JPH0359931B2 - - Google Patents

Info

Publication number
JPH0359931B2
JPH0359931B2 JP57108293A JP10829382A JPH0359931B2 JP H0359931 B2 JPH0359931 B2 JP H0359931B2 JP 57108293 A JP57108293 A JP 57108293A JP 10829382 A JP10829382 A JP 10829382A JP H0359931 B2 JPH0359931 B2 JP H0359931B2
Authority
JP
Japan
Prior art keywords
weight
parts
ethylenically unsaturated
rubber
bonds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57108293A
Other languages
Japanese (ja)
Other versions
JPS58225138A (en
Inventor
Yoryuki Ootake
Michitsugu Kikuchi
Shuji Nishihata
Mitsuhiko Sakakibara
Isao Furuta
Masaru Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Bridgestone Corp
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp, Nippon Synthetic Chemical Industry Co Ltd filed Critical Bridgestone Corp
Priority to JP57108293A priority Critical patent/JPS58225138A/en
Publication of JPS58225138A publication Critical patent/JPS58225138A/en
Publication of JPH0359931B2 publication Critical patent/JPH0359931B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は特定の結合平均連鎖長を有する
ポリブタゞ゚ンを含むレゞリ゚ンスにすぐれた高
硬床ゎム組成物、及びそれを甚いた゜リツドゎル
フボヌル奜たしくはランタン系列垌土類元玠化合
物系觊媒を甚いたポリブタゞ゚ンを䞻成分ずする
高硬床ゎム組成物及びそれを甚いた゜リツドゎル
フボヌル、特にワンピヌスゎルフボヌル又はツヌ
ピヌスゎルフボヌル等の倚局ゎルフボヌルのコア
材等に甚いられるず、栌段に優れたボヌル初速床
を実珟するゎルフボヌル甚高硬床ゎム組成物及び
それを甚いた゜リツドゎルフボヌルに関する。 最近、ゎルフボヌルの玠材ずしお合成高分子物
質が積極的に取り入れ始めおから、ゎルフボヌル
の構造䜓、糞巻きボヌルよりむしろ゜リツドボヌ
ルが倧きな割合を占めるようにな぀おきた。これ
らゎルフボヌルの性胜ずしお飛距離、制埡性、耐
久性、打撃感などが挙げられるが、ずりわけ高打
撃速床領域での飛距離を䌞ばすこず即ち、ボヌル
の反発匟性を向䞊させおボヌルの初速床を高める
こずがボヌル蚭蚈技術の重芁な課題である。これ
らの芁求に察しお、レゞリ゚ンスが高いずいう特
城を利甚しお、ポリブタゞ゚ンゎム組成物が甚い
られおきたが、曎に高打撃速床領域でのレゞリ゚
ンスの改良が望たれおいた。 本発明者らは、高打撃速床領域でのレゞリ゚ン
スを改良すべく、鋭意研究した結果、特定の平均
連鎖長の結合を持぀ポリブタゞ゚ンゎムが
レゞリ゚ンスにすぐれたゎム組成物を䞎えるこず
を芋い出し、本発明に到達した。 本発明に埓぀お、シス−結合含量が少な
くずも80でか぀結合の平均連鎖長が110
以䞊であるポリブタゞ゚ンゎム50〜100重量郚ず
他のゞ゚ン系ゎム50〜重量郚よりなるゎム組成
物ず架橋性モノマヌ、無機質充填剀および有機過
酞化物を必須成分ずする高打撃速床領域でのレゞ
リ゚ンスにすぐれた、加硫可胜な高硬床ゎム組成
物が提䟛される。 本発明で芏定する結合の平均連鎖長は次
のようにしお求める。即ち枬定に䟛される本発明
のポリブタゞ゚ンの氎添生成物はポリブタゞ゚ン
をH.J.Harwood、Makromol、Chem.163、
1973蚘茉の方法に埓぀お、−トル゚ンスル
ホニルヒドラゞドで完党に氎添しお埗られる。氎
添が完党であるこずはH1−NMRで確認される。
氎添したポリブタゞ゚ンを日本電子(æ ª)補FX−100
型NMR装眮を甚い䞋蚘の条件で枬定する。 サンプル濃床300mgml、−トリ
クロルベンれン、10mmφ13C−NMR専甚プロヌ
ブ䜿甚、 芳枬呚波数25.05MHz 内郚ロツク方匏 芳枬パルス幅45゜ 6ÎŒsec、 パルス繰返し時間5.0sec、 スペクトル幅2KHz、 枬定枩床125℃、 内郚暙準HMDS、 積算回数110×100〜190×100回、 たた解析はJ.C.Randall、J.Polym.Sci.
Polymer Physics Edition 13、19751975蚘
茉の方法に埓぀お行なう。 結合平均連鎖長2I52I6I8I5I8 結合平均連鎖長8I95I102I118I94I10 ここで、I5I6I8I9I10I11は各々、ケミ
カルシフトが37.2、34.8、34.0、31.0、30.5、
30.0ppmピヌクの面積匷床である。
The present invention provides a highly resilient high hardness rubber composition containing polybutadiene having a specific average chain length of 1,4 bonds, and a solid golf ball using the same. High-hardness rubber compositions as main components and solid golf balls using them, especially when used in the core material of multilayer golf balls such as one-piece golf balls or two-piece golf balls, achieve significantly superior ball initial velocity. The present invention relates to a high hardness rubber composition for golf balls and a solid golf ball using the same. Recently, since synthetic polymer substances have begun to be actively used as materials for golf balls, solid balls have come to occupy a larger proportion of the structure of golf balls, rather than wound balls. The performance of these golf balls includes flight distance, controllability, durability, and feel at impact, but in particular, it is important to increase the flight distance at high hitting speeds, that is, to improve the ball's rebound resilience and increase the initial velocity of the ball. Improving this is an important challenge for ball design technology. In response to these demands, polybutadiene rubber compositions have been used by taking advantage of their high resilience, but there has been a desire to further improve the resilience in the high impact speed range. As a result of intensive research aimed at improving resilience in the high impact speed range, the present inventors discovered that polybutadiene rubber with 1,4 bonds of a specific average chain length provides a rubber composition with excellent resilience. , arrived at the present invention. According to the invention, the cis-1,4 bond content is at least 80% and the average chain length of the 1,4 bonds is 110%.
A rubber composition consisting of 50 to 100 parts by weight of the above polybutadiene rubber and 50 to 0 parts by weight of other diene rubbers, a crosslinking monomer, an inorganic filler, and an organic peroxide as essential components in the high impact speed range. A vulcanizable high hardness rubber composition with excellent resilience is provided. The average chain length of 1,4 bonds defined in the present invention is determined as follows. That is, the hydrogenated product of polybutadiene of the present invention to be subjected to measurement is hydrogenated polybutadiene by HJ Harwood, Makromol, Chem., 163, 1.
(1973) by complete hydrogenation with p-toluenesulfonyl hydrazide. Complete hydrogenation is confirmed by H1 -NMR.
Hydrogenated polybutadiene was processed using JEOL Ltd. FX-100.
Measurement is performed using a type NMR device under the following conditions. Sample concentration: 300 mg/2 ml, 1,2,4-trichlorobenzene, 10 mmφ 13 C-NMR probe used, observation frequency: 25.05 MHz, internal lock method observation pulse width: 45° 6 ÎŒsec, pulse repetition time: 5.0 sec, spectral width : 2KHz, measurement temperature: 125℃, internal standard: HMDS, number of integrations: 110 x 100 to 190 x 100 times, and analysis by JCRandall, J.Polym.Sci.
It is carried out according to the method described in Polymer Physics Edition 13 , 1975 (1975). 1,2 bond average chain length = 2I 5 +2I 6 +I 8 /I 5 +I 8 1,4 bond average chain length = 8I 9 +5I 10 +2I 11 /8I 9 +4I 10Here , I 5 , I 6 , I 8 , I 9 , I 10 , I 11 have chemical shifts of 37.2, 34.8, 34.0, 31.0, 30.5, respectively.
This is the area intensity of the 30.0ppm peak.

【衚】【table】

【衚】 たた、本発明のポリブタゞ゚ンの氎玠添加生成
物の融解熱量は、結合平均連鎖長に察応す
るものであるが、42Cal以䞊であるこずが奜
たしい。これは瀺差走査熱量蚈〔DSC 理孊電
機(æ ª)補〕を甚いお氎添ポリブタゞ゚ンを枬定甚ア
ルミニりム皿に玄10mg入れ、10℃minの昇枩ス
ピヌドで枬定する。融解ピヌク面積より熱量を求
める。融解熱量が42Cal未満では結合
平均連鎖長が110以䞊ずならない。 シス−結合含有量は栞磁気共鳎装眮を甚
いお求める。 本発明で甚いる特定の平均連鎖長の結合
を含有するポリブタゞ゚ンゎムは奜たしくはラン
タン系列垌土類元玠の化合物以䞋Ln化合物ず
称す、有機アルミニりム化合物䞊びにルむス酞
及びルむス塩基の組合せよりなる觊媒の存圚䞋で
ブタゞ゚ンを重合させお補造するこずができる。 Ln化合物ずしおは、原子番号57〜71の金属ハ
ロゲン化物、カルボン酞塩、アルコラヌト、チオ
アルコラヌト、アミド等が甚いられる。 有機アルミニりムずしおは、䞀般匏AlR1 R2
R3ここで、R1〜R3は氎玠あるいはC1〜C3の炭
化氎玠基で、しかも氎玠原子は個以䞋に限るも
のあり、R1〜R3は同じであ぀おもよく、たた異
な぀おいおもよいで瀺されるものが甚いられ
る。 ルむス酞ずしおは、䞀般匏AlXnR3-oここで、
はハロゲンであり、は炭化氎玠残基であり、
、1.5、、であるで瀺されるアルミ
ニりムのハロゲン化合物あるいは他の金属ハラむ
ドが甚いられる。 ルむス塩基はLn化合物を有機溶媒に可溶化す
るのに甚いられ、たずえばアセチルアセトン、ケ
トンなどが奜適である。ブタゞ゚ンLn化合物
の比はモル比で×102〜×106、奜たしくは
103〜105の範囲である。 AlR1R2R3Ln化合物の比はモル比で〜500、
奜たしくは10〜300である。ルむス酞䞭のハラむ
ドLn化合物の比はモル比で1.0〜10、奜たしく
は1.5〜の範囲である。ルむス塩基Ln化合物
の比はモル比で0.5以䞊、奜たしくは〜20であ
る。 䞊蚘觊媒の補造法は特願昭56−99684号に詳述
されおいる。 䞊蚘Ln化合物觊媒はブタゞ゚ンの重合にさい
し溶媒に溶解した状態あるいはシリカ、マグネシ
ア、塩化マグネシりム等に担持させお甚いるこず
もできる。 重合にあた぀おは、溶媒を䜿甚しおもよく、又
は䜿甚せずにバルク重合にしおもよい。重合枩床
は通垞−30℃〜150℃、奜たしくは10〜80℃であ
り、重合圧力は条件により任意に遞択できる。 本発明においお結合の平均連鎖長は110
以䞊奜たしくは110〜530、曎に奜たしくは130〜
530の範囲である。110よりも小さいずレゞリ゚ン
スや初速床の改良効果がない。 本発明のポリブタゞ゚ンゎムは結合平均
連鎖長の異なる皮以䞊のポリブタゞ゚ンを混合
するこずによ぀おも埗られる。 たた本発明のポリブタゞ゚ンゎムのシス−
結合含有量は少なくずも80、奜たしくは90
以䞊である。シス−結合が80未満ではレ
ゞリ゚ンス改良効果が消倱する。たたポリブタゞ
゚ンのムヌニヌ粘床は特に限定されないが、
ML1+4100℃20〜150が奜たしい。 本発明に䜿甚されるポリブタゞ゚ンゎム以倖の
ゞ゚ン系ゎムずしおは䟋えば倩然ゎム、ポリむ゜
プレンゎム、スチレン−ブタゞ゚ン共重合䜓ゎム
などが挙げられる。 本発明のゎム組成においお䞊蚘のポリブタゞ゚
ンゎムずその他のゞ゚ン系ゎムずのブレンド割合
は50〜100重量郚察50〜重量郚、奜たしくは80
〜100重量郚察20〜重量郚䞡者の和は100重量郹
ずするである。ポリブタゞ゚ンゎムが50重量郚よ
り少ないずレゞリ゚ンスが初速床の改良効果が実
甚域に達しない。 本発明の高硬床ゎム組成物は䞊蚘ポリブタゞ゚
ンゎムずその他のゞ゚ン系ゎムずの組成物に察し
必須成分ずしお架橋性モノマヌ、無機質充填剀及
び有機過酞化物を配合しおなるゎム組成物であ
る。 本発明に埓぀お、高打撃速床領域でのレゞリ゚
ンスにすぐれた高硬床ゎム組成物を埗るこずがで
きる。 本発明に䜿甚される架橋性モノマヌずしおは、
通垞αβ−゚チレン性䞍飜和モノカルボン酞又
はゞカルボン酞か又はゞカルボン酞のモノ゚ステ
ルである。具䜓的にはメタクリル酞、アクリル
酞、゚タアクリル酞、けい皮酞、クロトン酞、゜
ルビン酞、マレむン酞、フタル酞及びむタコン酞
の劂き酞、䞊びにゞカルボン酞即ちマレむン
酞、むタコン酞及びフタル酞のモノ゚ステルで
ある。奜たしくはメタクリル酞である。この配合
量はポリマヌ100重量郚に察しお10〜50重量郚が
奜たしい。 本発明に䜿甚される無機質充填剀は重合架橋性
モノマヌに存圚するカルボン酞基を䞭和し、金属
むオン結合䜓を生ずる䜜甚ず架橋物の重量を調節
する圹目を䜵せ持぀化合物である。 䟋えば、酞化チタン、酞化亜鉛、酞化鉄、酞化
アルミニりム、酞化カルシりム、氎酞化カルシり
ム、炭酞亜鉛などが䟋瀺され奜たしくは酞化亜鉛
である。無機質充填剀の配合量はポリマヌ100重
量郚に察しお20〜80重量郚が奜たしい。無機質充
填剀のうち架橋物の重量を調節する圹目をする郚
分を公知の充填剀䟋えば硫酞バリりム、シリカ、
クレヌ、炭酞カルシりムその他の金属化合物、カ
ヌボンブラツク又はそれらの混合物で眮き換えお
も構わない。 本発明の混合配合物を架橋硬化させるために架
橋剀ずしお有機過酞化物を添加する有機過酞化物
は、ゞクミルパヌオキサむド、−ビス
−ブチルパヌオキシむ゜プロピルベンれン、
−ビス−ブチルパヌオキシ−
−トリメチルシクロヘキサン等が䟋瀺され、奜
たしくはゞクミルパヌオキサむドである。有機過
酞化物の配合量はポリマヌ100重量郚に察しお0.5
〜重量郚が奜たしい。 本発明の組成物即ち、ポリブタゞ゚ン、架橋性
モノマヌ、無機質充填剀および有機過酞化物、か
らなる組成物より高硬床ゎムを埗る方法ずしお
は、たずポリブタゞ゚ンず無機質充填剀をオヌプ
ンロヌル、バンバリヌミキサヌ、ニヌダヌ、抌出
機などを甚いお混合し、さらに架橋性モノマヌを
加えお充分に緎り䞊げる。次にこの混合物をロヌ
ル䞊で緎りながら有機過酞化物を添加しお配合物
を埗る。緎り䞊が぀た配合物をモヌルド䞭で、架
橋枩床120゜〜180℃、架橋時間〜45分間の条件
䞋に成型する。 架橋成型された本発明の高硬床ゎム組成物は高
打撃速床領域でのレゞリ゚ンスが優れおいるの
で、この特城を生かした甚途特に゜リツドゎルフ
ボヌルの玠材ずしお奜適に䜿甚できる。 本発明のゎルフボヌル甚高硬床ゎム組成物を甚
いた゜リツドゎルフボヌルはその初速床におい
お、61.2msec以䞊を瀺した。この倀は埓来ゎ
ムからなる゜リツドゎルフボヌルの最倧初速床
60.5msecを0.7msecも䞊回るずいう優れたも
のである。初速床増倧の寄䞎はボヌルの飛距離増
倧幅で、〜10m皋床に達するこずから芋おも、
特に、ロングホヌルのシペツト数枛少には顕著な
向䞊である。 次に本発明を実斜䟋により曎に説明するが、本
発明の䞻旚を越えない限り、これにより限定され
るものではない。 実斜䟋 〜 充分に也燥したガラス補5lオヌトクレヌブに、
窒玠䞋シクロヘキサン2.5Kgを仕蟌み、次いでブ
タゞ゚ン0.5Kgを仕蟌み、60℃に昇枩した。トリ
゚チルアルミニりム138.9mM、ゞ゚チルアルミ
ニりムブロマむド2.31mM及びオクテン酞ネオゞ
りム0.926mMずアセチルアセトン1.85mMずの反
応生成物をブタゞ゚ン0.1の存圚䞋あらかじめ
別の容噚で熟成させた觊媒を党量仕蟌み、重合を
開始した。時間の重合で転化率100に達した。
この時点で老化防止剀−ゞ−tert−ブチル
−−クレゟヌルを含むメタノヌル溶液mlを泚
入し、反応を停止させた。垞法に埓い、スチヌム
ストリツピング埌、110℃のホツトロヌルで也燥
し、ポリブタゞ゚ンを埗た。これをサンプルNo.
ずする。 第衚に皮々のポリブタゞ゚ンゎムサンプルの
結合の平均連鎖長、ミクロ構造ず熱量分析
の枬定倀を瀺す。 第衚のポリブタゞ゚ンゎムのサンプルNo.は
むタリアのAnic瀟のりラン觊媒によるポリブタ
ゞ゚ンゎムである。サンプルNo.はサンプルNo.
ずサンプルNo.をそれぞれ−ヘキサンに溶解し
お同濃床重量ずし、察の割合でブレン
ドし也燥しお埗られた。サンプルNo.はサンプル
No.ずサンプルNo.をそれぞれ−ヘキサンに同
濃床重量になる様に溶解し、察の割合
でブレンドしお也燥しお埗られた。サンプルNo.
はポリブタゞ゚ンゎム日本合成ゎム(æ ª)補、商品
名BR01である。サンプルNo.はポリブタゞ゚
ンゎム宇郚興産(æ ª)補、商品名りベポヌル150
である。サンプルNo.はポリブタゞ゚ンゎム日
本合成ゎム(æ ª)補、商品名BR02である。サンプ
ルNo.はポリブタゞ゚ンゎムフむリツプス・ケ
ミカル・カンパニむ補、商品名CIS− 1203
である。サンプルNo.10はポリブタゞ゚ン旭化成
(æ ª)補、商品名DIENE 35NFである。サンプル
No.はサンプルNo.ず同様な操䜜でサンプルNo.
ずサンプルNo.を察の割合でブレンドし、也
燥しお埗られた。
[Table] Furthermore, the heat of fusion of the polybutadiene hydrogenation product of the present invention corresponds to the average chain length of 1,4 bonds, and is preferably 42 Cal/g or more. This is measured using a differential scanning calorimeter (DSC, manufactured by Rigaku Denki Co., Ltd.) by placing approximately 10 mg of hydrogenated polybutadiene in an aluminum measuring dish and increasing the temperature at a rate of 10°C/min. Determine the amount of heat from the melting peak area. If the heat of fusion is less than 42 Cal/g, the average chain length of 1,4 bonds will not exceed 110. The cis-1,4 bond content is determined using a nuclear magnetic resonance apparatus. The polybutadiene rubber containing 1,4 bonds with a specific average chain length used in the present invention is preferably a lanthanum series rare earth element compound (hereinafter referred to as Ln compound), an organoaluminium compound, and a catalyst comprising a combination of a Lewis acid and a Lewis base. It can be produced by polymerizing butadiene in the presence of. As the Ln compound, metal halides, carboxylates, alcoholates, thioalcoholates, amides, etc. having an atomic number of 57 to 71 are used. As organic aluminum, the general formula AlR 1 R 2
R 3 (here, R 1 to R 3 are hydrogen or C 1 to C 3 hydrocarbon groups, and the number of hydrogen atoms is limited to 2 or less, and R 1 to R 3 may be the same, may also be different) is used. Lewis acids have the general formula AlXnR 3-o (where,
X is a halogen, R is a hydrocarbon residue,
Aluminum halides or other metal halides with n=1, 1.5, 2, 3 are used. Lewis bases are used to solubilize Ln compounds in organic solvents, and suitable examples include acetylacetone and ketones. The ratio of butadiene/Ln compound is 5×10 2 to 5×10 6 in molar ratio, preferably
It is in the range of 10 3 to 10 5 . The ratio of AlR 1 R 2 R 3 /Ln compound is 5 to 500 in molar ratio,
Preferably it is 10-300. The halide/Ln compound ratio in the Lewis acid ranges from 1.0 to 10, preferably from 1.5 to 5 in molar ratio. The molar ratio of Lewis base/Ln compound is 0.5 or more, preferably 1 to 20. The method for producing the above catalyst is detailed in Japanese Patent Application No. 56-99684. The above Ln compound catalyst can be used in the polymerization of butadiene in a state dissolved in a solvent or supported on silica, magnesia, magnesium chloride, etc. In the polymerization, a solvent may be used or bulk polymerization may be performed without using a solvent. The polymerization temperature is usually -30°C to 150°C, preferably 10 to 80°C, and the polymerization pressure can be arbitrarily selected depending on the conditions. In the present invention, the average chain length of 1,4 bonds is 110
The above is preferably 110 to 530, more preferably 130 to
530 range. If it is smaller than 110, there will be no improvement effect on resilience or initial velocity. The polybutadiene rubber of the present invention can also be obtained by mixing two or more polybutadienes having different average chain lengths of 1,4 bonds. In addition, cis-1 of the polybutadiene rubber of the present invention,
4 bond content is at least 80%, preferably 90%
That's all. If the cis-1,4 bond content is less than 80%, the resilience improving effect disappears. The Mooney viscosity of polybutadiene is not particularly limited, but
ML 1+4 (100°C) 20-150 is preferred. Examples of diene rubbers other than polybutadiene rubber used in the present invention include natural rubber, polyisoprene rubber, and styrene-butadiene copolymer rubber. In the rubber composition of the present invention, the blend ratio of the polybutadiene rubber and other diene rubber is 50 to 100 parts by weight to 50 to 0 parts by weight, preferably 80 to 100 parts by weight.
~100 parts by weight vs. 20~0 parts by weight The sum of both is 100 parts by weight. If the polybutadiene rubber is less than 50 parts by weight, the effects of improving resilience and initial velocity will not reach a practical level. The high-hardness rubber composition of the present invention is a rubber composition obtained by blending a crosslinkable monomer, an inorganic filler, and an organic peroxide as essential components with a composition of the above-mentioned polybutadiene rubber and other diene rubber. According to the present invention, a high hardness rubber composition having excellent resilience in a high impact speed region can be obtained. The crosslinkable monomer used in the present invention includes:
It is usually an α,β-ethylenically unsaturated monocarboxylic or dicarboxylic acid or a monoester of a dicarboxylic acid. Specifically, acids such as methacrylic acid, acrylic acid, ethacrylic acid, cinnamic acid, crotonic acid, sorbic acid, maleic acid, phthalic acid and itaconic acid, and dicarboxylic acids (i.e. maleic acid, itaconic acid and phthalic acid). It is a monoester of Preferred is methacrylic acid. This amount is preferably 10 to 50 parts by weight per 100 parts by weight of the polymer. The inorganic filler used in the present invention is a compound that neutralizes the carboxylic acid groups present in the polymerizable crosslinkable monomer, and has the function of forming a metal ion bond and controlling the weight of the crosslinked product. Examples include titanium oxide, zinc oxide, iron oxide, aluminum oxide, calcium oxide, calcium hydroxide, and zinc carbonate, with zinc oxide being preferred. The amount of the inorganic filler blended is preferably 20 to 80 parts by weight per 100 parts by weight of the polymer. The part of the inorganic filler that plays a role in controlling the weight of the crosslinked material is a known filler such as barium sulfate, silica,
Clay, calcium carbonate or other metal compounds, carbon black, or mixtures thereof may be substituted. Organic peroxides added as crosslinking agents for crosslinking and curing the mixed formulations of the present invention include dicumyl peroxide, 1,3-bis(t
-butylperoxyisopropyl)benzene,
1,1-bis(t-butylperoxy)-3,3,
Examples include 5-trimethylcyclohexane, and dicumyl peroxide is preferred. The amount of organic peroxide added is 0.5 per 100 parts by weight of polymer.
~8 parts by weight is preferred. As a method for obtaining a high hardness rubber from the composition of the present invention, that is, a composition consisting of polybutadiene, a crosslinkable monomer, an inorganic filler, and an organic peroxide, first, the polybutadiene and the inorganic filler are mixed in an open roll, a Banbury mixer, or a kneader. The mixture is mixed using an extruder or the like, and then a crosslinking monomer is added and thoroughly kneaded. Next, an organic peroxide is added to this mixture while kneading it on a roll to obtain a blend. The kneaded mixture is molded in a mold at a crosslinking temperature of 120° to 180°C and a crosslinking time of 5 to 45 minutes. The cross-linked and molded high-hardness rubber composition of the present invention has excellent resilience in the high impact speed range, so it can be suitably used in applications that take advantage of this feature, particularly as a material for solid golf balls. A solid golf ball using the high hardness rubber composition for golf balls of the present invention exhibited an initial velocity of 61.2 m/sec or more. This value is the maximum initial velocity of a conventional solid golf ball made of rubber.
It is excellent, exceeding 60.5m/sec by 0.7m/sec. The contribution to the increase in initial velocity is the increase in flight distance of the ball, which reaches about 7 to 10 meters.
In particular, this is a remarkable improvement in reducing the number of long-haul shots. Next, the present invention will be further explained with reference to examples, but the present invention is not limited thereto unless it goes beyond the gist of the present invention. Examples 1 to 5 In a sufficiently dried glass 5L autoclave,
Under nitrogen, 2.5 kg of cyclohexane was charged, then 0.5 kg of butadiene was charged, and the temperature was raised to 60°C. Polymerization was started by charging 138.9 mM of triethylaluminum, 2.31 mM of diethylaluminum bromide, and a reaction product of neodymium octate (0.926 mM) with acetylacetone (1.85 mM) in the presence of 0.1 g of butadiene and aging the catalyst in advance in a separate container. The conversion rate reached 100% after 2 hours of polymerization.
At this point, 5 ml of a methanol solution containing the antioxidant 2,6-di-tert-butyl-P-cresol was injected to stop the reaction. After steam stripping according to a conventional method, the product was dried on a hot roll at 110°C to obtain polybutadiene. This is sample No.4
shall be. Table 1 shows the average chain length of 1,4 bonds, microstructure and calorimetric measurements of various polybutadiene rubber samples. Polybutadiene rubber sample No. 1 in Table 1 is a uranium-catalyzed polybutadiene rubber manufactured by Anic in Italy. Sample No. 2 is Sample No. 1
and Sample No. 4 were dissolved in n-hexane to the same concentration (wt%), blended in a ratio of 1:4, and dried. Sample No. 5 is a sample
Sample No. 4 and Sample No. 6 were dissolved in n-hexane to the same concentration (% by weight), blended at a ratio of 1:4, and dried. Sample No.6
is polybutadiene rubber (manufactured by Japan Synthetic Rubber Co., Ltd., trade name BR01). Sample No. 7 is polybutadiene rubber (manufactured by Ube Industries, Ltd., trade name Ubepol 150)
It is. Sample No. 8 is polybutadiene rubber (manufactured by Japan Synthetic Rubber Co., Ltd., trade name BR02). Sample No. 9 is polybutadiene rubber (manufactured by Philips Chemical Company, trade name CIS-4 1203)
It is. Sample No. 10 is polybutadiene (Asahi Kasei)
Co., Ltd., product name DIENE 35NF). sample
No. 3 is sample No. 1 using the same operation as sample No. 2.
and Sample No. 4 were blended in a ratio of 4:6 and dried.

【衚】 配合凊方ワンピヌスゎルフボヌル甚配合 ポリブタゞ゚ンゎム 100 重量郚 亜鉛華 42 メタクリル酞 20 パヌクミル 2.8日本油脂(æ ª)補 ゞクミルパヌオキサむド 加硫条件 150℃、30分 ゎム配合組成物の加硫物性を枬定し、その結果
は第衚に瀺す。 なお、ツヌピヌスゎルフボヌル甚配合の堎合、
亜鉛華の䜿甚量はラヌゞボヌルのコアヌで30重量
郚、スモヌルボヌルのコアヌでは50重量郚である
が、いずれの配合においおも本発明の特城はそこ
なわれない。 第衚においお (1) 硬床はJIS K6301に埓぀お枬定された。 (2) 高打撃速床領域でのレゞリ゚ンスの指暙であ
る損倱正接tanΎは粘匟性スペクトロメヌタ
ヌレオメトリツクス瀟補RMS型により求
めた。倀の小さいほど奜たしい。反発匟性はダ
ンロツプトリプ゜メヌタヌにより枬定された。 (3) USGA䜿甚のものず同䞀機皮の回転円板匏
を甚いる。 ヘツド匏速床 43.0±0.3秒 実斜䟋 〜 実斜䟋〜では、ゞ゚ン系ゎムの皮類を倉え
お枬定した結果を第衚に瀺す。
[Table] Compounding recipe (for one-piece golf ball) Polybutadiene rubber 100 (parts by weight) Zinc white 42 Methacrylic acid 20 Permil D 2.8 Manufactured by Nippon Oil & Fats Co., Ltd. (Dicumyl peroxide) Vulcanization conditions 150°C, 30 minutes Rubber compounding The vulcanized physical properties of the composition were measured and the results are shown in Table 2. In addition, in the case of formulation for two-piece golf balls,
The amount of zinc white used is 30 parts by weight for the large ball core and 50 parts by weight for the small ball core, but the characteristics of the present invention are not impaired in either formulation. In Table 2: (1) Hardness was measured according to JIS K6301. (2) Loss tangent (tan Ύ), which is an index of resilience in the high impact speed range, was determined using a viscoelastic spectrometer (RMS type, manufactured by Rheometrics). The smaller the value, the better. Resilience was measured using a Danlopt tripsomer. (3) Use the same rotating disc type as the one used by the USGA. Head type speed: 43.0±0.3 (m/sec) Examples 6 to 7 In Examples 6 to 7, the results of measurements with different types of diene rubber are shown in Table 3.

【衚】【table】

【衚】【table】

【衚】 (2) 日本合成ゎム(æ ª)補
[Table] (2) Made by Japan Synthetic Rubber Co., Ltd.

Claims (1)

【特蚱請求の範囲】  分子鎖を圢成する結合の少なくずも80をシ
ス−結合ずしお含有し、しかも該結
合の平均連鎖長が110以䞊であるポリブタゞ゚ン
ゎム50〜100重量郚ず他のゞ゚ン系ゎム50〜重
量郚䞡者の和は100重量郚ずするずからなる
重合䜓組成物に架橋性モノマヌずしお、次の矀か
ら遞ばれる皮以䞊を10〜50重量郚、無機充填材
20〜80重量郚及び有機過酞化物を必須成分ずしお
配合しおなるゎム組成物を架橋硬化させたゎルフ
ボヌル甚高硬床ゎム組成物 αβ−゚チレン性䞍飜和モノカルボン酞及び
αβ−゚チレン性䞍飜和モノカルボン酞の金属
塩䞊びに αβ−゚チレン性䞍飜和ゞカルボン酞、 αβ−゚チレン性䞍飜和ゞカルボン酞のモノ
゚ステル及び αβ−゚チレン性䞍飜和ゞカルボン酞の金属
塩。  䞊蚘のポリブタゞ゚ンゎムがランタン系列垌
土類元玠化合物系觊媒の存圚䞋の重合によ぀お埗
られるポリブタゞ゚ンゎムを䞻成分ずするもので
あるこずを特城ずする特蚱請求の範囲第項に蚘
茉の高硬床ゎム組成物。  ランタン系列垌土類元玠化合物系觊媒の存圚
䞋の重合によ぀お埗られ、分子鎖を圢成する結合
の少なくずも80をシスヌ結合ずしお含有
し、しかも該結合の平均連鎖長が110以䞊
であるポリブタゞ゚ンゎム50〜100重量郚ず他の
ゞ゚ン系ゎム50〜重量郚䞡者の和は100重量
郚ずするずからなる重合䜓組成物に架橋性モノ
マヌずしお、次の矀から遞ばれる皮以䞊を10〜
50重量郚、無機充填材20〜80重量郚及び有機過酞
化物を必須成分ずしお配合しおなるゎム組成物を
架橋硬化させおなる゜リツドゎルフボヌル αβ−゚チレン性䞍飜和モノカルボン酞及び
αβ−゚チレン性䞍飜和モノカルボン酞の金属
塩䞊びに αβ−゚チレン性䞍飜和ゞカルボン酞、 αβ−゚チレン性䞍飜和ゞカルボン酞のモノ
゚ステル及び αβ−゚チレン性䞍飜和ゞカルボン酞の金属
塩。
[Scope of Claims] 1. 50 to 100 parts by weight of polybutadiene rubber containing at least 80% of the bonds forming the molecular chain as cis-1,4 bonds, and in which the average chain length of the 1,4 bonds is 110 or more. and 50 to 0 parts by weight of another diene rubber (the sum of both is 100 parts by weight), and 10 to 50 parts by weight of one or more selected from the following group as a crosslinking monomer: , inorganic filler
A high-hardness rubber composition for golf balls obtained by crosslinking and curing a rubber composition containing 20 to 80 parts by weight and an organic peroxide as essential components: α,β-ethylenically unsaturated monocarboxylic acid and α,β - Metal salts of ethylenically unsaturated monocarboxylic acids, and metal salts of α,β-ethylenically unsaturated dicarboxylic acids, monoesters of α,β-ethylenically unsaturated dicarboxylic acids, and α,β-ethylenically unsaturated dicarboxylic acids. . 2. High hardness according to claim 1, wherein the polybutadiene rubber is mainly composed of polybutadiene rubber obtained by polymerization in the presence of a lanthanum-based rare earth element compound catalyst. Rubber composition. 3 Obtained by polymerization in the presence of a lanthanum series rare earth element compound catalyst, containing at least 80% of the bonds forming the molecular chain as cis-1,4 bonds, and having an average chain length of the 1,4 bonds. A polymer composition consisting of 50 to 100 parts by weight of polybutadiene rubber having a molecular weight of 110 or higher and 50 to 0 parts by weight of another diene rubber (the sum of both is 100 parts by weight) is added as a crosslinking monomer from the following group: 10 or more selected types
A solid golf ball made by crosslinking and curing a rubber composition comprising 50 parts by weight of an inorganic filler, 20 to 80 parts by weight of an inorganic filler, and an organic peroxide as essential components: α,β-ethylenically unsaturated monocarboxylic acid and metal salts of α,β-ethylenically unsaturated monocarboxylic acids, α,β-ethylenically unsaturated dicarboxylic acids, monoesters of α,β-ethylenically unsaturated dicarboxylic acids, and α,β-ethylenically unsaturated dicarboxylic acids. Metal salts of acids.
JP57108293A 1982-06-25 1982-06-25 Highly rigid rubber composition Granted JPS58225138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57108293A JPS58225138A (en) 1982-06-25 1982-06-25 Highly rigid rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57108293A JPS58225138A (en) 1982-06-25 1982-06-25 Highly rigid rubber composition

Publications (2)

Publication Number Publication Date
JPS58225138A JPS58225138A (en) 1983-12-27
JPH0359931B2 true JPH0359931B2 (en) 1991-09-12

Family

ID=14481001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57108293A Granted JPS58225138A (en) 1982-06-25 1982-06-25 Highly rigid rubber composition

Country Status (1)

Country Link
JP (1) JPS58225138A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11164912A (en) 1997-12-03 1999-06-22 Jsr Corp Rubber composition for solid golf ball and solid golf ball
US6712715B2 (en) 2001-05-30 2004-03-30 Bridgestone Sports Co., Ltd. Golf ball
US6695716B2 (en) 2001-05-30 2004-02-24 Bridgestone Sports Co., Ltd. Golf ball
JP2005027814A (en) 2003-07-10 2005-02-03 Bridgestone Sports Co Ltd Golf ball

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125139A (en) * 1977-04-07 1978-11-01 Hitachi Chem Co Ltd Solid golf ball

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53125139A (en) * 1977-04-07 1978-11-01 Hitachi Chem Co Ltd Solid golf ball

Also Published As

Publication number Publication date
JPS58225138A (en) 1983-12-27

Similar Documents

Publication Publication Date Title
US5019319A (en) Golf ball
US5585440A (en) Rubber composition for golf balls
JP2942360B2 (en) Golf ball containing metallocene polymer blend
JP3928406B2 (en) Rubber composition for solid golf ball and solid golf ball
US6695716B2 (en) Golf ball
JPH03151985A (en) Solid golf ball
JPH0125332B2 (en)
JP4062363B1 (en) Rubber composition for golf ball and golf ball
JP4291519B2 (en) Golf ball core formed from a blend of high molecular weight butadiene rubber synthesized with neodymium and cobalt
JPS6289750A (en) Rubber composition for solid golf ball
JPH11164912A (en) Rubber composition for solid golf ball and solid golf ball
JPH0246062B2 (en)
TWI377213B (en) Rubber composition and golf ball including the same as rubber base material
JP2004121815A (en) Golf ball
US8802788B2 (en) Rubber composition for golf ball
EP1262515B1 (en) Golf ball
JP4336958B2 (en) Golf ball
JP6051517B2 (en) Rubber composition for golf ball
JPH0359931B2 (en)
JP2012132005A (en) Rubber composition for golf ball
JP4984024B2 (en) Manufacturing method of polymer molding
JP2004180733A (en) Golf ball
JP2005027814A (en) Golf ball
JP2000513620A (en) Golf ball core blend containing oxyacid
JP2005112964A (en) Rubber composition for golf ball and golf ball