.01 to 0.2%, a negative electrode 4 made of a light metal and of a separator 5 interposed between the positive electrode 6 and the negative electrode 4 wherein electrolyte solution including the electrolyte of Li-PF6 is contained. In this case, even if inner temperature is increased due to short circuit when it gets to on or about 80 deg.C in inner temperature, LiF is quickly produced so that inner resistance is increased to a great extent while the dielectric strength thereof becomes high. This constitution can prevent the battery from being deformed, bursted, exploded, for example.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非水溶媒二次電池に関し、特に正極を改良し
た非水溶媒二次電池に係わる。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a non-aqueous solvent secondary battery, and particularly to a non-aqueous solvent secondary battery with an improved positive electrode.

(従来の技術) 近年、リチウムを負極活物質として用いた非水溶媒二次
電池は高エネルギー密度電池として注目されている。か
かる非水溶媒二次電池においては、リチウム負極と組み
合わせて使用される正極活物質としてはマンガン、チタ
ン、モリブデン、バナジウム、ハフニウム、クロム、ジ
ルコニウム、タンタル、ニオブ等の金属酸化物、硫化物
、セレン化物又はテルル化物が提案されている。中でも
二酸化マンガンと炭酸リチウムに代表されるリチウム塩
とを焼成し、リチウムを予め含有したリチウム・マンガ
ン複合酸化物を正極とするリチウム系非水溶媒二次電池
の開発が進んでいる。
(Prior Art) In recent years, non-aqueous solvent secondary batteries using lithium as a negative electrode active material have attracted attention as high energy density batteries. In such nonaqueous solvent secondary batteries, the positive electrode active materials used in combination with the lithium negative electrode include metal oxides such as manganese, titanium, molybdenum, vanadium, hafnium, chromium, zirconium, tantalum, and niobium, sulfide, and selenium. compounds or tellurides have been proposed. In particular, progress is being made in the development of lithium-based non-aqueous solvent secondary batteries that use a lithium-manganese composite oxide containing lithium as a positive electrode, which is obtained by firing manganese dioxide and a lithium salt such as lithium carbonate.

上述した非水溶媒電池において、正極、負極間に介在さ
れるセパレータに含浸される電解液としてはプロピレン
カーボネート、エチレンカーボネート、ジェトキシエタ
ン、γ−ブチロラクトン、テトラヒドロフラン、スルホ
ラン、1.3−ジオキソランなどの有機溶媒にLiBF
4、LiAsFb。
In the above-mentioned nonaqueous solvent battery, the electrolytic solution impregnated into the separator interposed between the positive electrode and the negative electrode is an organic solvent such as propylene carbonate, ethylene carbonate, jetoxyethane, γ-butyrolactone, tetrahydrofuran, sulfolane, or 1,3-dioxolane. niLiBF
4. LiAsFb.

LiCρ04 、L i CF3 SO3の電解質を溶
解したものが使用されている。
LiCρ04 and LiCF3SO3 dissolved electrolytes are used.

しかしながら、電解質としてLiBF4LiCF、SO
3を用いた電解液はその導電性が低いため、電池の内部
抵抗を大きくし、大電流放電を行うことが困難となる問
題があった。また、LiAsF、、、LiCR04を用
いた電解液は導′rハ性が高く、大電流放電可能な電池
を製造できるる。しかしながら、LiAsF6は公害源
となること、L i CR04は大量のリチウムを負極
に用いた場合、爆発に対する安全性が万全ではないこと
等により大型二次電池を必要とするの民生機器への搭載
には問題があった。
However, LiBF4LiCF, SO as electrolyte
Since the electrolytic solution using No. 3 has low conductivity, there is a problem in that it increases the internal resistance of the battery and makes it difficult to perform large current discharge. Furthermore, an electrolytic solution using LiAsF, . However, LiAsF6 is a source of pollution, and Li CR04 is not completely safe against explosions when a large amount of lithium is used in the negative electrode, so it cannot be installed in consumer devices that require large secondary batteries. There was a problem.

このようなことから、電解質としてヘキサフルオロリン
酸リチウム(L i P F 6 )を用いた電池が提
案されている(特開昭8l−2O(i1B3号)。
For this reason, a battery using lithium hexafluorophosphate (L i P F 6 ) as an electrolyte has been proposed (Japanese Patent Application Laid-Open No. 81-20 (I1B3)).

かかる電解質を含む電解液を用いた場合には、LiC,
904と同様に電解液の導電性が高く、大電流放電可能
な電池を製造できるが、爆発に対する安全性の問題があ
った。
When using an electrolytic solution containing such an electrolyte, LiC,
Similar to 904, the electrolyte has high conductivity and a battery capable of discharging a large current can be manufactured, but there is a problem of safety against explosion.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされたも
ので、大電流放電において高エネルギー密度を有し、公
害源とならず、安全性の点からも問題のない信頼性の高
い非水溶媒二次電池を堤供しようとするものである。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems. The aim is to provide a non-aqueous solvent secondary battery that is problem-free and highly reliable.

[発明の構成コ (課題を角イ決するための手段) 本発明は、スピネル形LiMn2O4を主体とする正極
活物質を含む正極と、軽金属からなる負極と、前記正極
、負極の間に介在され、ヘキサフルオロリン酸リチウム
の電解質を含む電解液が保持されたセパレータとから構
成される発電要素を具備した非水溶媒二次電池において
、前記正極活物質中の水分量を0.01〜0.2%の範
囲としたことを特徴とする非水溶媒二次電池である。
[Structure of the Invention (Means for Solving the Problem) The present invention provides a positive electrode containing a positive electrode active material mainly composed of spinel-type LiMn2O4, a negative electrode made of a light metal, and a negative electrode interposed between the positive electrode and the negative electrode, In a non-aqueous solvent secondary battery equipped with a power generation element comprising a separator holding an electrolyte containing an electrolyte of lithium hexafluorophosphate, the water content in the positive electrode active material is set to 0.01 to 0.2. % range.

上記正極活物質を構成するスピネル形 LiMn2O4は、例えば 2Mn02M n 2O3
.7  M n 00 H等のマンガン酸化物とLi2
CO3、LiOH等のリチウム塩を混合した後、400
〜900℃の範囲で焼成することにより得られる。
The spinel type LiMn2O4 constituting the positive electrode active material is, for example, 2Mn02M n 2O3
.. 7 M n 00 H and other manganese oxides and Li2
After mixing lithium salts such as CO3 and LiOH, 400
It is obtained by firing in the range of ~900°C.

上記正極活物質中に含有される水分量を限定したのは次
のような理由によるものである。水分量を0.01%未
満にすると、後述するLiFの生成量が少なくなり過ぎ
て爆発防止に寄与せず、一方水分量が0.2%を越える
と該正極活物質を含む正極を組み込んだ電池について充
放電を繰り返した場合、その繰り返しに伴って正極活物
質中より水分が電解液に抽出され、負極活物質であるリ
チウムム等の金属と反応して水素ガスを発生し、漏液等
の原因となる電池内圧の上昇を招く。より好ましい水分
量は、0.03〜0.15%、更に好ましい水分量は0
.05〜0.1%の範囲である。
The reason why the amount of water contained in the positive electrode active material is limited is as follows. If the water content is less than 0.01%, the amount of LiF produced, which will be described later, will be too small and will not contribute to explosion prevention.On the other hand, if the water content exceeds 0.2%, a positive electrode containing the positive electrode active material will not be incorporated. When a battery is repeatedly charged and discharged, water is extracted from the positive electrode active material into the electrolyte and reacts with the metal such as lithium, which is the negative electrode active material, to generate hydrogen gas, which can cause problems such as leakage. This causes an increase in battery internal pressure. More preferable water content is 0.03 to 0.15%, still more preferable water content is 0.
.. It is in the range of 0.05 to 0.1%.

上記正極は、前記スピネル形L i M n 2O4の
活物質にカーボンブラックなどの導電材及びポリテトラ
フルオロエチレンなどの結着剤を混合して成形すること
により得られる。
The positive electrode is obtained by mixing the spinel-type L i M n 2 O4 active material with a conductive material such as carbon black and a binder such as polytetrafluoroethylene and molding the mixture.

上記負極は、リチウムに代表されるアルカリ金属を活物
質としており、該活物質を箔もしくは板状にしたもの、
前記活物質を炭素質材料等からなる担持体に担持させた
構造のもの等を挙げることができる。
The above-mentioned negative electrode uses an alkali metal such as lithium as an active material, and the active material is formed into a foil or plate shape.
Examples include those having a structure in which the active material is supported on a carrier made of a carbonaceous material or the like.

上記電解液としては、電解質として前記へキサフルオロ
リン酸リチウム(LiPF、、)をら°機溶媒で溶解さ
せたものを用いることができる。かかる有機溶媒として
は、例えばプロピレンカーボネート、エチレンカーボネ
ート、ジメトキシエタン、γ−ブチロラクトン、テトラ
ヒドロフラン、2−メチルテトラヒドロフラン、1.3
−ジオキソラン、スルホラン等を挙げることができる。
As the electrolytic solution, one in which the lithium hexafluorophosphate (LiPF) as an electrolyte is dissolved in a mechanical solvent can be used. Examples of such organic solvents include propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1.3
-Dioxolane, sulfolane, etc. can be mentioned.

(作用) 本発明によれば、水分量を0.01〜0.2%の範囲に
特定化したスピネル形LiMn2O4を主体とする正極
活物質を含む正極と、軽金属からなる負極と、前記正極
、負極の間に介在され、LiPFゎの電解質を含む電解
液が保持されたセパレータとから構成することによって
、破裂・爆発に対して安全性が高く、かつ充放電サイク
ル寿命が長く、高エネルギー密度を有する非水溶媒二次
電池を得ることができる。
(Function) According to the present invention, a positive electrode includes a positive electrode active material mainly composed of spinel-type LiMn2O4 with a moisture content specified in the range of 0.01 to 0.2%, a negative electrode made of a light metal, and the positive electrode, By comprising a separator interposed between the negative electrode and holding an electrolyte containing LiPF2 electrolyte, it is highly safe against ruptures and explosions, has a long charge/discharge cycle life, and has a high energy density. A non-aqueous solvent secondary battery can be obtained.

即ち、スピネル形LiMn2O4は広い電位範囲におい
て充放電が可能であり、更に容量密度が148m A 
h / gと大きく、正極としての良好な特性を有する
上、前記LiMn2O.、に微量の水分を含有させるこ
とによって電池の短絡により発熱しても、その水分が電
解液に抽出され、該電解液中の電解質であるLiPF6
と次のような反応が容易に生じ爆発に対する安全性を確
保できる。
That is, spinel type LiMn2O4 can be charged and discharged in a wide potential range, and has a capacity density of 148mA.
h/g and has good properties as a positive electrode, and the LiMn2O. By containing a small amount of water in the electrolyte, even if the battery generates heat due to a short circuit, the water will be extracted into the electrolyte, and the electrolyte LiPF6 in the electrolyte will be extracted.
The following reactions can easily occur and ensure safety against explosions.

2L i PF、+5H2O →2L i F+1OHF十P2O5 前記反応で生成したLiFは、正負極表面もしくはセパ
レータ等の間隙に07出することができるが、前記Li
Fは高抵抗性の物質であるため、絶縁性が高く、電池の
内部抵抗を高める働きをする。
2L i PF, +5H2O → 2L i F + 1OHF + P2O5 The LiF generated in the above reaction can be released on the surfaces of the positive and negative electrodes or in the gaps between the separators, etc.
Since F is a highly resistive substance, it has high insulation properties and functions to increase the internal resistance of the battery.

従って、本発明の二次電池においては例え短絡により内
部温度が上昇しても、内部温度が80℃前後になるとL
iFが急速に生成して内部抵抗を大幅に増加、絶縁物化
させ、電池の変形、破裂、爆発等の事故を防止すること
ができる。また、正極活物質中に含有される水分は1.
前記範囲であれば活物質中に強固に保持されるため、通
常は正極より容易に抽出されず、負極リチウム等と反応
することなく安全である。
Therefore, in the secondary battery of the present invention, even if the internal temperature rises due to a short circuit, if the internal temperature reaches around 80°C, the L
iF is rapidly generated, greatly increases the internal resistance, and transforms the battery into an insulator, thereby preventing accidents such as deformation, rupture, and explosion of the battery. In addition, the water content in the positive electrode active material is 1.
If it is within the above range, it is firmly held in the active material, so it is usually not easily extracted from the positive electrode, does not react with negative electrode lithium, etc., and is therefore safe.

(実施例) 以下、本発明を円筒型リチウム二次電池に適用した例に
ついて第1図及び第2図(a)、(b)を参照して詳細
に説明する。
(Example) Hereinafter, an example in which the present invention is applied to a cylindrical lithium secondary battery will be described in detail with reference to FIG. 1 and FIGS. 2(a) and (b).

実施例1 図中の 1は、底部及び上端イ・1近を除く内側面に絶
縁紙2が配置された負極端子を兼ねる有底円筒型の金属
製容器である。前記容器l内には、円筒型の発電要素3
が収納されている。この発電要素3は、金属リチウムか
らなる負極4と、プロ”ピレンカーボネート及び2−メ
チルテトラヒドロフランを1:1の割合で混合した溶媒
にL i PF6を1モル/D溶解した電解液を含浸さ
せたポリプロピレンの微孔性フィルムからなるセパレー
タ 5と、後述する正極6とをこの順序で積層して4;
シ状物とし、この帯状物を渦巻き状に捲回することによ
り構成されている。
Embodiment 1 Reference numeral 1 in the figure is a bottomed cylindrical metal container that also serves as a negative electrode terminal and has insulating paper 2 disposed on the inner surface except for the bottom and near the top end A.1. Inside the container l is a cylindrical power generating element 3.
is stored. This power generation element 3 has a negative electrode 4 made of metallic lithium impregnated with an electrolytic solution in which 1 mol/D of Li PF6 is dissolved in a solvent containing a mixture of pro"pyrene carbonate and 2-methyltetrahydrofuran at a ratio of 1:1. A separator 5 made of a microporous polypropylene film and a positive electrode 6 to be described later are laminated in this order 4;
It is constructed by forming a strip-like material and winding this strip-like material in a spiral shape.

前記正極6は、次のような方法により製造した。The positive electrode 6 was manufactured by the following method.

まず、二酸化マンガン(MnO2)粉末と炭酸リチウム
(Li2CO3)粉末を所定比で混合したものを、80
0℃で4時間に加熱放冷し、水分量が0.08%とした
スピネル形LiMn2O4(活物質)を生成した。つづ
いて、このスピネル形LiMn2O482重量部とアセ
チレンブラック15重量部とを混合して混合物とした後
、予めエチレン−プロピレン−シクロペンタジェンの三
元共重合体3重量部をトルエンで溶解した粘着剤溶液1
00重量部に前記混合物97重量部と共に混練した。
First, a mixture of manganese dioxide (MnO2) powder and lithium carbonate (Li2CO3) powder at a predetermined ratio was mixed with 80%
The mixture was heated and allowed to cool at 0° C. for 4 hours to produce a spinel-type LiMn2O4 (active material) with a moisture content of 0.08%. Subsequently, 482 parts by weight of this spinel-type LiMn2O and 15 parts by weight of acetylene black were mixed to form a mixture, and then an adhesive solution was prepared by dissolving 3 parts by weight of an ethylene-propylene-cyclopentadiene terpolymer in toluene in advance. 1
00 parts by weight were kneaded together with 97 parts by weight of the above mixture.

次いで、この混練物を厚さ10μmのステンレス鋼から
なる金属芯体に塗布、乾燥した後、温度90℃のちとで
30秒間加熱しつつ加圧成形を行い、更に所望の寸法に
裁断することにより正極を製造した。
Next, this kneaded product is applied to a metal core made of stainless steel with a thickness of 10 μm, dried, and then pressure molded while heating at a temperature of 90°C for 30 seconds, and further cut into desired dimensions. A positive electrode was manufactured.

また、前記容器lの開口部付近には絶縁性封口板7がか
しめにより液密に設けられており、かつ該封口板7には
正極端子8が嵌合されている。この正極端子8には、前
記正極6のリード端子9がスポット溶接により接続され
ている。なお、前記負極4にはニッケル箔のリード端子
10が圧着され、かつ該リード端子lOは前記容器lの
内側面にスポラ−・溶接により接続されている。
Further, an insulating sealing plate 7 is provided in the vicinity of the opening of the container l in a liquid-tight manner by caulking, and a positive electrode terminal 8 is fitted into the sealing plate 7. A lead terminal 9 of the positive electrode 6 is connected to this positive electrode terminal 8 by spot welding. A nickel foil lead terminal 10 is crimped onto the negative electrode 4, and the lead terminal 10 is connected to the inner surface of the container 1 by sporer welding.

比較例1 水分量が0.003%の活物質を有する正極を用いた以
外、実施例1と同様な構造の■筒型リチウム二次電池を
組み立てた。
Comparative Example 1 A cylindrical lithium secondary battery having the same structure as in Example 1 was assembled, except that a positive electrode having an active material with a water content of 0.003% was used.

比較例2 水分量が0.8%の活物質を有する正極を用いた以外、
実施例1と同様な禍遣の円筒型リチウム二次電池を組み
立てた。
Comparative Example 2 Except for using a positive electrode having an active material with a water content of 0.8%.
A cylindrical lithium secondary battery with the same disaster resistance as in Example 1 was assembled.

しかして、本実施例1及び比較例1.2のリチウム二次
電池50個について、0〜60℃の温度条件下で短絡試
験を行なった。なお、電池総高が1.OIを越えたもの
を変形がみられる弄常品と判定した。その結果を下記第
1表に示した。
Therefore, a short circuit test was conducted on 50 lithium secondary batteries of Example 1 and Comparative Example 1.2 under a temperature condition of 0 to 60°C. In addition, the total battery height is 1. Items exceeding the OI were determined to be frequently manipulated items with deformation. The results are shown in Table 1 below.

第   1   表 ・ また、本実施例1及び比較例1.2のリチウム二次電池
を外部負荷10にΩで3v〜2vまで放電し、その後3
vまで充電する操作を繰り返し行って、各サイクルの電
気量から容量劣化率をallj定した。その粘果を第3
図に示す特性図を得た。
Table 1 - In addition, the lithium secondary batteries of Example 1 and Comparative Example 1.2 were discharged to an external load 10 at Ω to 3V to 2V, and then
The operation of charging up to V was repeated, and the capacity deterioration rate was determined from the amount of electricity in each cycle. Add the ooze to the third layer.
The characteristic diagram shown in the figure was obtained.

前記第1表及び第3図に示す特性図から明らかなように
、本実施例の二次電池は比較例1.2の二次電池と比較
して変形等の異常が発生し難くく、かつ繰り返し使用し
ても高容量を維持でき、優れた性能を有することがわか
る。
As is clear from the characteristic diagrams shown in Table 1 and FIG. 3, the secondary battery of this example is less prone to abnormalities such as deformation than the secondary battery of Comparative Example 1.2. It can be seen that it can maintain a high capacity even after repeated use and has excellent performance.

[発明の効果] 以上詳述した如く、本発明の非水溶媒二次電池によれば
小型で、充放電サイクル寿命が長く、高エネルギー密度
を有し、更に爆発に対する安全性が高く、ひいては各種
民生機器への電源として有効に適用できる等顕著な効果
を奏する。
[Effects of the Invention] As detailed above, the non-aqueous solvent secondary battery of the present invention is small in size, has a long charge/discharge cycle life, has high energy density, has high explosion safety, and can be used in various applications. It has remarkable effects, such as being able to be effectively applied as a power source for consumer equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す井水溶媒二次電池の断
面図、第2図は第1図の非水溶媒二次電池の部分横断面
図、第3図は本実施例及び比較1 例1.2の非水溶媒二次電池における充放電サイクル数
に対する容量劣化率を示す特性図である。 i・・・容器、2・・・発電要素、4・・・負極、5・
・セパレータ、6・・・正極、7・・・封目板。
FIG. 1 is a cross-sectional view of a well water solvent secondary battery showing one embodiment of the present invention, FIG. 2 is a partial cross-sectional view of the non-aqueous solvent secondary battery of FIG. 1, and FIG. Comparison 1 It is a characteristic diagram showing the capacity deterioration rate with respect to the number of charge/discharge cycles in the non-aqueous solvent secondary battery of Example 1.2. i... Container, 2... Power generation element, 4... Negative electrode, 5...
-Separator, 6...Positive electrode, 7...Sealing plate.

Claims (1)

【特許請求の範囲】[Claims] スピネル形LiMn_2O_4を主体とする正極活物質
を含む正極と、軽金属からなる負極と、前記正極、負極
の間に介在され、ヘキサフルオロリン酸リチウムの電解
質を含む電解液が保持されたセパレータとから構成され
る発電要素を具備した非水溶媒二次電池において、前記
正極活物質中の水分量を0.01〜0.2%の範囲とし
たことを特徴とする非水溶媒二次電池。
Consisting of a positive electrode containing a positive active material mainly composed of spinel-type LiMn_2O_4, a negative electrode made of a light metal, and a separator interposed between the positive electrode and the negative electrode and holding an electrolytic solution containing an electrolyte of lithium hexafluorophosphate. What is claimed is: 1. A non-aqueous solvent secondary battery comprising a power generation element comprising: a non-aqueous solvent secondary battery, characterized in that the amount of water in the positive electrode active material is in the range of 0.01 to 0.2%;
JP1194055A 1989-07-28 1989-07-28 Non-water solvent medium secondary battery Pending JPH0359964A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1194055A JPH0359964A (en) 1989-07-28 1989-07-28 Non-water solvent medium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1194055A JPH0359964A (en) 1989-07-28 1989-07-28 Non-water solvent medium secondary battery

Publications (1)

Publication Number Publication Date
JPH0359964A true JPH0359964A (en) 1991-03-14

Family

ID=16318198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1194055A Pending JPH0359964A (en) 1989-07-28 1989-07-28 Non-water solvent medium secondary battery

Country Status (1)

Country Link
JP (1) JPH0359964A (en)

Similar Documents

Publication Publication Date Title
US11631844B2 (en) Cathode, electrochemical device and electronic device comprising same
JP5195499B2 (en) Nonaqueous electrolyte secondary battery
JP4915390B2 (en) Non-aqueous electrolyte battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
JPH04328278A (en) Nonaqueous electrolyte secondary battery
CN111095613B (en) Electrode, nonaqueous electrolyte battery and battery pack
JPH04249073A (en) Non-aqueous electrolyte secondary battery
JP2009123424A (en) Nonaqueous electrolyte secondary battery
JP4591674B2 (en) Lithium ion secondary battery
JP5462304B2 (en) Battery pack using lithium-ion battery
JP3735937B2 (en) Terminal cap and cylindrical non-aqueous secondary battery using them
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP6903683B2 (en) Non-aqueous electrolyte batteries and battery packs
JP6813590B2 (en) Non-aqueous electrolyte secondary battery
JPH04329269A (en) Nonaqueous electrolyte secondary battery
JPH10261427A (en) Battery
JPH10261429A (en) Battery
JP2001297763A (en) Nonaqueous electrolyte secondary cell
JP2730641B2 (en) Lithium secondary battery
JP4951923B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2005209395A (en) Nonaqueous electrolytic solution secondary battery
JP6125719B1 (en) Charging system and method for charging non-aqueous electrolyte battery
JPH1050292A (en) Nonaqueous electrolyte secondary battery
JPH0359964A (en) Non-water solvent medium secondary battery