JPH035988A - Dynamic memory - Google Patents

Dynamic memory

Info

Publication number
JPH035988A
JPH035988A JP1140446A JP14044689A JPH035988A JP H035988 A JPH035988 A JP H035988A JP 1140446 A JP1140446 A JP 1140446A JP 14044689 A JP14044689 A JP 14044689A JP H035988 A JPH035988 A JP H035988A
Authority
JP
Japan
Prior art keywords
data
potential
memory cell
bit line
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1140446A
Other languages
Japanese (ja)
Inventor
Akifumi Kawahara
昭文 川原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1140446A priority Critical patent/JPH035988A/en
Publication of JPH035988A publication Critical patent/JPH035988A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge the logical amplitude of a memory cell when data are stored, to reduce the burden of a sense amplifier when the data are read and to securely access the data at high speed by changing the potential of a not- referring side in the memory cell of a dynamic memory. CONSTITUTION:When the data are written and the logical value of the data to be appear in a bit line 1 is 1, out of potential generating circuits, the circuit to generate the lower potential is connected to the data not-referring side of a memory cell 3 connected to the bit line 1. When the logical value of the data to appear in the bit line 1 is 0, out of the potential generating circuits, the circuit to generate the higher potential is connected to the data not-referring side of the memory cell 3. Accordingly, the voltage potential of the data to be stored is made large only for difference between the two potentials to be generated by the potential generating circuits. Thus, the voltage amplitude of the memory cell is enlarged and when the data are read, the burden of the sense amplifier can be reduced. Then, the data can be securely accessed at high speed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明ζ戴 ダイナミックメモリに関するものであム 従来の技術 従来のダイナミックメモリのセル周辺の回路を第2図に
示す。同図において、 1はビット1lL2はトランジ
スタ6を駆動するワード亀 3はメモリセ)5 4はメ
モリセル3のデータ参照供電 5はメモリセル3のデー
タ非参照供電 6はメモリセル3のデータをビット線l
に読み出すためのトランジス久 12はメモリセル3に
対応するダミーセルであも また 2つのビット線を一
定電位にプリチャージするビット線イコライザ、 トラ
ンジスタ6により現われるビット線間の微少な電位差を
増幅するためのセンスアンプ回路を有していも第3図を
用いてセンスアンプによるメモリセルデータ論理値1の
読み出し動作を説明すも ま哄ビット線イコライザによ
り2つのビット線は電源電位とグランド電位の中間の電
位にプリチャージされも そして、ワード線2によりト
ランジスタ6が駆動されると、ビット線1上に蓄積デー
タに基づく電位の変化が現われも この電位の変化(よ
読み出し時のメモリセル3のデータ参照側4の電像 プ
リチャージ電像 メモリセル3の容量 ビット線1の容
量で決まり、メモリセル3の蓄積データの電圧振幅が大
きいほど犬きくなムー人センスアンプCヨ  ビット線
間に現われたこの微小な電位の変化を検出して第3図の
ようにビット線1を増幅すム この電位の変化が大きい
ほど、増幅動作はその分だけ速くなり、またデータの読
み出しエラーも少なくなも 従来の回路で(上 第2図のように メモリセル3のデ
ータ参照側4の反対側5における電位は電位発生回路に
よりメモリセル3のデータアクセスを通じて電源電位と
グランド電位の中間の電位に保たれていた そのた八 
メモリセル3の電圧振幅(友 電源電圧の半分の値にな
ってい九発明が解決しようとする課題 上記のような構成で(上 データ蓄積時のメモリセルの
電圧振幅は小さく、データの読み出し時のアクセスを速
くできないという問題があり九本発明は より確実かつ
高速なデータアクセスの可能なダイナミックメモリを提
供することを目的とする。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention relates to a dynamic memory.Prior Art FIG. 2 shows a circuit around a cell of a conventional dynamic memory. In the same figure, 1 is a bit 1L2 is a word chain that drives transistor 6 3 is a memory cell) 5 4 is a data reference power supply for memory cell 3 5 is a data non-reference power supply for memory cell 3 6 is a bit line for data of memory cell 3 l
The transistor 12 is a dummy cell corresponding to the memory cell 3, and the bit line equalizer precharges the two bit lines to a constant potential. Even if the sense amplifier circuit has a sense amplifier circuit, the reading operation of the memory cell data logical value 1 by the sense amplifier will be explained using FIG. Then, when the transistor 6 is driven by the word line 2, a change in potential based on the stored data appears on the bit line 1. Electric image of 4 Precharge electric image Capacity of memory cell 3 Determined by the capacitance of bit line 1, and the larger the voltage amplitude of the stored data in memory cell 3, the sharper the voltage is. As shown in Figure 3, the bit line 1 is amplified by detecting a change in potential. (As shown in Figure 2 above, the potential on the opposite side 5 of the data reference side 4 of the memory cell 3 is kept at a potential between the power supply potential and the ground potential by the potential generation circuit throughout the data access of the memory cell 3. Tahachi
The voltage amplitude of the memory cell 3 is half the value of the power supply voltage.9 Problems to be Solved by the Invention With the above configuration, the voltage amplitude of the memory cell during data storage is small, and the voltage amplitude when reading data is Therefore, it is an object of the present invention to provide a dynamic memory capable of more reliable and faster data access.

課題を解決するための手段 本発明は上述の課題を解決するた八 ビット線に現れる
データの値とデータの読み書きにより、3つの電位発生
回路のうちの一つをメモリセルのデータ非参照側に選択
接続させる回路を有するものであa 作用 本発明は上述の構成により、データ書き込み時において
、ビット線に現れるデータが論理値1であるならぼ そ
のビット線につながれているメモリセルのデータ非参照
側には 電位発生回路のうち低い電位を発生する方の回
路が接続される。ビット線に現れるデータが論理値0で
あるなら(′Lそのビット線につながれているメモリセ
ルのデータ非参照側に(上 電位発生回路のうち高い電
位を発生する方の回路が接続される。従って、蓄積され
るデータの電圧振幅(よ 電位発生回路で発生する二つ
の電位の差だけ大きくなる。そのたべ メモリセルの電
圧振幅を大きくし データ読み出し時のセンスアンプの
負担を軽減でき、より確実かつ高速なデータアクセスが
可能とな本 実施例 以下、第1図を参照しながら本発明の実施例におけるダ
イナミックメモリを説明すも 同図において、 1はビ
ット亀 2はワード颯 3はメモリセA−,4はメモリ
セル3のデータ参照側L 5はメモリセル3のデータ非
参照@ 6はワード線2により駆動されるトランジス久
 8は電圧を分割するための負荷トランジス久 7は負
荷トランジスタ8より幅の十分大きなトランジス久 9
はA点に発生した電位をメモリセル3のデータ非参照側
5に接続するためのトランジス久 lOはB点に発生し
た電位をメモリセル3のデータ非参照側5に接続するた
めのトランジス久 11はC点に発生した電位をメモリ
セル3のデータ非参照側5に接続するためのトランジス
タであも 本発明においてポイントとなる部分1瓜トランジスタ7
、8で構成される電位発生回路 及びトランジスタ9、
IQ、  11の接続回路であム以下、本実施例のダイ
ナミックメモリの動作について説明すも ま式 書き込み時においてはR/Wが論理値Oとなり、
読み出し電位選択トランジスタ11がオフになる。そし
て、サイズの等しい負荷トランジスタ8のベアと、負荷
トランジスタ8より幅の十分大きなトランジスタ7によ
り、A点で(よ グランド電位から (Vcc −VTll)  / 2         
(1)の電位に確定す’6−  ff1LVcc:電源
電圧 VTII:トランジスタ7の閾値電圧であ、LB
点で(よグランド電位から (Vcc+ V TO) / 2       (2)
の電位に確定すa ここで、ビット線1に論理値1のデ
ータが現れると、低電位選択トランジスタ9が駆動され
て、メモリセル3のデータ非参照側5の電位は(1)で
示される電位になム またビット線1に論理値0のデー
タが現れると高電位選択トランジスタ10が駆動されて
メモリセル3のデータ非参照側5の電位は(2)で示さ
れる電位になム 論理値1の場合のビット線の電位はグ
ランド電位を基準にしてVCCであり、論理値0の場合
のビット線の電位はグランド電位に等しいので、どちら
の場合もメモリセル3の両端にかかる電圧振幅(上 (
2)の値となも これ(上 従来例の電源電圧の半分の
値より大きな値となっていも次艮 読み出し時において
はR/Wが論理値1となり、C点の電位ζよ Vcc/ 2                (3)
の値に固定されも そして、このC点での電位は読み出
し電位選択トランジスタ11によってメモリセル3のデ
ータ非参照側5に接続される。ここで、メモリセル3に
論理値lのデータが蓄えられていると、メモリセル3の
データ参照側4の電位ζよグランド電位から Vcc+ VTII/ 2         (4)の
値になる。また メモリセル3に論理値0のデータが蓄
えられていると、メモリセル3のデータ参照側4の電位
(よ グランド電位からVTN/2         
  (5)の値になも 従って、従来の技術に比し読み
出し時のビット線の開きを大きくとれるのて データ読
み出しの確実化 高速性を達成できも発明の詳細 な説明したよう鳳 本発明(戴 ダイナミックメモリの
メモリセルの非参照側の電位を変化させることにより、
データ蓄積時のメモリセルの論理振幅を大きくし デー
タ読み出し時のセンスアンプの負担を軽減することによ
り、より確実かつ高速なデータアクセスを実現している
Means for Solving the Problems The present invention solves the above-mentioned problems.8 By reading and writing data and the value of data appearing on the bit line, one of the three potential generation circuits is set to the data non-reference side of the memory cell. According to the above-described structure, if the data appearing on a bit line has a logical value of 1 during data writing, the data in the memory cell connected to that bit line is not referenced. The circuit that generates a lower potential among the potential generation circuits is connected to the side. If the data appearing on the bit line has a logical value of 0 ('L), the circuit that generates a higher potential among the upper potential generating circuits is connected to the data non-reference side of the memory cell connected to that bit line. Therefore, the voltage amplitude of the stored data (the difference between the two potentials generated by the potential generation circuit) increases. Embodiment 1 Hereinafter, a dynamic memory according to an embodiment of the present invention will be explained with reference to FIG. , 4 is the data reference side L of the memory cell 3 5 is the data non-reference side of the memory cell 3 @ 6 is the transistor driven by the word line 2 8 is the load transistor for dividing the voltage 7 is the width of the load transistor 8 Sufficiently large transistor length 9
11 is a transistor for connecting the potential generated at point A to the data non-reference side 5 of the memory cell 3. lO is a transistor for connecting the potential generated at point B to the data non-reference side 5 of the memory cell 3. is a transistor for connecting the potential generated at point C to the data non-reference side 5 of the memory cell 3. Part 1 is a transistor 7 which is a key point in the present invention.
, 8 and a transistor 9,
The operation of the dynamic memory of this embodiment will be explained below using the connection circuit of IQ and 11. At the time of writing, R/W becomes a logic value O,
The read potential selection transistor 11 is turned off. Then, with the bare load transistor 8 of the same size and the transistor 7 whose width is sufficiently larger than the load transistor 8, at point A (from the ground potential (Vcc - VTll) / 2
ff1LVcc: Power supply voltage VTII: Threshold voltage of transistor 7, LB
At the point (from ground potential to (Vcc+V TO) / 2 (2)
Here, when data of logical value 1 appears on the bit line 1, the low potential selection transistor 9 is driven, and the potential of the data non-reference side 5 of the memory cell 3 is shown as (1). Also, when data with a logic value of 0 appears on the bit line 1, the high potential selection transistor 10 is driven, and the potential on the data non-reference side 5 of the memory cell 3 becomes the potential shown in (2).Logic value The potential of the bit line in the case of 1 is VCC with respect to the ground potential, and the potential of the bit line in the case of logic 0 is equal to the ground potential, so in both cases, the voltage amplitude applied to both ends of the memory cell 3 ( Up (
Even if the value of 2) is larger than the value of half the power supply voltage of the conventional example, the following: At the time of reading, R/W becomes a logical value 1, and the potential ζ at point C becomes Vcc/2. (3)
The potential at point C is then connected to the data non-reference side 5 of the memory cell 3 by the read potential selection transistor 11. Here, when data of logical value l is stored in the memory cell 3, the potential ζ of the data reference side 4 of the memory cell 3 becomes a value from the ground potential to Vcc+VTII/2 (4). Furthermore, when data with a logical value of 0 is stored in the memory cell 3, the potential of the data reference side 4 of the memory cell 3 (from the ground potential to VTN/2
(5) Therefore, compared to the conventional technology, the bit line opening during readout can be made larger, ensuring data readout and achieving high speed. Dai By changing the potential on the non-reference side of the memory cell of dynamic memory,
By increasing the logic amplitude of memory cells when storing data and reducing the load on the sense amplifier when reading data, more reliable and faster data access is achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における一実施例のメモリセル周辺回路
医 第2図は従来のメモリセル周辺回路医 第3図はセ
ンスアンプによるセルデータ読み出し動作図であも
FIG. 1 shows a memory cell peripheral circuit diagram according to an embodiment of the present invention. FIG. 2 shows a conventional memory cell peripheral circuit diagram.

Claims (1)

【特許請求の範囲】[Claims] ビット線に現れるデータの値とデータの読み書きにより
、メモリセルのデータ非参照側における電位を3レベル
に変化させる回路を備えたダイナミックメモリ。
A dynamic memory equipped with a circuit that changes the potential on the non-data reference side of the memory cell to three levels depending on the data value appearing on the bit line and data reading/writing.
JP1140446A 1989-06-01 1989-06-01 Dynamic memory Pending JPH035988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1140446A JPH035988A (en) 1989-06-01 1989-06-01 Dynamic memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1140446A JPH035988A (en) 1989-06-01 1989-06-01 Dynamic memory

Publications (1)

Publication Number Publication Date
JPH035988A true JPH035988A (en) 1991-01-11

Family

ID=15268818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1140446A Pending JPH035988A (en) 1989-06-01 1989-06-01 Dynamic memory

Country Status (1)

Country Link
JP (1) JPH035988A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016335A1 (en) 2018-07-19 2020-01-23 Astrazeneca Ab Methods of treating hfpef employing dapagliflozin and compositions comprising the same
WO2022022865A1 (en) 2020-07-27 2022-02-03 Astrazeneca Ab Methods of treating chronic kidney disease with dapagliflozin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020016335A1 (en) 2018-07-19 2020-01-23 Astrazeneca Ab Methods of treating hfpef employing dapagliflozin and compositions comprising the same
WO2022022865A1 (en) 2020-07-27 2022-02-03 Astrazeneca Ab Methods of treating chronic kidney disease with dapagliflozin

Similar Documents

Publication Publication Date Title
US6421281B2 (en) Semiconductor memory device with reduced power consumption and stable operation in data holding state
EP0630024B1 (en) Semiconductor memory device
KR970023375A (en) Data holding circuit
CA2012668C (en) Four transistor static ram cell
US6683475B2 (en) High speed digital signal buffer and method
US20110205787A1 (en) Dual-rail sram with independent read and write ports
US6356487B1 (en) Memory device having data path containing dual mode flip-flop used for normal operation and for internal testing
JPH08321176A (en) Semiconductor memory cell
US5619457A (en) Dynamic semiconductor memory device that can control through current of input buffer circuit for external input/output control signal
JPH035988A (en) Dynamic memory
US3936810A (en) Sense line balancing circuit
JPH10162587A (en) Ferroelectric memory
KR100374367B1 (en) Semiconductor memory
KR100569564B1 (en) Bitline Precharge Voltage Control Circuit
KR19990053722A (en) Voltage generator of ferroelectric memory device
KR101171254B1 (en) Control Circuit for Bit-line Sense Amplifier and Semiconductor Memory Apparatus Having the Same
KR100214462B1 (en) Memory cell writing method
JP2668165B2 (en) Semiconductor storage device
JPS62264495A (en) Dynamic memory allowing writing logical value at one cycle
KR0182259B1 (en) Static memory cell
US20020149961A1 (en) Semiconductor memory device
KR100299873B1 (en) Bit line sense amplifier having threshold voltage compensating circuit
KR100344759B1 (en) Semiconductor memory
JPS62279597A (en) Semiconductor memory device
JPS5841484A (en) Semiconductor memory circuit