JPH0359344B2 - - Google Patents

Info

Publication number
JPH0359344B2
JPH0359344B2 JP59229410A JP22941084A JPH0359344B2 JP H0359344 B2 JPH0359344 B2 JP H0359344B2 JP 59229410 A JP59229410 A JP 59229410A JP 22941084 A JP22941084 A JP 22941084A JP H0359344 B2 JPH0359344 B2 JP H0359344B2
Authority
JP
Japan
Prior art keywords
valve
signal
temperature
control device
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59229410A
Other languages
Japanese (ja)
Other versions
JPS61107036A (en
Inventor
Juji Kano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59229410A priority Critical patent/JPS61107036A/en
Publication of JPS61107036A publication Critical patent/JPS61107036A/en
Publication of JPH0359344B2 publication Critical patent/JPH0359344B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はビルデイング等の空調に用いられるエ
アハンドリングユニツトに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an air handling unit used for air conditioning in buildings and the like.

従来例の構成とその問題点 従来より、ビルデイング等の空調にはエアハン
ドリングユニツトが多く用いられているが、近
年、空調における快適性の向上や、運転動力の低
減をめざしめ制御方法も高度化してきた。
Conventional configurations and their problems Air handling units have traditionally been used for air conditioning in buildings, etc., but in recent years, control methods have become more sophisticated with the aim of improving comfort in air conditioning and reducing operating power. I've done it.

以下、図面を参照しながら、上述したような従
来のエアハンドリングユニツトについて説明を行
う。
Hereinafter, the conventional air handling unit as described above will be explained with reference to the drawings.

第3図において、1はエアハンドリングユニツ
ト筐体、2はエアハンドリングユニツト筐体1の
内部に組込まれた送風機、3は同熱交換器、4は
同フイルタ、5は同ダンパである。6は給気ダク
ト、7は被空調室、8は還気ダクトであり、風の
直列経路をなしてエアハンドリングユニツト筐体
1と接続されている。9は被空調室7の内部に設
置された温度検出器であり、制御装置10の温度
検出部11と電気的に接続されている。制御装置
10にはさらに温度設定部12と、温度検出部1
1の信号と温度設定部12との信号を比較する比
較部13と、比較部13の信号を演算・増幅する
弁開閉指令部14と、送風機2の発停を指令する
発停指令部15と、制御定数設定部18とがあ
る。16は熱交換器3の通水量を制御する弁で、
17は弁16の開閉駆動をおこなう弁駆動装置で
ある。弁開閉指令部14と弁駆動装置17、発停
指令部15と送風機2とはそれぞれ電気的に接続
されている。
In FIG. 3, 1 is an air handling unit housing, 2 is a blower built into the air handling unit housing 1, 3 is a heat exchanger, 4 is a filter, and 5 is a damper. Reference numeral 6 indicates a supply air duct, 7 indicates an air-conditioned room, and 8 indicates a return air duct, which are connected to the air handling unit housing 1 to form a serial wind path. Reference numeral 9 denotes a temperature detector installed inside the air-conditioned room 7, and is electrically connected to the temperature detection section 11 of the control device 10. The control device 10 further includes a temperature setting section 12 and a temperature detection section 1.
1, a comparison section 13 that compares the signal from the temperature setting section 12, a valve opening/closing command section 14 that calculates and amplifies the signal from the comparison section 13, and a start/stop command section 15 that commands the blower 2 to start or stop. , and a control constant setting section 18. 16 is a valve that controls the amount of water flowing through the heat exchanger 3;
Reference numeral 17 denotes a valve driving device that drives the valve 16 to open and close. The valve opening/closing command section 14 and the valve driving device 17, and the start/stop command section 15 and the blower 2 are electrically connected, respectively.

制御定数設定部18は、スイツチ群からなり、
前記スイツチ群のオン・オフの組合せをデジタル
設定値として弁開閉指令部14へ伝達する。
The control constant setting section 18 consists of a group of switches,
The ON/OFF combination of the switch group is transmitted to the valve opening/closing command unit 14 as a digital setting value.

前記のような構成において、まず送風機2より
発生した風は、給気ダクト6、被空調室7、還気
ダクト8を経由してエアハンドリングユニツト筐
体1へ返り、フイルタ4、熱交換器3を通つて送
風機2へ吸入される。ダンパ5はその回転角度の
調節により排気量、吸気量を調節する。一方、温
度検出器9により得られた信号は、制御装置10
の温度検出部11へ入力する。
In the above configuration, the wind generated by the blower 2 returns to the air handling unit housing 1 via the supply air duct 6, the air conditioned room 7, and the return air duct 8, and then passes through the filter 4 and the heat exchanger 3. The air is sucked into the blower 2 through the air. The damper 5 adjusts the exhaust amount and intake amount by adjusting its rotation angle. On the other hand, the signal obtained by the temperature detector 9 is transmitted to the control device 10.
input to the temperature detection section 11 of.

次に制御装置10の動作・作用を説明する。 Next, the operation and effect of the control device 10 will be explained.

第4図は従来のエアハンドリングユニツトの制
御装置10の信号波形図である。なお第4図の信
号波形図は弁16、熱交換器3に冷水が流れてい
るとき、すなわち冷房運転時の様相を示すもので
ある。
FIG. 4 is a signal waveform diagram of the control device 10 of a conventional air handling unit. The signal waveform diagram in FIG. 4 shows the state when cold water is flowing through the valve 16 and the heat exchanger 3, that is, during cooling operation.

第4図において、T0、T1……は検出タイミン
グであり、そのときの検出温度・設定温度の大小
関係によりそのときからの弁の開閉方向及び開閉
動作時間が決定される。いまT0において弁開指
令が始まり、弁開度は徐々に大となり、やがて全
開となり、この状態はT1時刻まで継続するT1
おいては、検出温度は低下したのでT0のときほ
ど弁を開く必要はなく、今度は弁閉指令が始まま
る。これに伴つて弁開度は徐々に小となり、弁閉
指令と共に一定開度を保持し、この状態T2の時
刻まで継続する。以降同様な検出・指令及び動作
がくり返される。前記開閉動作時間は、第3図に
おける弁開閉指令部14で演算されるが、前記演
算の諸定数は制御定数設定部18から受取つたデ
ジタル設定値が用いられる。なお前記設定値は演
算の間隔や、比例ゲインや、積分時間や、微分時
間などがある。
In FIG. 4, T 0 , T 1 . . . are detection timings, and the opening/closing direction and opening/closing operation time of the valve from that time are determined depending on the magnitude relationship between the detected temperature and the set temperature at that time. Now, at T 0 , the valve opening command starts, and the valve opening gradually increases until it becomes fully open. This state continues until time T 1. At T 1 , the detected temperature has decreased, so the valve is not opened as much as at T 0 . There is no need to open it, and the valve close command will begin this time. Along with this, the valve opening degree gradually decreases and maintains a constant opening degree together with the valve closing command, and continues until the time of this state T2 . Thereafter, the same detection, command, and operation are repeated. The opening/closing operation time is calculated by the valve opening/closing command unit 14 in FIG. 3, and the digital setting values received from the control constant setting unit 18 are used as various constants for the calculation. Note that the set values include the calculation interval, proportional gain, integral time, differential time, and the like.

しかしながら、前記のような方法では制御定数
設定入力を手操作でおこなうため、とくにエアハ
ンドリングユニツトの自動運転制御の試運転段階
では、演算の間隔や、比例ゲインや、積分時間
や、微分時間などの制御定数をそれぞれ別々に試
行錯誤しながら決定せざるを得ないことになり、
試運転調整が長期にわたること、季節や室内の機
器放熱量などの変化により前記調整結果の再調整
の必要が出てくることなどの問題点を有してい
た。
However, in the above method, the control constant settings are input manually, so it is difficult to control the calculation interval, proportional gain, integral time, derivative time, etc., especially in the trial run stage of automatic operation control of the air handling unit. We were forced to determine each constant separately through trial and error.
Problems include that the test run adjustment takes a long time, and that the adjustment results need to be readjusted due to changes in the season, the amount of heat dissipated from indoor equipment, etc.

発明の目的 本発明は上記問題点に鑑み、制御定数を自動的
に決定し、調整工数を削減すると共に制御定数を
常時適正に保つエアハンドリングユニツトを提供
するものである。
OBJECTS OF THE INVENTION In view of the above-mentioned problems, the present invention provides an air handling unit that automatically determines control constants, reduces the number of adjustment steps, and keeps the control constants appropriate at all times.

発明の構成 この目的を達成するため本発明のエアハンドリ
ングユニツトは、温度検出器と、弁と、前記弁と
連結した弁駆動装置と、前記温度検出器からの信
号を検出温度として、目標値設定入力を設定温度
として、チエツクタイミング入力よりチエツクタ
イミングとしてそれぞれ入力すると共に前記弁駆
動装置へ弁開閉指令として出力する制御装置を有
し、前記制御装置は前記チエツクタイミング入力
のたびに前記弁駆動装置へ所定時間の全閉信号
を、引続き所定時間の全開信号を与える手段と、
全開信号を与えている間の検出温度の変化速度を
検出する手段と、該変化速度に応じて制御定数を
演算する構成となつている。
Structure of the Invention To achieve this object, the air handling unit of the present invention includes a temperature detector, a valve, a valve driving device connected to the valve, and a target value set using a signal from the temperature detector as a detected temperature. The control device includes a control device that receives an input as a set temperature and a check timing input as a check timing, and outputs it as a valve opening/closing command to the valve driving device, and the control device inputs the input as a check timing to the valve driving device each time the check timing is input. means for giving a fully closed signal for a predetermined time and then a fully open signal for a predetermined time;
It is configured to include means for detecting the rate of change in the detected temperature while the fully open signal is being applied, and for calculating a control constant in accordance with the rate of change.

この構成によつて制御定数が自動的に決定で
き、調整工数を削減すると共に制御定数を常時適
正に保つことができ、目的を達成することができ
る。
With this configuration, the control constants can be automatically determined, the number of adjustment steps can be reduced, and the control constants can always be maintained at an appropriate level, thereby achieving the objective.

実施例の説明 以下本発明の一実施例について、図面を参照し
ながら説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例におけるエアハンド
リングユニツトの配管配線系統図である。同図に
おいて、符号1〜9の構成要素は第1図に説明し
た従来例と同一であり、説明は省略する。温度検
出器9は制御装置20の温度検出部21と電気的
に接続されている。制御装置20にはさらに温度
設定部22と、温度検出部21の信号と温度設定
部22との信号を比較する比較部23と、比較部
23の信号を演算、増幅する弁開閉指令部24
と、送風機2の発停を指令する発停指令部25と
がある。16は熱交換器3の通水量を制御する弁
で、17は弁16の開閉駆動をおこなう弁駆動装
置である。弁開閉指令部24と弁駆動装置17、
発停指令部25と送風機2とはそれぞれ電気的に
接続されている。
FIG. 1 is a piping and wiring system diagram of an air handling unit in one embodiment of the present invention. In the figure, the constituent elements numbered 1 to 9 are the same as those of the conventional example explained in FIG. 1, and the explanation thereof will be omitted. The temperature detector 9 is electrically connected to the temperature detection section 21 of the control device 20. The control device 20 further includes a temperature setting section 22, a comparison section 23 that compares the signal of the temperature detection section 21 and the signal of the temperature setting section 22, and a valve opening/closing command section 24 that calculates and amplifies the signal of the comparison section 23.
and a start/stop command unit 25 that commands the blower 2 to start and stop. 16 is a valve that controls the amount of water flowing through the heat exchanger 3, and 17 is a valve drive device that opens and closes the valve 16. Valve opening/closing command section 24 and valve drive device 17,
The start/stop command section 25 and the blower 2 are electrically connected to each other.

26はチエツクタイミング発生部であり、1日
1回ていど定時刻にチエツクタイミングパルスを
発生する。弁開閉指令部24は前記チエツクタイ
ミングパルスを入力すると、弁駆動装置17へ全
閉信号を与え、引続き全開信号を与える。この結
果室温は急変する。
Reference numeral 26 denotes a check timing generating section, which generates a check timing pulse at a fixed time once a day. When the valve opening/closing command unit 24 receives the check timing pulse, it gives a full close signal to the valve driving device 17, and then gives a full open signal. As a result, the room temperature suddenly changes.

第2図は信号波形図である。 FIG. 2 is a signal waveform diagram.

なお、第2図の信号波形は弁16、熱交換器3
に冷水が流れているとき、即ち冷房運転時の様相
を示しているものである。
Note that the signal waveforms in FIG. 2 are for the valve 16 and the heat exchanger 3.
This shows the situation when cold water is flowing through the air conditioner, that is, during cooling operation.

第2図において、T0、T1……は検出タイミン
グであり、そのときの検出温度、設定温度の大小
関係によりその時からの弁開閉指令時間が決定さ
れる。いまT0において弁開指令が始まると、弁
開度は徐々に大となり、やがて100%となり、こ
の状態T1時刻まで継続する。T1においては検出
温度は低下したのでT0のときほど弁を開く必要
はなく、今後は弁閉指令が始まる。これに伴つて
弁開度は徐々に小となり、弁閉指令の中止と共に
一定開度を保持し、この状態はT2の時刻まで継
続する。T2のときチエツクタイミング入力が入
り、T3まで弁閉指令が継続し、弁開度はやがて
0%になる。引続きT3では弁開指令が始まり、
弁開度0%から100%まで上昇する。この間、検
出温度は指数函数的に下降する。第1図における
制御装置20の弁開閉指令部24は検出温度の下
降速度から、次の検出タイミング以降の演算の間
隔や、比例ゲインや、積分時間や、微分時間など
の制御定数を演算する。なお近年発達してきたマ
イクロコンピユータを用いれば、前記の演算は、
高速高精度でおこなうことができる。
In FIG. 2, T 0 , T 1 . . . are detection timings, and the valve opening/closing command time from that time is determined based on the magnitude relationship between the detected temperature and the set temperature at that time. When the valve opening command starts at T 0 , the valve opening degree gradually increases until it reaches 100%, and this state continues until time T 1 . At T 1 , the detected temperature has decreased, so there is no need to open the valve as much as at T 0 , and the valve closing command starts from now on. Along with this, the valve opening degree gradually decreases, and when the valve closing command is discontinued, the constant opening degree is maintained, and this state continues until time T2 . At T2 , a check timing input is input, and the valve closing command continues until T3 , and the valve opening eventually becomes 0%. Continuing on, the valve opening command starts at T 3 ,
Valve opening increases from 0% to 100%. During this period, the detected temperature decreases exponentially. The valve opening/closing command unit 24 of the control device 20 in FIG. 1 calculates control constants such as the calculation interval after the next detection timing, the proportional gain, the integral time, and the differential time from the falling rate of the detected temperature. Furthermore, if we use microcomputers that have developed in recent years, the above calculation can be done as follows.
It can be performed at high speed and with high precision.

発明の効果 以上のように本発明によれば、温度検出器と、
弁と、前記弁と連結した弁駆動装置と、前記温度
検出器からの信号を検出温度として、目標値設定
入力を設定温度として、チエツクタイミング入力
よりチエツクタイミングとしてそれぞれ入力する
と共に前記弁駆動装置へ弁開閉指令として出力す
る制御装置を有し、前記制御装置は前記チエツク
タイミング入力のたびに前記弁駆動装置へ所定時
間の全閉信号を、引続き所定時間の全開信号を与
える手段と、全開信号を与えている間の検出温度
の変化速度を検出する手段と、該変化速度に応じ
て制御定数を演算する手段を備えたものであるか
ら、エアハンドリングユニツトの自動運転制御の
試運転調整の段階において制御定数を自動的に決
定でき、調整数を削減すると共に、前記制御定数
を常時適正に保つことができるものである。
Effects of the Invention As described above, according to the present invention, a temperature detector;
A signal from a valve, a valve driving device connected to the valve, and the temperature detector is inputted as a detected temperature, a target value setting input is inputted as a set temperature, and a check timing input is inputted as a check timing, and the signals are inputted to the valve driving device. It has a control device that outputs a valve opening/closing command, and the control device includes means for giving a full close signal for a predetermined time to the valve drive device and a full open signal for a predetermined time every time the check timing is input, It is equipped with a means for detecting the rate of change in the detected temperature during the application, and a means for calculating a control constant according to the rate of change. Constants can be determined automatically, the number of adjustments can be reduced, and the control constant can always be kept appropriate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例におけるエアハンド
リングユニツトの配管配線系統図、第2図は同信
号波形図、第3図は従来のエアハンドリングユニ
ツトの配管配線系統図、第4図は同信号波形図で
ある。 9……温度検出器、16……弁駆動装置、17
……弁、20……制御装置。
Fig. 1 is a piping and wiring system diagram of an air handling unit according to an embodiment of the present invention, Fig. 2 is a signal waveform diagram of the same, Fig. 3 is a piping and wiring system diagram of a conventional air handling unit, and Fig. 4 is a diagram of the same signal. FIG. 9...Temperature detector, 16...Valve drive device, 17
... Valve, 20 ... Control device.

Claims (1)

【特許請求の範囲】[Claims] 1 温度検出器と、弁と、前記弁と連結した弁駆
動装置と、前記温度検出器から信号を検出温度と
して、目標値設定入力を設定温度として、チエツ
クタイミング入力よりチエツクタイミングとして
それぞれ入力すると共に前記弁駆動装置へ弁開閉
指令として出力する制御装置を有し、前記制御装
置は前記チエツクタイミング入力のたびに前記弁
駆動装置へ所定時間の全閉信号を、引続き所定時
間の全開信号を与える手段と、全開信号を与えて
いる間の検出温度の変化速度を検出する手段と、
該変化速度に応じて制御定数を演算する手段を備
えたエアハンドリングユニツト。
1 A temperature sensor, a valve, a valve driving device connected to the valve, and a signal from the temperature sensor as the detected temperature, a target value setting input as the set temperature, and a check timing input as the check timing. The control device includes a control device that outputs a valve opening/closing command to the valve drive device, and the control device gives a full close signal for a predetermined time and a full open signal for a predetermined time to the valve drive device every time the check timing is input. and means for detecting the rate of change in the detected temperature while giving the fully open signal;
An air handling unit comprising means for calculating a control constant according to the rate of change.
JP59229410A 1984-10-31 1984-10-31 Air handling unit Granted JPS61107036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229410A JPS61107036A (en) 1984-10-31 1984-10-31 Air handling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229410A JPS61107036A (en) 1984-10-31 1984-10-31 Air handling unit

Publications (2)

Publication Number Publication Date
JPS61107036A JPS61107036A (en) 1986-05-24
JPH0359344B2 true JPH0359344B2 (en) 1991-09-10

Family

ID=16891779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229410A Granted JPS61107036A (en) 1984-10-31 1984-10-31 Air handling unit

Country Status (1)

Country Link
JP (1) JPS61107036A (en)

Also Published As

Publication number Publication date
JPS61107036A (en) 1986-05-24

Similar Documents

Publication Publication Date Title
US4821526A (en) Air conditioning apparatus
CA1324256C (en) Method and apparatus for the control of air flows and pressures in air-conditioning
JPS6047497B2 (en) Air volume control device for central air conditioning equipment
JPS57205219A (en) Controlling device of air conditioner for automobile
JPH0213217B2 (en)
JPS57134319A (en) Cooling power controller for car air conditioner
JPH0359339A (en) Noise control device for outdoor device of air conditioner
JPH0549898B2 (en)
JPH0359344B2 (en)
JPH0471128B2 (en)
JPS62225842A (en) Air conditioner
JPH01222137A (en) Air conditioning device
JPH03236540A (en) Controlling device of damper of air handling unit
JPS6023262B2 (en) Indoor pressure control method for air conditioning
JPS61143647A (en) Air handling unit
JPH0760006B2 (en) Air conditioner control device
JPS5660718A (en) Inside/outside air selection control method for air conditioner of automobile
JPH023104B2 (en)
JPS5575151A (en) Defrosting operation controller
JPS6019971B2 (en) Greenhouse temperature control device
JPS5960141A (en) Air conditioner
JPH0144972B2 (en)
JPS62217043A (en) Method of controlling flow quantity
JPH0747218A (en) Method for controlling number of rotation of blower by detecting terminal air volume and method for optimum dust collection by controlling terminal damper
JPS61143646A (en) Air handling unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term